
Meterstick: Benchmarking Performance Variability in Cloud and
Self-hosted Minecra�-like Games

Jerrit Eickho�
J.D.Eickho�@student.tudelft.nl
Delft University of Technology

Delft, Netherlands

Jesse Donkervliet
J.J.R.Donkervliet@vu.nl

Vrije Universiteit Amsterdam
Amsterdam, Netherlands

Alexandru Iosup
A.Iosup@vu.nl

Vrije Universiteit Amsterdam
Amsterdam, Netherlands

ABSTRACT

Due to increasing popularity and strict performance requirements,

online games have become a workload of interest for the perfor-

mance engineering community. One of the most popular types of

online games is the Minecraft-like Game (MLG), in which players

can terraform the environment. The most popular MLG, Minecraft,

provides not only entertainment, but also educational support and

social interaction, to over 130million people world-wide. MLGs

currently support their many players by replicating isolated in-

stances that support each only up to a few hundred players under

favorable conditions. In practice, as we show here, the real upper

limit of supported players can be much lower. In this work, we

posit that performance variability is a key cause for the lack of

scalability in MLGs, investigate experimentally causes of perfor-

mance variability, and derive actionable insights. We propose a

novel operational model for MLGs and use it to design the �rst

benchmark that focuses on MLG performance variability, de�ning

specialized workloads, metrics, and processes. We conduct real-

world benchmarking of MLGs, both cloud-based and self-hosted,

and �nd environment-based workloads and cloud deployment to

be signi�cant sources of performance variability: peak-latency de-

grades sharply to 20.7 times the arithmetic mean, and exceeds by a

factor of 7.4 the performance requirements. We derive actionable in-

sights for game-developers, game-operators, and other stakeholders

to tame performance variability.

CCS CONCEPTS

• Software and its engineering→ Interactive games; •General

and reference→ Performance; • Computer systems organi-

zation → Cloud computing.

KEYWORDS

Meterstick, Benchmarking, Workloads, Performance Variability,

Online Games

ACM Reference Format:

Jerrit Eickho�, Jesse Donkervliet, and Alexandru Iosup. 2023. Meterstick:

Benchmarking Performance Variability in Cloud and Self-hosted Minecraft-

like Games. In Proceedings of the 2023 ACM/SPEC International Conference

on Performance Engineering (ICPE ’23), April 15–19, 2023, Coimbra, Portugal.

ACM,NewYork, NY, USA, 13 pages. https://doi.org/10.1145/3578244.3583724

This work is licensed under a Creative Commons Attribution-
ShareAlike International 4.0 License.

ICPE ’23, April 15–19, 2023, Coimbra, Portugal

© 2023 Copyright held by the owner/author(s).
ACM ISBN 979-8-4007-0068-2/23/04.
https://doi.org/10.1145/3578244.3583724

0 50 100 150 200 300 600 900
Game response time [ms]

Control

Resource
Farms

Noticeable
Delay

Unplayable
Game

Lower is better

Figure 1: Minecraft response time in the AWS cloud.

1 INTRODUCTION

The gaming industry is the world’s largest entertainment indus-

try [39]—world-wide, games engage over 3 billion players and

yield over $170 billion in revenue [36]. In this work, we focus

on Minecraft-like Games (MLGs), an emergent and highly popular

type of game where users can change almost every part of the en-

vironment. The canonical example of an MLG is Minecraft, which

is already the best-selling game of all time [31]. All MLGs, includ-

ing Minecraft, present an important challenge to the performance

engineering community: although their user-bases can exceed 100

million active users per month, their scalability is limited to only

200-300 players even under very favorable conditions [47]. (MLGs

support high concurrency by creating separate replicas of their

virtual worlds, essentially sharding state and not allowing cross-

instance interaction.) What limits MLG scalability? In this work,

we posit performance variability is a key limit to MLG scalability,

and design and use an MLG benchmark focusing on this concept.

MLGs represent an important and unique class of online mul-

tiplayer games. Most importantly, MLGs allow players to create,

modify, and remove in-game objects (e.g., player apparel) and geo-

graphical features (e.g., terrain) [18]. Moreover, some game objects

and features are self-acting, that is, they act even when no player

input is applied to them. Players can use them to create dynamic

elements, by “programming” the environment with combinations

of self-acting parts.

Performance variability prevents MLG service providers from giv-

ing strict Quality of Service (QoS) guarantees, and simultaneously

incentivizes overprovisioning of resources and limiting the num-

ber of players that can interact together. For example, Minecraft

Realms, a Minecraft cloud-based service o�ered by Microsoft, limits

the number of players per game-instance to at most 10 (ten)! In

contrast, Hypixel, at 216,762 online players [34] the most populated

Minecraft server, achieves high player-count by stitching together

thousands of (independent) MLG instances using specialized tools,

but players in di�erent instances cannot interact.

In this work, we show for the �rst time empirical evidence that

current MLGs experience signi�cant performance variability. Fig-

ure 1 depicts an exemplary result—even with a single connected

173

https://orcid.org/0000-0003-0627-294X
https://orcid.org/0000-0002-3067-6402
https://orcid.org/0000-0001-8030-9398
https://doi.org/10.1145/3578244.3583724
https://creativecommons.org/licenses/by-sa/4.0/
https://creativecommons.org/licenses/by-sa/4.0/
https://creativecommons.org/licenses/by-sa/4.0/
https://doi.org/10.1145/3578244.3583724


ICPE ’23, April 15–19, 2023, Coimbra, Portugal Jerrit Eickho�, Jesse Donkervliet, and Alexandru Iosup

player, the response time varies from good (below 60ms) to un-

playable (above 118ms). We discuss this and similar real-world

experiments in §5.2.

Furthermore, ours is the �rst study to systematically analyze the

e�ects of performance variability on the operation of MLGs. By design-

ing and using for this purpose a novel benchmark, we provide an

important complement to an emerging body of knowledge. Game

researchers and engineers are already aware of the impact of sev-

eral types of performance variability. Performance variability in

networks causes players to stop playing sooner [11], and there are

widespread techniques in industry to prevent variability in frame

rates [24, 45]. However, the e�ect of performance variability on the

interactive simulation of virtual worlds, and in particular on MLGs,

is much less understood.

Prior work in understanding the performance of MLGs [26, 47]

and on improving their scalability [15, 17, 23] forms a valuable

contribution to the �eld, but does not currently consider explicitly

performance variability. Addressing this important gap, we make a

four-fold contribution:

C1 We propose an operational model of MLGs. Ours is the �rst

to consider MLG-speci�c workloads (§2). Because MLGs allow

players to program the virtual environment and terraform the

terrain, they support new types of workload not available in

most traditional online games.

C2 We design Meterstick, a benchmark that quanti�es performance

variability in MLGs (§3). To this end, we propose a novel perfor-

mance variability metric, and de�ne a benchmarking approach

to produce it experimentally. Our benchmark supports common

deployment-environments for MLGs o�ered as a service, in par-

ticular, both cloud-based and self-hosted. Our benchmark is the

�rst to quantify performance variability in MLGs.

C3 We conduct real-world experiments using Meterstick (§5) and,

after analyzing the results, propose actionable insights (§6). We

evaluate the performance variability of three popular MLGs,

running on two popular commercial cloud providers and one

local compute-cluster.

C4 Following open-science and reproducibility principles, we pub-

lish Findable, Accessible, Interoperable, and Reusable (FAIR [49])

data, available on Zenodo [21], and Free-access Open-Source

Software (FOSS) artifacts, available on GitHub [20].

2 OPERATIONAL MODEL OF
MINECRAFT-LIKE GAMES

For contribution C1, �rst, we summarize a state-of-the-art oper-

ational model and a reference architecture for MLGs (§2.1). Sec-

ond, we de�ne MLG-speci�c environment-based workloads that are

caused by terrain and entity simulation; §2.2 de�nes the resulting

MLG workload model. Third, we model the operational elements

of these workloads (§2.3).

2.1 Reference Architecture for MLGs

We leverage in this work a common reference architecture for

MLGs [47]. As Figure 2 depicts, MLGs use a client-server architec-

ture and are commonly deployed in cloud environments. Players

run a client on their own device, which connects to a server instance

running in the cloud. SomeMLG developers publicly distribute their

  
Protocol

Server 

Players

Entities

 
 
 

Game Loop (Tick) 
 
 
 
 
 
 
 
 

Entities
Terrain Simulation

Player Behaviour

...

Terrain

Input 
Queue

Output
Queue 

50ms

State
Updates 

Frames

Player
Actions 

Client

Networking

Rendering

Inputs
Players

Home network 

Cloud

State

Data
Center

1

4

3

5

2

Figure 2: Overview of an MLG.

server software, allowing players to self-host game instances. Pop-

ular cloud providers such as Amazon AWS and Microsoft Azure

provide tutorials for running these servers on their platform. Mi-

crosoft, the company that currently owns Minecraft, markets it

as a cloud-based service through Minecraft Realms, which o�ers

players a fully-managed Minecraft instance for a monthly fee [4].

Additionally, many smaller companies o�er MLGs as a service; an

extensive list appears in our technical report [22].

The client ( 1 ) has two main tasks. First, it translates player input

into in-game actions, which it speculatively applies to the local

state and also sends to the server for validation. The client-server

communication uses an implementation-speci�c protocol ( 4 ) that

can be shared between di�erent MLGs. Second, the client visualizes

the game state, at a �xed rate.

The server ( 2 ) is responsible for performing all in-game (virtual-

world) simulations, maintaining the global state, and disseminating

state-updates to clients. Di�erent from simulators in science or engi-

neering, video game simulations tolerate (temporary) inconsistency,

and must support modifying the environment via user input. The

game loop ( 3 ) performs simulations, by applying state-updates to

the global state in discrete steps (ticks), at a �xed frequency. InMLGs,

this frequency is typically set to 20Hz, or 50ms per tick. If a tick

takes under 50ms, the MLG waits for the next scheduled tick start.

However, if a tick exceeds 50ms, the tick frequency drops below

20Hz and the server enters an overloaded state. While in this state,

the game fails to meet its QoS requirements and can cause players

to experience game stuttering, visual inconsistency, and increased

input latency. Prior work has shown direct causality between in-

creased input latency and reduced player experience [12, 16, 25].

MLGs generate workloads, both data- and compute-intensive,

that do not exist in other types of games. In contrast to traditional

games, MLGs allow modi�cations to the terrain. This requires

the game server to simulate terrain changes and manage terrain-

state alongside the player- and entity-state found in traditional

174



Meterstick: Benchmarking Performance Variability in Cloud and Self-hosted Minecra�-like Games ICPE ’23, April 15–19, 2023, Coimbra, Portugal

Player Behaviour Terrain Simulation Entities
Movement

 
 

Collision

Interactions 
 
 
 
 

With Players

With Entities

Terrain Modification

Terrain Generation

Physics Simulation 
 
 
 
 

Gravity

Fluids

Lighting

Plant Growth

Simulated Constructs

Movement
 
 

Collision

Spawning

Decision Making
 
 
 
 

Pathfinding

Terrain Modification

Environment-Based Workload Inefficient in MLGs Unique to MLGs 
Example of Workload Causes/Creates

Figure 3: Workload components in MLGs.

games ( 5 ). Unlike other types of state, terrain state can be both

data-intensive and compute-intensive, without direct player input.

2.2 Workloads in MLGs

This section presents our workload model for MLGs, which focuses

on players, terrain, and entities. We discuss each of these compo-

nents, in turn, focusing on unique and challenging aspects. We

distinguish novel aspects in our research.

Figure 3 presents a visual overview of our model. Beyond the

state-of-the-art, our workload model captures environment-based

workloads, which are caused by simulating the modi�able environ-

ment itself, and scale independently from the number of active

players. We argue environment-based workloads are an important

part of representative benchmarking workloads for MLGs. How-

ever, existing benchmarks do not include this type of workload.

Addressing this gap, we propose an MLGworkload model which de-

scribes a wide range of environment-based workloads. In Figure 3,

Terrain Simulation and Entities are examples of environment-based

workloads.

2.2.1 Workload from Players (known). Players cause workload for

MLGs, and games in general, through their actions. MLGs support

player-actions found in traditional games, e.g., player movement

and interactions, and also MLG-speci�c actions, e.g., to modify ter-

rain. For player movement, the game computes collisions to prevent

players from walking through obstacles such as walls, and dissemi-

nates location-changes to other players. Players can also interact

with other players and entities (i.e., objects), for example by collect-

ing resources and exchanging them with other players.

An important di�erence between MLGs and traditional games is

support for player-actions that modify the terrain. In MLGs, players

can terraform—create, modify, and destroy the terrain, as well as

the buildings standing on the terrain. This can generate resource-

intensive workloads in two ways. First, players can change a large

part of the terrain in a short amount of time, for example through

the use of explosives. This is both compute- and data-intensive,

because the game needs to compute the new terrain, and commu-

nicate state updates to keep a consistent view across all players.

Second, players can construct dynamic elements such as simulated

constructs, which increase the complexity of the terrain simulation

and are discussed in §2.2.2. The impact of player workloads has

been previously examined in both the context of traditional video

games architectures and MLGs speci�cally [35, 47].

2.2.2 Workload from Terrain Simulation (novel). In contrast to tra-

ditional games, a signi�cant part of the MLG workload can come

from generating and simulating the terrain. MLGs typically present

players with an endless open world. This world is split into areas,

which are lazily generated when players come near them. Once the

terrain is generated, the game simulates it and allows players to

modify it.

We identify four important components of terrain simulation:

physics, lighting, plant growth, and simulated constructs. Although

physics and lighting simulations are present in traditional games,

the modi�able nature of the terrain makes it signi�cantly more

challenging to manage such features in MLGs. Unlike static envi-

ronments, where physics simulation only needs to happen for the

relatively few entities that can move through the world, MLGs need

to perform physics simulations on the many blocks that compose

the terrain itself. For example, a bridge can collapse when a player

removes its support pillars, or the terrain underneath them. Once

the bridge has collapsed, the bridge no longer casts shadow, so

the simulator needs to recompute lighting (frequently) at runtime;

static environments do not have this dynamic workload.

Plant growth is an example of a dynamic element unique toMLGs.

Plants and trees change over time, reshaping the nearby terrain,

thus generating new workload.

Through terrain modi�cation, players can create simulated con-

structs. In a simulated construct, players place together dynamic

elements (e.g., plants, automatic croppers) to achieve a certain goal.

For example, many players build irrigation systems that grow and

harvest vegetables automatically, with high yield. Such systems can

leverage tens to hundreds of dynamic elements, whose interaction

generates compute-intensive workload for terrain simulation.

In MLGs, as we show in §5, even a single player can overload the

game simulator. This is in part because, in MLGs, a single player

can trigger complex simulations, for example, by building simu-

lated constructs of arbitrary size. By contrast, in traditional games,

only the number of concurrent players is strongly correlated with

workload intensity.

2.2.3 Workload from Entities (novel). An entity is an object that

exists in the virtual world but is not a player or terrain. Examples

include Non-Playable Characters (NPCs), mobiles (i.e., mobs), and

items (e.g., a sword). Entities can typically move or be moved by

players and collide with each other. Here we describe two important

aspects of entity simulation which are challenging for MLGs.

First, games typically instantiate entities at spawn points, e.g.,

spawn an NPC at a spawn point in a dark cave when a player

is about to enter. In contrast to static environments, where game

developers typically place these spawn points manually, MLGs need

to compute spawn points dynamically as terrain modi�cation may

obstruct existing spawn points.

Second, NPCs use path-�nding algorithms to move around the

map. Static worlds pre-compute overlay graphs with viable NPC

locations, improving computational e�ciency. In contrast, MLGs

have changing terrain, so they must compute path-�nding graphs

dynamically, leading to additional compute-intensive workload.

175



ICPE ’23, April 15–19, 2023, Coimbra, Portugal Jerrit Eickho�, Jesse Donkervliet, and Alexandru Iosup

2.3 Operational Model of MLGs

We detail in this section the game loop used by MLGs. We de�ne the

operational model as the set of operations, and of events triggering

and linking them, of individual components in the implementation

of the game loop. Novel, in this work, we analyze the performance

implications of the unique aspects of MLG workloads (see §2.2)

when executed with the MLG operational model.

In an MLG, the game loop consists of three elements: players, the

terrain, and entities. These elements correspond to the workloads

speci�ed in §2.2. For each element, its simulation typically requires

reading the current game state, and may result in terrain state

changes that need to be persisted (i.e., written).

Although, from a performance perspective, it is desirable to run

the game loop elements concurrently, there are two challenges

with this approach. First, while these elements are in principle inde-

pendent, they have implicit dependencies through the game state

which they access. Individual elements can only run concurrently

as long as they do not access the same state. Second, terrain simu-

lation rules can cause a sequence of state changes which cannot be

parallelized.

Using our operational model for MLGs, we formulate two impli-

cations forMLGperformance variability. First, because environment-

based workloads do not rely on the presence of players, large

environment-based workloads can cause ticks to exceed their max-

imum duration, even with few or no players connected. Second,

because player simulation and environment-based workloads must

be completed sequentially when they access the same state, even

small environment-based workloads can a�ect tick duration given

they are spatially clustered.

3 METERSTICK BENCHMARK DESIGN

To address contribution C2, we design Meterstick, a benchmark for

evaluating performance variability in MLGs. The main novelty of

Meterstick relates to its workloads (§3.3) and performance metrics

(§3.4 and §4).

3.1 System Requirements

Here we describe our eight requirements for Meterstick. We de�ne

the �rst three requirements speci�cally for our use case. The last

�ve relate to benchmarking computer systems in general, and are

based on existing guidelines [28, 48].

R1 Captures performance variability of MLGs: Meterstick must

be capable of capturing relevant performance metrics at a

granularity su�cient for analysis of variability. The speci�c

measure of variability must be applicable and meaningful in

the context of MLGs.

R2 Validity of workloads: The workloads used in benchmarking

of the MLG should be representative of real-world use and

address the workload types listed in §2.2.

R3 Relevant metrics and experiments: The benchmark should

support relevant experiments to isolate di�erent sources of

variability, and collect meaningful metrics to allow suitable

analysis of these sources.

R4 Fairness: The benchmark should provide a fair assessment

for compatible systems. In particular, bias towards any one

system should be limited.

Player Emulation
 
 
 
 
 
 
 

Controller

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

MLG 

 
 
 

MLG

Player
Emulation 

Control
Client

I/O
Queue

Game
Loop

System
Metrics

Collector

 
 
 
 
 

User

Deployment

Data
Visualization

Data Retrieval

Control Data
Game Messages

Remote
Machine 

Local
Machine 

Control
Server Control

Client

Metric Externalizer

Application  
and  

System  
Metrics

Results

3

2

544

44

47

9

10

48

Configuration
 
 
 

1

Workload IPs

...Keys

6

Existing Component

Figure 4: Architecture of Meterstick. Component 6 is system

under test. Component 5 adapts tool [47].

R5 Ease of Use: The benchmark should be easy to con�gure and

use with any compatible system.

R6 Clarity: The benchmark should present results to the user in

a way that is suitable for system performance variability.

R7 Portability: The benchmark should support common deploy-

ment environments and be easy to port to others.

R8 Scalability: Benchmark workloads should be scalable to ac-

commodate benchmarking on increasingly powerful hard-

ware or with more performant systems.

3.2 Design Overview

Here we present the design of Meterstick, our system for bench-

marking of performance variability in MLGs. Figure 4 presents

Meterstick’s high-level design. We discuss the benchmark work-

loads (addresses R2) and metrics (partially addresses R3) in more

detail in §3.3 and §3.4 respectively.

In our design, the user mainly interacts with Meterstick through

its Con�guration component ( 1 ). The Con�guration allows the

user to capture performance variability by specifying the duration

and number of iterations of experiments (partially addresses R1).

The Con�guration further allows users to con�gure benchmark

parameters, such as the systems under test and workload, and

deployment parameters, such as machine IP addresses (partially

addresses R5).

After specifying the con�guration, the user launches Meterstick.

This triggers the Deployment component ( 2 ), which deploys com-

ponents and software dependencies to remote machines speci�ed

in the con�guration. This only requires the user needs to specify a

set of IP addresses of ssh-accessible machines. This makes Meter-

stick portable (R7), and allows users to evaluate MLG performance

variability under cloud or self-hosted deployments.

176



Meterstick: Benchmarking Performance Variability in Cloud and Self-hosted Minecra�-like Games ICPE ’23, April 15–19, 2023, Coimbra, Portugal

When deployment is complete, the Deployment component

hands control to the Control Server ( 3 ). Meterstick follows a Con-

troller/Worker pattern, with the Control Server as the controller,

and the Control Clients as the workers ( 4 ). Depending on the con-

�guration, the Control Client runs either player emulation or the

MLG.

Meterstick uses one or more workers for player emulation ( 5 ).

These workers emulate players by connecting the MLG and auto-

matically sending player actions based on programmed behavior.

Meterstick implements this by using the player emulation from

Yardstick [47], an existing MLG benchmark which we compare to

Meterstick in detail in §7.

One worker runs the MLG ( 6 ), which is the system under test.

Meterstick captures the MLG’s performance variability metrics

using the player emulator ( 5 ), the metric externalizer ( 7 ), and the

system metrics collector ( 8 ). §3.4 details the operation of these

components and the metrics they collect, including our novel metric

to capture performance variability.

When the benchmark experiments are done, the Control Server

activates the Data Retrieval and Data Visualization components ( 9

and 10 ), producing basic plots for MLG performance and perfor-

mance variability. Users can view these plots, and, if desired, pro-

vide their own advanced plotting scripts for in-depth analysis (con-

cludes R5, R6).

3.3 Benchmark Workloads (address R2, R4, R8)

This section presents Meterstick’s workloads. Meterstick uses the

workload model presented in §2, which divides workloads in three

main components: players, terrain simulation, and entities. By us-

ing this model, Meterstick’s workloads are applicable to MLGs

in general, thus avoiding favoring speci�c systems (partially ad-

dresses R4). In practice, the user speci�es in the Con�guration ( 1 )

only the player and terrain simulation parts of the workload, as

entities are a result of terrain simulation (spawning, see §2.2).

As future systems may become su�ciently performant to mit-

igate the impact of Meterstick’s workloads, Meterstick supports

workload scaling (R8). To increase Meterstick’s workload complex-

ity, the user can specify an increased number of players to scale

the player workload, and use Meterstick’s scale parameter to select

higher-complexity versions of the pre-con�gured workloads.

While Meterstick supports arbitrary valid Minecraft worlds as

workloads, the remainder of this section describes the workloads

we design for use in our experiments to highlight performance

variability based o� our workloadmodel and observable community

use (R2).

The conceptual challenge of designing the benchmark workloads

stems from the vast design space. MLGs give players �ne-grained

control over the virtual environment, resulting in an endless number

of possible world permutations and a large variety in types of

simulated constructs.

Additionally, �nding evidence to support our selection proved

to be challenging, as no peer-reviewed analysis of such artifacts

currently exists and game operators do not want to share such

information; searching for trustworthy communities and identi-

fying suitable artifacts poses additional challenges. We detail our

Table 1: Minecraft worlds used as workload starting points

by the Meterstick benchmark.

Name Properties Size [MB]

Control Freshly generated world 5.4

TNT Entity actions, terrain updates 6.3

Farm Resource Farm constructs 26.0

Lag Complex simulated construct, stress test 4.7

workload design and the evidence supporting it throughout this

section.

3.3.1 The Environment-Based Workloads. The environment work-

load is determined by the MLG’s terrain generation and the terrain

modi�cations made by players. To obtain representative worlds and

workloads, we reconstruct highly popular creations (templates of

useful simulated constructs, see §2.2) available on common sharing

platforms in the MLG community. Because the MLG community

thrives on sharing player-created content with other players, this

approach captures essential features of how the community uses

these systems.

To cover the range of valid workloads (R2), we include two

worlds that result in a best-case workload and worst-case workload

respectively. During all environment-based workloads, Meterstick

connects to the game a single player that performs no actions. This

is necessary to correctly capture the response time metric discussed

in §3.4. The remainder of this section describes the worlds and their

resulting workloads. We list the worlds used in Table 1.

The Control world results in a best-case workload while still

being realistic. The Control world is an unmodi�ed world generated

by Minecraft version 1.16.4 (seed in the technical report [22]). The

measured results of this workload are used as a workload-level

baseline to compare the other workloads.

The TNT world contains a 16-by-16-by-14 cuboid �lled with

TNT blocks which are set to explode around 20 seconds after a

player connects. In the systems tested, TNT operates by spawning

an entity, which can be interacted with by other entities, including

other TNT entities. Thus, when a large section of TNT is activated,

the MLG must perform a large number of both entity-collision and

physics calculations. Intentionally creating large-scale TNT chain

reactions is a popular activity, which can be observed in a plethora

of community-made content. For example, a video from 2018 that

shows a chain reaction of thousands of TNT blocks has 21 million

views [19].

The Farm world contains multiple resource farms, which are

simulated constructs built by players to automatically generate

in-game resources. The speci�c designs of the simulated constructs

in this workload were sourced from popular community creators

and each have 1.6 million views on average. A full list is available

in the technical report [22]. These farms rely on entities in their

functioning, through spawning driven entities and manipulating

their path�nding, or through the creation of passive entities to

represent item resources. A core feature of MLGs is collection of

resources from the game environment. The ability for players to

construct simulated constructs that automate this process is both

an intended and common behavior.

177



ICPE ’23, April 15–19, 2023, Coimbra, Portugal Jerrit Eickho�, Jesse Donkervliet, and Alexandru Iosup

Table 2: Metrics collected by Meterstick. The metric type is

Derived, Application level, or System level.

Type Metric Description

D Instability Ratio Tick instability (see §4)

A Response time Round trip latency for clients

A Tick duration Duration of each tick

A Tick distribution Tick time by workload

S CPU CPU utilization

S Memory Memory usage

S Threads Thread total

S Disk I/O Bytes read/written

S Network I/O Bytes sent/received

The Lag world results in a worst-case workload. This world

contains a simulated construct known in the MLG community as

a Lag Machine. Lag Machines are a speci�c subset of simulated

constructs that are designed to cause high computational load for

the MLG, either for the purpose of stress testing it, or to cause it

to crash as part of a denial of service attack. The design of the Lag

Machine used in this workload is publicly available and provided by

a community-creator with 52 thousand subscribers [44]. It is chosen

as it operates based on terrain simulation rules. Speci�cally, it uses

many logic-gate constructs in a small area to cause a high volume

of simulation rule activations. Importantly, the simulation rules

this Lag Machine uses are generally non-malicious, and are used

in many resource farm constructs, as well as forming the basis for

simulated constructs such as an operational digital Computer [30].

3.3.2 The Player-Based Workload. Meterstick uses a player-based

workload facilitated by the player emulation component ( 5 ). In

this workload, Meterstick is con�gured to connect 25 players which

move randomly in a 32-by-32 area. The existing Yardstick bench-

mark [47] focuses solely on the impact of player workload. So, we

include this player workload to represent a high-density area in

MLGs and allow Meterstick to compare the impact of environment-

based workloads with a traditional player-based workload. We

select a player count of 25 based on the Minecraft Wiki’s dedicated

server recommendation [7], as well as the recommendations from

various commercial cloud providers (see §5.1).

3.4 Metrics (address R1, R3, R4)

This section describes the application-level and system-level met-

rics metrics collected by Meterstick, selected to ful�ll R3. In §4 we

describe our novel Instability Ratio (ISR) which quanti�es perfor-

mance variability (concludesR1). Our ISR metric and all application

and system metrics are general to MLGs to avoid bias for speci�c

implementations (concludes R4). Table 2 gives an overview of the

collected metrics.

3.4.1 Application-level Metrics. Meterstick collects three applica-

tion level metrics: response time, tick duration, and tick distribution.

Response time is how system latency becomes visible to the user.

Lower values are better, and we use existing latency thresholds for

the game becoming noticeable and unplayable at 60ms and 116ms

respectively [16, 25].

The response time is measured as the time between a player

taking an action and the results of that action becoming visible. Me-

terstick captures this metric by having a player send chat messages

to all players (including itself), and measuring how long it takes

for the player to receive its own message.

While tick duration and tick distribution cannot be directly ob-

served by players, MLGs typically expose these metrics through

interfaces commonly used by debugging tools. Meterstick’s Met-

ric Externalizer ( 7 ) uses these interfaces to gain access to these

metrics without requiring access to the game’s source code. As

a consequence, Meterstick is easily con�gured to work with new

MLGs.

The tick duration is the amount of time it takes the MLG to

complete a single iteration of the game loop, and tick distribution is

the percent of tick time the MLG spent simulating each workload

component, such as simulating entities. Both metrics are directly

related to game response time and are important indicators of game

performance. More detail about the relationship between these

metrics is available in §2.1.

3.4.2 System-level Metrics. Meterstick captures system-level met-

rics to allow users to perform a more in-depth performance analysis.

Meterstick collects system-level metrics using the System Metrics

Collector ( 8 ), which queries the operating system twice per second.

Meterstick collects CPU utilization, memory usage, the number

of operating-system threads associated with the MLG, disk I/O, and

network I/O. These metrics allow users to analyze causes of high

tick duration, and check for potential performance bottlenecks.

4 INSTABILITY RATIO METRIC

In this section we present our novel Instability Ratio metric. We

present a de�nition, analyze its properties, and compare it to exist-

ing metrics.

4.1 Instability Ratio De�nition

In the context of online gaming, players prefer stable performance

to unstable, but on average faster, performance [11, 37, 40]. Stabil-

ity facilitates predictability, allowing players to acclimate to game

update delays, up to a point. Thus, it is bene�cial to quantitatively

analyze the stability of game performance by analyzing the variabil-

ity of game cycles, or ticks (see §2.1). However, existing measures

of variability are insu�cient, because they do not capture the order

of ticks, outlier values, the duration of the trace, or a combination

of these elements.

We describe here our novel Instability Ratio (ISR), a normalized

metric based on cycle-to-cycle jitter [13, 29]. In the context of MLGs,

we measure cycle-to-cycle jitter as the di�erence in delay between

consecutive ticks (see §2.1). This delay starts to vary when the game

becomes overloaded. We compute the ISR as the normalized sum of

MLG cycle-to-cycle jitter. The cycle-to-cycle jitter considers only

the di�erence between two consecutive ticks; reports for this metric

include the maximum or moving average value. Novel in this work,

our ISR metric sums the di�erences, and normalizes the result.

The full metric equation is shown in Equation 1, where #4 is

the expected number of ticks, C8 is the duration of the 8th game tick,

1 is the delay between ticks when the MLG runs at its intended

178



Meterstick: Benchmarking Performance Variability in Cloud and Self-hosted Minecra�-like Games ICPE ’23, April 15–19, 2023, Coimbra, Portugal

0.00

0.25

0.50

0.75

1.00

0 25 50 75 100

λ

IS
R

s 2 10 20

(a) Behavior of ISR for varying

outlier periods (_).

0

250

500

750

1000

0 10 20 30 40 50

time [s]

ti
c
k
 d

u
ra

ti
o
n
 [
m

s
] High ISR Low ISR

(b) Example traces resulting in

di�erent ISR values.

Figure 5: Numerical analysis of Instability Ratio. Higher val-

ues indicate higher performance variability. B indicates the

outlier scaling factor. _ indicates the period between outliers

in number of ticks.

frequency, max(1, C8 ) is the period of tick 8 , and #0 is the actual

number of ticks.

When a tick lasts longer than the 1 value, the proceeding tick

is delayed. Thus, if the game meets its performance requirements

#0 = #4 , but if it becomes overloaded #0 ≤ #4 (i.e., ∃8 : C8 >

1 =⇒ #0 ≤ #4 ).

ISR =

∑#0

8=1
|max(1, C8 ) −max(1, C8−1) |

#4 × 21
(1)

Using this metric as a measure of variability, the range of possible

values is 0 to 1. A ISR of 0 indicates no variability: the tick period

is constant for all ticks in the trace. A ISR of 1 indicates maximum

variability, and is reached when the sum of di�erences between

consecutive ticks is equal to twice the duration of the trace (i.e.,

#4 × 21). This value is reached when tick periods alternate between

their intended value and extremely large values.

4.2 Analysis of ISR Behavior

We analyze the behavior of ISR by modeling a trace where every

_ ticks, one tick has a duration of B1, while the others all have

duration 1. This means 1 in _ ticks exceeds the performance re-

quirement by a factor B . This allows expressing ISR as �(' =
B−1

B+_−1
.

A plot of this function and an example trace based on this model

are available in Figure 5.

Figure 5a shows how ISR responds to outlier scaling and fre-

quency. The horizontal axis shows _, which is the number of ticks

between outliers, and the vertical axis shows the value of ISR. The

curves show the value of ISR for three values of B . The three values

of s (2, 10, 20) indicate that all outliers exceed the latency require-

ment by a factor 2, 10, or 20, respectively.

The plot shows that ISR increases when outliers become larger (in-

creasing s), and when outliers are more common (lower X). For exam-

ple, a tick exceeding 1 by a factor 10 (B = 10) every 25 ticks (_ = 25)

results in an ISR value of 0.26.

Figure 5b shows two example traces: High ISR and Low ISR. Both

traces contain 1000 ticks. The horizontal axis shows time, and the

vertical axis shows tick duration. Most ticks have a duration below

50ms (b), but each trace has �ve outliers with a scaling factor of 20,

resulting in a 1 second spike. For the Low ISR trace, all outliers are

the start of the trace, whereas in the High ISR trace the outliers are

evenly distributed over time. While the statistical distributions of

Table 3: Comparison of ISR with existing variability metrics.

Metric Order Irregular Normalized

Dependent Sampling

Standard deviation ✗ ✗ ✗

Allan variance [41] ✓ ✗ ✗

Jitter [42] ✓ ✓ ✗

ISR ✓ ✓ ✓

the traces are identical, the ISR for the Low ISR trace is 0.009, the

ISR for the High ISR trace is 0.15, an order of magnitude higher.

4.3 Comparing ISR to Alternative Metrics

Table 3 compares ISR to existing measures of variability. Standard

deviation captures spread from an average value. It is not order

dependent, and thus is not a measure of stability, but dispersion.

Allan variance is used in the �eld of electrical engineering as a

time domain measure of frequency stability, typically applied to

clocks or oscillators [41]. Allan variance is order dependent, but

relies on a constant sampling frequency and a continuous sampling

domain. Neither property is applicable to the duration of tick values.

Jitter is de�ned in the domain of networking as the smoothed

absolute di�erence between consecutive packets [42]. While most

similar to ISR, which is based on cycle-to-cycle jitter, it is not nor-

malized, but rather reported as an average and de�ned for any

packet, rather than an entire sampling duration.

5 REAL-WORLD EXPERIMENTS

To address contribution C3, we present here the setup and results

from our real-world experiments. We show here the �rst fourMain

Findings, further results are available in our technical report [22].

MF1 Performance variability can make MLGs unplayable (§5.2).

We �nd that the maximum response time can be up to 20.7

times higher than the arithmetic mean, and exceed by more

than a factor of 7.4 the threshold for playable games.

MF2 Environment-basedworkloads cause signi�cant performance

variability (§5.3). We �nd that environment-based workloads

introduce signi�cant performance variability, increasing ISR

by 0.04 up to 0.92. This variability can overload popular

MLGs by 58 times the normal tick duration and even crash

the game.

MF3 MLGs exhibit increased variability in commercial cloud en-

vironments compared to self-hosted environments (§5.4).

We show that both clouds, AWS and Azure, introduce ad-

ditional performance variability between iterations of the

same workload compared to the local environment, DAS-5.

The choice of cloud causes a 1.39 up to 15.44 times increase

in ISR IQR and a 1.09 up to 5.61 times increase tick time IQR.

The minimum observed ISR for both clouds exceeding the

maximum observed ISR on DAS-5.

MF4 The common hardware resource recommendations are in-

su�cient to avoid performance variability (§5.5). The recom-

mended node size exhibits high performance variability and

high mean tick duration. Larger node sizes result in lower

179



ICPE ’23, April 15–19, 2023, Coimbra, Portugal Jerrit Eickho�, Jesse Donkervliet, and Alexandru Iosup

Table 4: Hardware recommendations from companies that

o�er MLGs as a service. NP means information is not pro-

vided to consumers, V means time-varying. Full table, with

references to providers, available in the tech report [22].

Service RAM[GB] vCPU [#] CPU Speed [GHz]

Server.pro 4 2 2.4

Skynode 4 2 3.6

Hostinger 3 3 NP

Ferox Hosting 4 NP NP

MelonCube 4 NP 3.4

Azure 4 2 V

AWS 1 1 V

values of both, such that a node with 8 vCPUs reduces per-

formance variability and mean tick duration to acceptable

levels.

5.1 Experimental Setup

In this section we describe our experimental setup. In our experi-

ments, we evaluate three MLGs, i.e., the systems under test, in three

di�erent environments.

5.1.1 System under test. We use in our experiments three MLGs

that use the Minecraft protocol: the original Minecraft as developed

byMojang [1], Forge, and PaperMC. We select these services because

of their popularity and utility.

Forge is the most popular MLG for operating modi�ed (i.e., mod-

ded) services [3]. Of the top-50 most downloaded Minecraft mods,

45 work exclusively with Forge. Of the 5 mods that are not exclusive

to Forge, only one is incompatible with it [5]. PaperMC is marketed

as a high-performance alternative to Minecraft [6]. While the Pa-

perMC project does not quantify its performance improvement

over Minecraft, it does provide documentation of its optimizations,

which include extensive changes to threading models and virtual

environment processing.

5.1.2 Deployment Environment. We evaluate theMLGs in two com-

mercial cloud environments, Amazon AWS and Microsoft Azure,

and DAS-5, a supercomputer for academic and educational use [9].

We choose AWS and Azure because they are the two cloud en-

vironments with the biggest market share, with 32% and 20% re-

spectively [38]. We use DAS-5 to evaluate how commercial cloud

environments a�ect the performance variability ofMLGs, compared

to self-hosting these games on dedicated hardware.

Our experiments on cloud environments use T3.Large and Stan-

dard_D2_v3 nodes respectively. Both node types are equipped with

2 vCPUs and 8GB memory. We choose these nodes based on the de-

fault hardware con�gurations recommended by Minecraft service

providers as well as guidelines published by AWS and Azure [8, 33].

For an overview of these hardware recommendations, see our

technical report [22].

On DAS-5, we use a regular node, which is equipped with a dual

8-core 2.4 GHz processor and 64GB memory, and limit the number

of CPU cores available to the MLG by setting its CPU a�nity to

two cores, unless indicated otherwise. Because the MLGs used in

0 50 100 150 200 500 1000 1500

Minecraft Forge Mean
Player action response time [ms]

C
on

tr
ol

F
ar

m
T

N
T

2718 ms

2303 ms

Noticeable
Delay

Unplayable
Game

Lower is better

Figure 6: Game response time in AWS environment when

running separate environment-based workloads. Whiskers

indicate 5th and 95th percentile respectively. The black dia-

monds indicate arithmetic mean.

our experiments run on the Java Virtual Machine (JVM), we limit

memory available to the MLG in both cloud an DAS-5 nodes by

setting the JVM’s maximum heap size to 4GB.

Table 4 lists a sampling of hardware recommendations from

commercial cloud companies that o�er Minecraft-like game hosting.

If no plan was marked “recommended," data is taken from plans

that are comparable to recommended plan on other services. From

these recommendations we �nd that 2 vCPU and 4GB RAM is the

most common con�guration. On AWS and Azure it is possible to

select speci�c con�gurations of hardware, however, to ensure that

the Benchmark metric tools have su�cient memory during the

experimental duration, we use nodes with at least 8 GB RAM and

limit the heap memory of the Minecraft-like game to 4GB using

the -Xmx JVM argument in all experiments.

5.2 MF1: Performance variability can make
MLGs unplayable

Due to signi�cant performance variability, the median and mean

game response times give an optimistic view of game performance,

and is worse than the performance observed by players. Figure 6

depicts the result, and shows that the 95th percentile of game re-

sponse time can be up to 4.1 times higher than the arithmetic mean,

and exceed by more than a factor of 12.8 the threshold that makes

the game unplayable. In real-time games, a temporary spike in delay

can signi�cantly a�ect the user’s experience, similar to a temporary

freeze in a phone call or video stream.

Figure 6 shows the response time (horizontal axis) for two MLGs

(Minecraft in green, and Forge in blue) under three di�erent work-

loads (vertical axis). The workloads and response time metric are

described in §3.3 and §3.4.1 respectively. The whiskers extend to

the 5th and 9th percentiles, respectively,

and the black diamond indicates the arithmetic mean. The No-

ticeable Delay line (at 60ms, in orange) and Unplayable Game

line (at 118ms, in red) indicate high game-latency which respec-

tively marks the values where latency becomes noticeable to players

andmakes the game so unresponsive it becomes unplayable [16, 25].

Under the Control workload (top two boxes), the 95th percentile

is below the noticeable threshold for both Minecraft and Forge.

However, the maximum value for Forge (514ms) is 20.7 times larger

180

https://server.pro/
https://www.skynode.pro/
https://www.hostinger.com/minecraft-server-hosting
https://feroxhosting.nl/
https://www.meloncube.net/
https://docs.microsoft.com/en-us/gaming/azure/reference-architectures/multiplayer-basic-game-server-hosting
https://web.archive.org/web/20201126074839/https://aws.amazon.com/getting-started/hands-on/run-your-own-minecraft-server/


Meterstick: Benchmarking Performance Variability in Cloud and Self-hosted Minecra�-like Games ICPE ’23, April 15–19, 2023, Coimbra, Portugal

0.00 0.05 0.10 0.15

Players
Lag
TNT

Farm
Control

Players
Lag
TNT

Farm
Control

Players
Lag
TNT

Farm
Control

0.85 0.90 0.95 1.00

MLG: Forge PaperMC Minecraft
Instability Ratio

S
el

f-
H

os
t,

 D
A

S
5 

16
-c

or
e

S
el

f-
H

os
t,

 D
A

S
5 

2-
co

re
C

lo
ud

,
 A

W
S

 2
-c

or
e

crashed

Figure 7: ISR for each MLG on the AWS and DAS-5 environ-

ments. The Lag workload crashed all MLGs on AWS; see text

for explanation. §3.3.2 de�nes the “Players” workload.

than the mean, and the maximum value for Minecraft (679ms) is

exceeds by 7.4 times the Unplayable threshold at 118ms. These

outliers occur directly after a player connects to the game. This

means that, even with good average performance, the game can still

be unplayable if players frequently connect, which is a common

occurrence in online multiplayer games.

Compared to the Control workload, the Farm and TNT work-

loads show signi�cantly more performance variability, pointing to

a further degradation of player experience. In all cases, the mean

and median values give an overly optimistic view of the game’s per-

formance. For the Farm workload, the mean and median values

for Forge (third bar from the top) indicate the response time is

noticeable, but not unplayable. However, the plot shows a 95th

percentile of 225.8ms, which is 1.9 times as high as the Unplayable

threshold. For Minecraft (fourth bar from the top), the mean and

median values indicate that the response time is not noticeable

for players. However, the plot shows that performance variabil-

ity causes the response time to exceed the Noticeable threshold

more than 25% of the time (box’s right edge exceeds the Noticeable

threshold), and exceeds the Unplayable threshold more than 5%

of the time. The TNT workload causes the highest performance

variability for both Forge and Minecraft (bottom two boxes, 547ms

interquartile range for Forge and 503ms for Minecraft). In both

cases, the median response time is below the noticeable threshold,

while the 95th percentiles are 12.7 times the unplayable threshold,

and the maximum observed values (indicated with black arrows)

are at least 19 times larger than the unplayable threshold.

From results in this section, we conclude that the mean and

median values give an overly optimistic view of MLG performance,

and that performance variability in MLGs results in noticeable and

unplayable game latency, impacting players.

0 20 40 60
0

650
1300
1950
2600

0
100
200
300
400

0 20 40 60
0

100
200
300
400

0
100
200
300
400

PaperMC Forge
Minecraft Overloaded Threshold
480ms

Control Farm

TNT Players, n=25

time [s] time [s]

tic
k 

tim
e 

[m
s]

tic
k 

tim
e 

[m
s]

W
or

se
W

or
se

Figure 8: Tick time over time for each MLG in the AWS en-

vironments running the Control, Farm, TNT and Players

workloads. The Lag workload on AWS is omitted as each

MLG crashes. §3.3.2 de�nes the “Players” workload.

5.3 MF2: Environment-based workloads cause
signi�cant performance variability

Environment-based workloads cause signi�cantly increased perfor-

mance variability on each game and in each environment tested,

and can overload or crash the game. Figure 7 shows the perfor-

mance variability of each MLG when running environment-based

workloads on AWS and DAS-5. Compared to the control work-

load, each MLG on each environment exhibits higher performance

variability when operating environment-based workloads.

Figure 7 shows performance variability, quanti�ed using ISR

(see Equation 1). The three top-level rows show three environment

con�gurations, each containing �ve workloads. The color and shape

of the marker indicate one of three MLGs.

Environment-based workloads (i.e., Farm, TNT, Lag) cause sig-

ni�cantly higher performance variability than the player workload

and control workload for all games in all environments, with the

exception of PaperMC on AWS (red circles in the top row). This

provides evidence that environment-based workloads cause signi�-

cant performance variability. Further analysis into the behavior of

PaperMC reveals that it contains performance optimizations specif-

ically for handling TNT explosions, improving its performance on

the TNT workload, and Redstone, a simulated block type which is

used in the Farm workload (analysis of PaperMC given in technical

report [22]). This provides evidence that the performance variabil-

ity caused by these environment-based workloads are known to the

MLG community and can (at least partially) be addressed through

engineering.

Of all workloads, the Lag workload causes the most performance

variability. Further analysis reveals that this happens because this

workload consists mainly of parts which are only simulated every

other tick, causing the game to alternate between extremely short

and extremely long ticks. This maximizes the value of ISR, which

is based on the di�erence in duration between consecutive ticks.

181



ICPE ’23, April 15–19, 2023, Coimbra, Portugal Jerrit Eickho�, Jesse Donkervliet, and Alexandru Iosup

0 50 100 150

0 0.05 0.1 0.15

DAS5 Azure AWS Mean
Tick time [ms]

Instability Ratio

PaperMC

PaperMC

Forge

Forge

Minecraft

Minecraft

Figure 9: Distribution of tick times and ISR from 50 iterations

of the Players workload. Whiskers extend to ± 1.5 × IQR,

bounded by the minimum and maximum values.

There are no results for running the Lag workload on AWS because

all three MLGs crash when a player joins and the environment

simulation begins. The corresponding increase in tick duration

causes the player’s connection to time-out, forcing each MLG to

stop.

Figure 8 shows the game’s tick duration over time for each game

when running on AWS. The dashed black line indicates the over-

loaded threshold at 50ms, and the green line allows calibrating the

vertical axis across the four sub-plots.

The stability observed when running the Control workload in

Figure 7 is visible in the top-left sub-plot in Figure 8 as three rela-

tively stable curves with few spikes. In contrast, the high perfor-

mance variability observed for the Farm and TNT workloads is

visible in the top-right and bottom-left sub-plots as jittery curves.

The Farm workload depicted in the top-right shows curves which

change value at high frequency, resulting in high ISR. PaperMC’s

tick durations are frequently below the 50ms threshold, resulting

in lower ISR. The TNT workload depicted in the bottom-left shows

curves which change value at a much lower frequency, but reach

signi�cantly higher values, exceeding 2500ms for both Minecraft

and Forge. Similar to the Farm workload, PaperMC’s tick durations

are often below 50ms, resulting in lower ISR.

5.4 MF3: MLGs exhibit increased variability in
commercial cloud environments

In our experiments, all MLGs show increased performance vari-

ability in terms of both variability (i.e. ISR) and tick times, when

run on the AWS and Azure cloud environments, compared to the

self-hosted DAS-5. Figure 9 shows ISR and tick time distribution

across 50 iterations of the Player workload (see §3.3.2) of all three

games (on the vertical axis) in DAS-5 (green), Azure (blue), and

AWS (red).

The results show that all three games are the most stable, with

the lowest median ISR (line inside boxes) and the lowest ISR overall,

when run on DAS-5. The maximum ISR observed on the DAS-5

is 0.021 (Forge), which is smaller than 0.029, the minimum ISR

observed in AWS and Azure (PaperMC). Distribution of tick time

follows a similar trend, with each game exhibiting lowest mean and

0 50 100 150 0.00 0.05 0.10 0.15

Node Size: 2XL XL L
Tick time [ms] Instability Ratio

PaperMC

Forge

Minecraft

Overloaded Threshold

Figure 10: Tick time distribution and ISR during TNT work-

load on various AWS node sizes. Whiskers extend to ± 1.5 ×

IQR, bounded by the minimum and maximum values. Black

diamond indicates arithmetic mean.

median tick time on the DAS-5, as well as the smallest interquartile

range (IQR).

From this result, we highlight two surprising observations. First,

no game performs best in all environments. On DAS-5, PaperMC

performs best, slightly outperforming Minecraft with a median

ISR of 0.007 and 0.010 respectively. Although PaperMC also has

the lowest median ISR on Azure, it simultaneously has the highest

IQR of both ISR, 0.028 compared to Forge’s 0.009 and Minecraft’s

0.011, and tick time, 40.75 to Forge’s 23.25 and Minecraft’s 26.71.

Moreover, on AWS, PaperMC is the worst performing game, with a

median ISR of 0.094 and a median tick time of 48.98. Second, neither

cloud performs best for all games. While AWS performs better for

Minecraft and Forge, Azure performs best for PaperMC.

Increased performance variability in commercial cloud environ-

ments is a well-documented phenomenon [10, 32, 43, 46], with a

wide variety of sources identi�ed for the cause of increased variabil-

ity, including hardware manufacturing di�erences, shared tenancy

of hardware and networks, speci�c software con�gurations, and

resource allocation and scheduling systems.With so many variables

operating in the context of commercial cloud hosting, it is infeasible

to identify a single source responsible for the variability of these

games, especially since commercial cloud hosting companies do

not make internal data on resource allocation and shared tenancy

publicly available. However, we can conclude that this variability

observably impacts the performance of MLGs, and can be compared

between MLGs and commercial cloud services.

5.5 MF4: Using recommended hardware results
in signi�cant performance variability

Recommended hardware con�gurations in cloud environments

result in unacceptable levels of performance variability, which de-

grades player experience. By using more powerful cloud hardware,

performance variability can be limited to acceptable levels. Fig-

ure 10 shows this result, showing both the mean tick duration and

ISR for varying VM sizes in AWS. We use the notation 2XL, XL, L to

denote AWS VM sizes t3.large, t3.xlarge, and t3.2xlarge respectively.

Companies that specialize in cloud hosting of MLGs commonly

list recommended hardware con�gurations, with the most frequent

recommendation being 2 vCPUs and 4GB memory. An overview of

these recommendations is available in Table 4. These recommended

182



Meterstick: Benchmarking Performance Variability in Cloud and Self-hosted Minecra�-like Games ICPE ’23, April 15–19, 2023, Coimbra, Portugal

values are signi�cantly lower than those listed on the community-

driven Minecraft wiki, which recommends a dedicated full CPU

(e.g., Intel i5 or i7, or AMD Ryzen 5 or 7) and 6GB memory [7]. This

indicates that players experienced performance problems with the

recommended hardware con�guration.

Figure 10 shows that using the recommended hardware con�g-

uration as listed by cloud-hosting companies, which corresponds

to the L node type, results in poor performance and signi�cant

performance variability. On this node size, each MLG becomes sig-

ni�cantly overloaded by environment-basedworkloads and exhibits

high performance variability.

The larger node types XL and 2XL have 4 and 8 vCPUs respec-

tively [2]. While XL provides better performance and less perfor-

mance variability than L, it remains insu�cient to keep the mean

tick time below 50ms. The 2XL node type is required to provide su�-

ciently low mean tick duration. However, this node type still shows

signi�cant performance variability for Minecraft (green cross) and

Forge (blue square), which means these games can still become

overloaded temporarily, as shown in §5.3.

Interestingly, we observe that the bene�t of more powerful hard-

ware varies per MLG. Speci�cally, while PaperMC’s (red circle)

performance instability (i.e., ISR) increases signi�cantly when de-

creasing hardware resources, from 0.025 to 0.08 in the top-right

sub-plot, it is the only gamewhose mean and 75th percentile tick du-

ration stays well below the 50ms threshold. Further analysis shows

that, while PaperMC becomes overloaded and its tick duration

exceeds 50ms, the number of extreme outliers is low, preventing

this performance problem from becoming visible in the mean tick

duration.

6 ACTIONABLE INSIGHTS AND LIMITATIONS

The main �ndings in §5 lead to actionable insights:

I1 Game developers and hardware producers should report perfor-

mance variability when evaluating the performance of online

games, using measures of variance such as Instability Ratio (see

§3.4) and the distribution of game response time and frames

per second (FPS). Games must provide consistently good per-

formance to their users. Our experiments show that MLGs can

be overloaded and become unplayable, even when mean and

median performance values indicate good performance (MF1,

Figure 6).

I2 Game developers and hardware producers should include envi-

ronment based workloads in their benchmarks for MLGs. It is not

su�cient to evaluate the performance of MLGs using only large

numbers of players (i.e., player-based workloads). Environment-

based workloads cause signi�cant performance variability in

MLGs and make them unplayable (MF2, Figure 7), and must

therefore be included in MLG benchmarks.

I3 Players should choose their cloud environment depending on

their MLG, and should consider self-hosting their game. Our

results indicate that choice of best cloud provider depends on the

MLG. Minecraft and Forge obtain lower performance variability

on AWS, while PaperMC obtains lower performance variabil-

ity on Azure (MF3, Figure 9). Moreover, self-hosting remains a

valuable alternative, resulting in signi�cantly lower performance

variability overall.

I4 MLG service providers should increase their hardware recom-

mendations. For full �ndings relating to hardware recommenda-

tions see the technical report [22].

Similarly, users who seek to avoid adverse performance vari-

ability when operating MLG cloud environments should choose

node sizes comparable to the 8 core t3.2xlarge node, or use our

benchmark to compare both various cloud providers and the

speci�c MLG implementations.

I5 Game developers should engineer MLGs to reduce impact of

environment-based workloads. See technical report [22].

Here we discuss limitations of our work related to the Instability

Ratio metric and the workloads. ISR cannot be used as a singular

performance metric, but rather is designed as an additional axis by

which to quantitatively appraise the performance of a game server,

by capturing behavior that other metrics cannot. Because ISR is a

measure of variability over an entire sampling duration, it does not

capture extremely poor but stable performance, or the occurrence

of singular relatively small outliers. Thus, other measures, such as

percentiles, are necessary to observe themagnitude of tick durations

and detect lone outliers. It is not currently understood how ISR

directly relates to player-perceived quality of experience and quality

of experience, and should be explored in future work, for instance

through player studies.

The workloads included in Meterstick are intended to cover a

wide range of realistic environment-based workloads, from com-

mon to extreme cases. However, there is no publicly available anal-

ysis of environment-based workload prevalence. Thus, we select

environment-based workloads using proxy metrics such as total

views and downloads in online MLG communities, which may not

be representative of all MLG players. Additionally, our experiments

measuring the impact of environment-based workloads utilized a

purposefully minimal player-based workload component. Finally,

because our experiments focused on environment-based workloads,

our player-based workloads (“Players") uses random avatar move-

ment. Although real player behavior is likely more complex, no

player-behavior models exists for MLGs.

7 RELATEDWORK

We summarize in this section a developing overview of related work.

Overall, this study is the �rst to evaluate performance variability

in MLGs. This is challenging because there is neither a generally

accepted set of relevant workloads for MLGs, nor a standardized

metric to quantify performance variability in computer systems.

Closest to our work, Yardstick is an MLG benchmark used to

show the limited scalability of MLGs [47]. The authors use Yardstick

to evaluate the scalability and network characteristics of several

MLG services. However, Yardstick does not quantify performance

variability, resulting in optimistic results. Moreover, the authors do

not evaluate MLG performance under environment-based work-

loads or in the cloud.

The MineRL competition [26] provides a dataset of Minecraft

player recordings. This dataset provides demonstrations to train ar-

ti�cial intelligence systems to complete a challenging in-game task.

In contrast, the workloads used in this work focus on commonly

observed patterns in the MLG community.

183



ICPE ’23, April 15–19, 2023, Coimbra, Portugal Jerrit Eickho�, Jesse Donkervliet, and Alexandru Iosup

There exist several systems that aim to improve the scalability of

MLGs. Manycraft [15] increases the maximum number of players in

a Minecraft instance by using Kiwano. Kiwano [14] allows horizon-

tal scaling of virtual environments through Voronoi partitioning,

but requires a static environment, which disables the MLG’s mod-

i�able world and is incompatible with environment-based work-

loads. Similar in many ways to Manycraft, Koekepan [23] uses

zone-partitioning and scales horizontally. Dyconits [17] are a dis-

tributed architecture that scales MLGs vertically, through the use of

dynamically managed consistency-units. None of these approaches

considers explicitly performance variability.

Iosup et al. [27] �nd that commercial cloud environments exhibit

signi�cant yearly and daily performance variability patterns. The

authors show that performance variability varies per cloud operator,

and use simulation experiments to show that this can a�ect the

performance of applications, including a social online game. In

contrast, our benchmark uses real-world experiments to evaluate

the e�ect of performance variability on MLGs, which are real-time

online games.

8 CONCLUSION

Online gaming is a popular and lucrative part of the entertainment

industry, but raises important performance challenges. In this work,

we posit performance variability is an important cause for the lack

of scalability in MLGs.

We make a four-fold contribution to better understand the be-

havior of MLGs. First, we propose a novel workload model for these

systems, which identi�es important sources of performance vari-

ability not considered elsewhere. Second, we design and implement

Meterstick, the �rst benchmark to evaluate performance variabil-

ity in MLGs. Meterstick uses realistic workload types; novel, it

considers environment-based workloads, and can evaluate MLGs

running both in self-hosted and cloud environments such as Ama-

zon AWS and Microsoft Azure. Third, we use Meterstick to perform

real-world experiments and analyze the results. We �nd that per-

formance variability negatively a�ects players in MLGs, that both

environment-based workloads and cloud environments can cause

signi�cant performance variability. This leads us to formulate four

actionable insights. Fourth, we release FAIR and FOSS artifacts that

enable reproducibility for this work.

In future work, we aim to conduct user studies to directly link

our Instability Ratio (ISR) values to player-perceived quality of ex-

perience. To encourage community adoption, we aim to create a

public score-board where operators of MLG-as-a-service can pub-

lish benchmark scores.

ACKNOWLEDGMENTS

This work is supported by the NWO grant O�Sense, and by struc-

tural funds from VU Amsterdam.

REFERENCES
[1] 2020. Minecraft Server Download. https://www.minecraft.net/en-us/download/

server [accessed Oct. 2021].
[2] 2021. Amazon EC2 T3 Instances – Amazon Web Services (AWS). https://aws.

amazon.com/ec2/instance-types/t3 [accessed Oct. 2021].
[3] 2021. Minecraft Forge downloads. https://�les.minecraftforge.net/net/ [accessed

Oct. 2021].
[4] 2021. Minecraft Realms for Java. https://www.minecraft.net/en-us/realms-for-

java [accessed Oct. 2021].

[5] 2021. Mods -Minecraft - CurseForge. https://www.curseforge.com/minecraft/mc-
mods [accessed Oct. 2021].

[6] 2021. PaperMC – The High Performance Fork. https://papermc.io [accessed
Oct. 2021].

[7] 2021. Server/Requirements/Dedicated. https://minecraft.fandom.com/wiki/
Server/Requirements/Dedicated [accessed Oct. 2021].

[8] Amazon. 2021. Run your own Minecraft Server. https://web.archive.org/web/
20201126074839/https://aws.amazon.com/getting-started/hands-on/run-your-
own-minecraft-server/ [accessed Dec. 2021].

[9] Henri E. Bal, Dick H. J. Epema, Cees de Laat, Rob van Nieuwpoort, John W.
Romein, Frank J. Seinstra, Cees Snoek, and Harry A. G.Wijsho�. 2016. AMedium-
Scale Distributed System for Computer Science Research: Infrastructure for the
Long Term. Computer 49, 5 (2016), 54–63.

[10] Zhen Cao, Vasily Tarasov, Hari Prasath Raman, Dean Hildebrand, and Erez Zadok.
2017. On the Performance Variation in Modern Storage Stacks. In FAST. 329–344.

[11] Kuan-Ta Chen, Polly Huang, and Chin-Laung Lei. 2006. How sensitive are online
gamers to network quality? Commun. ACM 49, 11 (2006), 34–38.

[12] Mark Claypool and Kajal T. Claypool. 2006. Latency and player actions in online
games. Commun. ACM 49, 11 (2006), 40–45.

[13] N. Da Dalt and A. Sheikholeslami. 2018. Understanding Jitter and Phase Noise.
Cambridge University Press. 15–37 pages.

[14] Raluca Diaconu and Joaquín Keller. 2013. Kiwano: A scalable distributed infras-
tructure for virtual worlds. In HPCS. 664–667.

[15] Raluca Diaconu, Joaquín Keller, and Mathieu Valero. 2013. Manycraft: Scaling
Minecraft to Millions. In NetGames. 1:1–1:6.

[16] Matthias Dick, Oliver Wellnitz, and Lars C. Wolf. 2005. Analysis of factors
a�ecting players’ performance and perception in multiplayer games. InNetGames.
1–7.

[17] Jesse Donkervliet, Jim Cuijpers, and Alexandru Iosup. 2021. Dyconits: Scaling
Minecraft-like Services through Dynamically Managed Inconsistency. In ICDCS.

[18] Jesse Donkervliet, Animesh Trivedi, and Alexandru Iosup. 2020. Towards Sup-
porting Millions of Users in Modi�able Virtual Environments by Redesigning
Minecraft-Like Games as Serverless Systems. In HotCloud.

[19] DudeItsRocky. 2018. "Huge Minecraft Tnt World Explosion With Aftermath"
(Minecraft TNT Explosion, Minecraft Explosion). https://www.youtube.com/
watch?v=9ZbenrBO_wI [accessed Oct. 2021].

[20] Jerrit Eickho�. 2021. Meterstick. https://github.com/atlarge-research/Meterstick
[21] Jerrit Eickho�, Jesse Donkervliet, and Alexandru Iosup. 2021. Meterstick Bench-

mark: Source, Documentation and Data. https://doi.org/10.5281/zenodo.5567720
[22] Jerrit Eickho�, Jesse Donkervliet, and Alexandru Iosup. 2023. Meterstick: Bench-

marking Performance Variability in Cloud and Self-hosted Minecraft-like Games
Extended Technical Report. CoRR abs/2112.06963v2 (2023). arXiv:2112.06963v2
https://arxiv.org/abs/2112.06963v2

[23] Herman Arnold Engelbrecht and Gregor Schiele. 2013. Koekepan: Minecraft as a
Research Platform. In NetGames. 16:1–16:3.

[24] Epic Games. 2021. Dynamic Resolution | Unreal Engine Documenta-
tion. https://docs.unrealengine.com/4.27/en-US/RenderingAndGraphics/
DynamicResolution/ [accessed Dec. 2021].

[25] Valentin Forch, Thomas Franke, Nadine Rauh, and Josef F. Krems. 2017. Are 100
ms Fast Enough? Characterizing Latency Perception Thresholds in Mouse-Based
Interaction. In EPCE, Vol. 10276. 45–56.

[26] William H. Guss, Brandon Houghton, Nicholay Topin, Phillip Wang, Cayden
Codel, Manuela Veloso, and Ruslan Salakhutdinov. 2019. MineRL: A Large-Scale
Dataset of Minecraft Demonstrations. CoRR abs/1907.13440 (2019).

[27] Alexandru Iosup, Nezih Yigitbasi, and Dick H. J. Epema. 2011. On the Performance
Variability of Production Cloud Services. In CCGrid. 104–113.

[28] Raj Jain. 1991. The art of computer systems performance analysis - techniques for
experimental design, measurement, simulation, and modeling. Wiley.

[29] David Lee. 2002. Analysis of Jitter in Phase-Locked Loops. IEEE Transactions on
Circuits and Systems II: Analog and Digital Signal Processing 49 (2002).

[30] legomasta99. 2018. [Minecraft Computer Engineering] - Quad-Core Redstone
Computer v5.0 [12k sub special!]. https://www.youtube.com/watch?v=
SbO0tqH8f5I [accessed Oct. 2021].

[31] Asher Madan. 2019. Minecraft (likely) becomes the best-selling game of all time
on its 10th birthday. https://www.windowscentral.com/minecraft-becomes-
best-selling-game-all-time-its-10th-birthday [accessed Sep. 2021].

[32] Aleksander Maricq, Dmitry Duplyakin, Ivo Jimenez, Carlos Maltzahn, Ryan
Stutsman, Robert Ricci, and Ana Klimovic. 2018. Taming Performance Variability.
In OSDI. 409–425.

[33] Microsoft. 2021. Basic Game Server Hosting on Azure. https:
//docs.microsoft.com/en-us/gaming/azure/reference-architectures/multiplayer-
basic-game-server-hosting [accessed Dec. 2021].

[34] Minetrack. 2021. Minetrack. https://minetrack.me/ [accessed Oct. 2021].
[35] Vlad Nae, Alexandru Iosup, and Radu Prodan. 2011. Dynamic Resource Provi-

sioning in Massively Multiplayer Online Games. TPDS 22, 3 (2011), 380–395.
[36] Newzoo. 2021. Newzoo Global Games Market Report 2021 | Free Version |

Newzoo. https://newzoo.com/insights/trend-reports/newzoo-global-games-

184

https://www.minecraft.net/en-us/download/server
https://www.minecraft.net/en-us/download/server
https://aws.amazon.com/ec2/instance-types/t3
https://aws.amazon.com/ec2/instance-types/t3
https://files.minecraftforge.net/net/
https://www.minecraft.net/en-us/realms-for-java
https://www.minecraft.net/en-us/realms-for-java
https://www.curseforge.com/minecraft/mc-mods
https://www.curseforge.com/minecraft/mc-mods
https://papermc.io
https://minecraft.fandom.com/wiki/Server/Requirements/Dedicated
https://minecraft.fandom.com/wiki/Server/Requirements/Dedicated
https://web.archive.org/web/20201126074839/https://aws.amazon.com/getting-started/hands-on/run-your-own-minecraft-server/
https://web.archive.org/web/20201126074839/https://aws.amazon.com/getting-started/hands-on/run-your-own-minecraft-server/
https://web.archive.org/web/20201126074839/https://aws.amazon.com/getting-started/hands-on/run-your-own-minecraft-server/
https://www.youtube.com/watch?v=9ZbenrBO_wI
https://www.youtube.com/watch?v=9ZbenrBO_wI
https://github.com/atlarge-research/Meterstick
https://doi.org/10.5281/zenodo.5567720
https://arxiv.org/abs/2112.06963v2
https://arxiv.org/abs/2112.06963v2
https://docs.unrealengine.com/4.27/en-US/RenderingAndGraphics/DynamicResolution/
https://docs.unrealengine.com/4.27/en-US/RenderingAndGraphics/DynamicResolution/
https://www.youtube.com/watch?v=SbO0tqH8f5I
https://www.youtube.com/watch?v=SbO0tqH8f5I
https://www.windowscentral.com/minecraft-becomes-best-selling-game-all-time-its-10th-birthday
https://www.windowscentral.com/minecraft-becomes-best-selling-game-all-time-its-10th-birthday
https://docs.microsoft.com/en-us/gaming/azure/reference-architectures/multiplayer-basic-game-server-hosting
https://docs.microsoft.com/en-us/gaming/azure/reference-architectures/multiplayer-basic-game-server-hosting
https://docs.microsoft.com/en-us/gaming/azure/reference-architectures/multiplayer-basic-game-server-hosting
https://minetrack.me/
https://newzoo.com/insights/trend-reports/newzoo-global-games-market-report-2021-free-version
https://newzoo.com/insights/trend-reports/newzoo-global-games-market-report-2021-free-version


Meterstick: Benchmarking Performance Variability in Cloud and Self-hosted Minecra�-like Games ICPE ’23, April 15–19, 2023, Coimbra, Portugal

market-report-2021-free-version [accessed Oct. 2021].
[37] Aline Normoyle, Gina Guerrero, and Sophie Jörg. 2014. Player perception of de-

lays and jitter in character responsiveness. In Proceedings of the ACM Symposium
on Applied Perception. 117–124.

[38] Felix Richter. 2021. Infographic: Amazon Leads $150-Billion Cloud Mar-
ket. https://www.statista.com/chart/18819/worldwide-market-share-of-leading-
cloud-infrastructure-service-providers [accessed Oct. 2021].

[39] Felix Richter. 2021. Infographic: Gaming: The Most Lucrative Entertainment
Industry By Far. https://www.statista.com/chart/22392/global-revenue-of-
selected-entertainment-industry-sectors [accessed Sep. 2021].

[40] Michal Ries, Philipp Svoboda, and Markus Rupp. 2008. Empirical study of subjec-
tive quality for massive multiplayer games. In 2008 15th International Conference
on Systems, Signals and Image Processing. IEEE, 181–184.

[41] William J Riley. 2008. Handbook of frequency stability analysis. (2008).
[42] Henning Schulzrinne, Steven Casner, R Frederick, and Van Jacobson. 2003.

RFC3550: RTP: A transport protocol for real-time applications.

[43] Javid Taheri, Albert Y. Zomaya, and Andreas Kassler. 2017. vmBBPro�ler: a
black-box pro�ling approach to quantify sensitivity of virtual machines to shared
cloud resources. Computing 99, 12 (2017), 1149–1177.

[44] timeam. 2020. The Most E�cient Minecraft Lag Machine. https://www.youtube.
com/watch?v=QI0zdI4mDcA [accessed Oct. 2021].

[45] Unity. 2021. Unity - Manual: Dynamic resolution. https://docs.unity3d.com/
Manual/DynamicResolution.html [accessed Feb. 2023].

[46] Alexandru Uta, Alexandru Custura, Dmitry Duplyakin, Ivo Jimenez, Jan S. Reller-
meyer, Carlos Maltzahn, Robert Ricci, and Alexandru Iosup. 2020. Is Big Data
Performance Reproducible in Modern Cloud Networks?. In NSDI. 513–527.

[47] Jerom van der Sar, Jesse Donkervliet, and Alexandru Iosup. 2019. Yardstick: A
Benchmark for Minecraft-like Services. In ICPE. ACM, 243–253.

[48] Reinhold Weicker. 2002. Benchmarking. In Performance Evaluation of Complex
Systems: Techniques and Tools, Performance 2002, Tutorial Lectures, Vol. 2459.
179–207.

[49] Wilkinson et al. 2016. The FAIR Guiding Principles for scienti�c datamanagement
and stewardship. Nature SciData 3 (2016).

185

https://newzoo.com/insights/trend-reports/newzoo-global-games-market-report-2021-free-version
https://www.statista.com/chart/18819/worldwide-market-share-of-leading-cloud-infrastructure-service-providers
https://www.statista.com/chart/18819/worldwide-market-share-of-leading-cloud-infrastructure-service-providers
https://www.statista.com/chart/22392/global-revenue-of-selected-entertainment-industry-sectors
https://www.statista.com/chart/22392/global-revenue-of-selected-entertainment-industry-sectors
https://www.youtube.com/watch?v=QI0zdI4mDcA
https://www.youtube.com/watch?v=QI0zdI4mDcA
https://docs.unity3d.com/Manual/DynamicResolution.html
https://docs.unity3d.com/Manual/DynamicResolution.html

	Abstract
	1 Introduction
	2 Operational Model of Minecraft-like Games
	2.1 Reference Architecture for MLGs
	2.2 Workloads in MLGs
	2.3 Operational Model of mve

	3 Meterstick Benchmark Design
	3.1 System Requirements
	3.2 Design Overview
	3.3 Benchmark Workloads
	3.4 Metrics

	4 Instability Ratio metric
	4.1 Instability Ratio Definition
	4.2 Analysis of ISR Behavior
	4.3 Comparing ISR to Alternative Metrics

	5 Real-World Experiments
	5.1 Experimental Setup
	5.2 MF1: Performance variability can make mve unplayable
	5.3 MF2: Environment-based workloads cause significant performance variability
	5.4 MF3: mve exhibit increased variability in commercial cloud environments
	5.5 MF4: Using recommended hardware results in significant performance variability

	6 Actionable Insights and Limitations
	7 Related Work
	8 Conclusion
	References



