
Lightweight Kubernetes Distributions:
A Performance Comparison

of MicroK8s, k3s, k0s, and Microshift

Heiko Koziolek
Nafise Eskandani

heiko.koziolek@de.abb.com
nafise.eskandani@de.abb.com
ABB Corporate Research
Ladenburg, Germany

ABSTRACT

With containers becoming a prevalent method of software deploy-
ment, there is an increasing interest to use container orchestra-
tion frameworks not only in data centers, but also on resource-
constrained hardware, such as Internet-of-Things devices, Edge
gateways, or developer workstations. Consequently, software ven-
dors have released several lightweight Kubernetes (K8s) distribu-
tions for container orchestration in the last few years, but it remains
difficult for software developers to select an appropriate solution.
Existing studies on lightweight K8s distribution performance tested
only small workloads, showed inconclusive results, and did not
cover recently released distributions. The contribution of this paper
is a comparison of MicroK8s, k3s, k0s, and MicroShift, investigating
their minimal resource usage as well as control plane and data plane
performance in stress scenarios. While k3s and k0s showed by a
small amount the highest control plane throughput and MicroShift
showed the highest data plane throughput, usability, security, and
maintainability are additional factors that drive the decision for an
appropriate distribution.

CCS CONCEPTS

• Software and its engineering → Software as a service or-

chestration system;

KEYWORDS

kubernetes, benchmark, containers, container orchestration perfor-
mance testing, load testing, edge computing, resource-constrained
devices, lightweight kubernetes

ACM Reference Format:

Heiko Koziolek and Nafise Eskandani. 2023. Lightweight Kubernetes Distri-
butions: A Performance Comparison of MicroK8s, k3s, k0s, and Microshift.
In Proceedings of the 2023 ACM/SPEC International Conference on Perfor-

mance Engineering (ICPE ’23), April 15–19, 2023, Coimbra, Portugal. ACM,
New York, NY, USA, 13 pages. https://doi.org/10.1145/3578244.3583737

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
ICPE ’23, April 15–19, 2023, Coimbra, Portugal

© 2023 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 979-8-4007-0068-2/23/04. . . $15.00
https://doi.org/10.1145/3578244.3583737

1 INTRODUCTION

Microservices deployed as software containers are becoming an in-
creasingly widespread design and software delivery approach [21].
Containers can be considered lightweight, sandboxed virtual ma-
chines, often encapsulating single, loosely coupled services commu-
nicating via REST interfaces [4]. Container orchestration provides
automated provisioning, deployment, scaling, networking, and load
balancing [6]. Designed for large cloud computing clusters, typi-
cal container orchestration frameworks, such as Kubernetes (K8s),
carry a heavy CPU and memory footprint [13]. To support con-
tainer orchestration also on resource-constrained edge devices or
developer workstations, several lightweight K8s distributions have
been released in the last few years [5].

Minikube, MicroK8s, k3s, k0s, KubeEdge, or MicroShift contain
many K8s features as well as an opinionated selection of com-
ponents and are still rapidly evolving [19]. It is thus difficult for
software developers to make an informed choice for a specific
distribution that is appropriate for a given use case. For resource-
constrained edge devices in factories, autonomous cars, or smart
cities, the performance overhead for the container orchestration
may be crucial [16]. The achievable application performance on
a lightweight K8s distribution is influenced by the complex inter-
play of the container runtime, K8s control plane storage, container
networking, and other components.

The performance engineering community has identified perfor-
mance testing and capacity planning for microservice architecture
as an important research challenge [11, 12, 7]. Researchers com-
pared full-blown K8s distributions [1] as well as managed K8s
services [9]. For lightweight K8s distributions, only few studies
have started to analyze the performance overhead of MicroK8s and
k3s testing small workloads [8, 10, 5, 19, 15, 16]. They provided
deviating conclusions due to their heterogeneous contexts and as-
sumptions. None of the studies has analyzed larger deployments
with more than 10 containers. MicroShift and k0s have not been
studied in related work due to their novelty.

The contribution of this paper is an empirical study investigating
the features and performance characteristics of novel lightweight
K8s distributions. We selected four of the most popular K8s distri-
butions and created a Goal/Question/Metric (GQM) [3] template to
characterize resource utilizations, throughput, and response times
in stress scenarios both for the K8s control plane and data plane.
We identified appropriate test scenarios, selected a benchmarking
application (k-bench) and created a benchmarking environment

17

https://www.acm.org/publications/policies/artifact-review-badging

ICPE ’23, April 15–19, 2023, Coimbra, Portugal Heiko Koziolek & Nafise Eskandani

spanning five Microsoft Azure VMs and utilizing netdata for data
collection, MongoDB for data storage, and R for statistics and visu-
alization. Our testing approach can be reused by other researchers.

We configured k-bench and executed a series of experiments
to test small clusters of lightweight K8s distributions with high
workloads. k0s showed the lowest resource utilization, while k3s
and k0s achieved the highest control plane performance in terms
of high throughput and low latency. MicroShift managed the high
throughput in data plane stress scenario. The results and their
analysis provide guidance to make more informed decisions for a
particular lightweight K8s distribution.

The remainder of this paper is structured as follows: Section 2
provides a feature comparison of the lightweight K8s distributions
in scope. Section 3 reviews former K8s performance analyses and
specifically analyzes the existing body of knowledge concerning
lightweight K8s distributions. Section 4 describes the experiment
setup including GQM template and testbed. Section 5 shows the
results of our benchmarking experiments, which are analyzed and
interpreted in Section 6. Section 7 concludes the paper.

2 LIGHTWEIGHT K8S DISTRIBUTIONS

We briefly set the scope of our analysis by reviewing four of the
most popular lightweight K8s distributions. Table 1 shows a fea-
ture comparison of MicroK8s, k3s, k0s, and MicroShift. All of these
projects are available as open source with optional commercial
support. Except for MicroShift, which only has been released re-
cently, all the distributions are CNCF certified1, support multi-host
clusters, airgap installations, high availability deployments, and
optional GPU acceleration. Besides these four distributions there
are similar solutions such as minikube, k3d (k3s in docker), or Kube-
Edge, which have slightly different purposes (e.g., learning K8s or
conducting cloud/edge orchestration) and are excluded here, since
they are not directly comparable.

After minikube, MicroK8s2 was the first lightweight K8s dis-
tribution in 2018, developed by Canonical (Ubuntu) and provided
as Snap package. Targeting both development scenarios and high-
available production scenarios, where a low footprint is required,
MicroK8s can be quickly installed on many different target plat-
forms. By default, it only installs K8s basics, i.e., API-server with
dqlite storage, controller-manager, scheduler, kubelet, cni, and kube-
proxy. However, MicroK8s features a number of pre-built addons
(e.g., K8s Dashboard, Helm, Prometheus), which can be conve-
niently enabled from the command line with a single command.
MicroK8s underwent several performance improvements and now
advertises a memory footprint of 540 MB3, although the developers
recommend on their website having at least 4 GB of RAM for a
production cluster.

Rancher released k3s4 in 2019 and was acquired by SuSE in
2020. Aiming at half the size and memory footprint of regular K8s,
Rancher has packaged k3s as a single binary (approx. 65 MB) with
basic K8s components. Thus, it does not require a package manager
for installation and is independent of a particular Linux distribution.
By far themost popular lightweight K8s distributionwithmore than

1https://www.cncf.io/certification/software-conformance/
2https://microk8s.io/
3https://ubuntu.com/blog/microk8s-memory-optimisation
4https://k3s.io/

20,000 stars and over 1700 contributors on Github, k3s targets edge,
IoT, CI, and development scenarios and advertises its simplicity and
lightness. It is written in Go and has a reported memory footprint
of 512 MB RAM, with the developers recommending at least having
1 GB of RAM for regular deployments and 4 GB of RAM for high
availability installations.

MicroK8s k3s k0s MicroShift
Key Developer Canonical Rancher/SuSE Mirantis Red Hat
License Apache 2.0 Apache 2.0 Apache 2.0 Apache 2.0
Enterprise Support Yes Yes Yes Yes
GitHub repo https://github.com/

canonical/microk8s
https://github.com/
k3s-io/k3s

https://github.com/
k0sproject/k0s

https://github.com/
openshift/microshift

GitHub stars 6800 21200 105 406
Contributors 146 1796 65 46
First commit May 2018 January 2019 July 2020 April 2021
Programming
Language

Python, Shell Go Go Go

CNCF certified Yes Yes Yes No
Vanilla Kubernetes Yes Yes Yes Yes
Single-node cluster Yes Yes Yes Yes
Multi-node cluster Yes Yes Yes n/a
Airgap cluster Yes Yes Yes Yes
High availability Yes Yes Yes n/a
GPU acceleration Yes Yes Yes Yes

Operating System Ubuntu (default),
Linux, Windows,
MacOS

Linux Linux, Windows
Server 2019
(experimental)

RHEL, CentOS
Stream, Fedora,
(Windows,
MacOS)

CPU Architecture x86, ARM64,
s390x, Power9

x86, ARM64,
ARMhf

x86-64, ARM64,
ARMv7

x86_64, ARM64,
RISCV64

Deployment Snap Package Single Binary Single Binary RPM Package

Container runtime containerd
(default), kata

containerd
(default), docker,
custom

containerd
(default), custom
(e.g., docker)

cri-o (default)

Container network
interface

Calico, Flannel Flannel (default),
custom CNI

Kube-Router
(default), Calico,
custom

Flannel (default),
crio-bridge

Control plane
datastore

dqlite (default),
custom

SQLite (default),
PostgreSQL,
MySQL,
MariaDB, etcd,
Embedded etcd

etcd (default),
custom (e.g.,
SQLite,
PostgreSQL,
MySQL)

etcd (default)

Recommended
minimal CPU

2 CPU cores 1 CPU 1 CPU 2 CPU cores

Recommended
minimal RAM

4 GB RAM 1 GB RAM 1 GB RAM 2 GB RAM

Advertised memory
consumption

540 MB 512 MB 510 MB n/a

Table 1: Feature comparison of lightweight Kubernetes dis-

tributions

k0s5 was first released in 2020 by Mirantis as another free and
open-source lightweight K8s distribution. Similar to k3s, it is pro-
videdwith core K8s components as a single binary (160MB) without
host operating system dependencies and aims at bare metal, edge,
IoT, and cloud scenarios. k0s is easy to install with only a few com-
mands. By default, it isolates the control plane and only deploys
application workloads to worker nodes. k0s uses etcd as control
plane storage for multi-node clusters and SQLite for single-node
clusters, but supports custom storages via kine6. Experimental sup-
port for Windows worker nodes is available. k0s has a memory
footprint of 510 MB RAM. Mirantis recommends controller nodes
with at least 1 GB RAM and worker nodes with at least 512 MB
RAM.
5https://k0sproject.io/
6https://github.com/k3s-io/kine

18

Lightweight K8s Comparison ICPE ’23, April 15–19, 2023, Coimbra, Portugal

Red Hat announcedMicroShift7 in January 2022 as ”an exper-
imental flavor of OpenShift/Kubernetes optimized for the device
edge”8. Aiming at resource-constrained devices in cars, factory
lines, or airplanes, core components of the open source version of
Red Hat’s OpenShift K8s distribution9 have been packaged into
a single 160 MB binary. Red Hat’s Advanced Cluster Manager in
the cloud shall manage field-deployed MicroShift nodes centrally,
for example enforcing security policies. MicroShift is provided as
an RPM package requiring the container runtime cri-o to be in-
stalled. Unlike the other distributions it is still experimental and
missing several features, for example not yet supporting multi-node
clusters.

Considering features, the four lightweight K8s distributions are
mostly similar. All of them allow to exchange the container runtime
interface, network interface, and storage interface. MicroK8s, k3s,
and k0s are advertised as being ”production-ready” and commer-
cially supported, while MicroShift is still labeled ”experimental”.
Other lightweight K8s distributions may appear in the near future,
for example Microsoft has announced AKS Lite for Windows and
Linux edge devices10.

3 FORMER PERFORMANCE ANALYSES

3.1 Generic K8s Performance

Several K8s performance studies have been conducted in the past.
Heinrich et al. [11] sketched research challenges in performance en-
gineering for microservices, which may be deployed in K8s, among
them the performance testing of containerized applications running
in container orchestration systems.

Jindal et al. [12] proposed the tool Terminus for capacity planning
of microservice deployments, which automatically conducted node
tests in a K8s cluster. Eismann et al. [7] conducted performance tests
of the TeaStore reference architecture on the Google K8s Engine and
highlighted the challenges of unstable execution environments as
well as a clash between user-perceived performance measures and
system-internal metrics. While these works used K8s, they did not
specifically target understanding the performance characteristics
of different K8s distributions.

Another line of research studied K8s performance character-
istics in more detail. Aly et al. [1] compared K8s and OpenShift
performance when deploying Eclipse Hono IoT containers. They
found that K8s consumed less CPU, but both distributions had the
same memory usage. Medel at al. [18] constructed a Petri-net based
performance prediction model for K8s deployments to support ca-
pacity planning. They tested the model in a K8s cluster with eight
nodes and showed how the models can aid application design into
pods and containers.

Ferreira and Sinnott [9] compared the performance of Managed

K8s services, namely Amazon Elastic Container Service (AWS) for
K8s, Azure K8s Services (AKS), and Google K8s engine (GKE). They
concluded AWS as best choice for CPU-intensive container work-
loads, and GKE for best network performance, but also stated that
the performance is mostly influenced by the type of VMs used.

7https://microshift.io/
8https://next.redhat.com/project/microshift/
9https://www.redhat.com/en/technologies/cloud-computing/openshift
10https://bit.ly/3CGXW8o

Toka et al. [20] designed a machine-learning based scaling engine
for K8s, while Kumar and Trivedi [17] compared the performance
of K8s CNI Plugins. Barletta et al. [2] proposed a novel container
orchestration model for mixed criticality Industry 4.0 workloads
and sketched an implementation based on K8s. None of these works
considered lightweight K8s distributions.

3.2 Lightweight K8s Performance

Table 2 shows several recent studies on lightweight K8s perfor-
mance. Fathoni et al. [8] conducted rudimentary smoke tests with
KubeEdge and k3s, installing a simulator application and measur-
ing CPU and memory utilization using htop on two Raspberry Pi
devices. They concluded no meaningful performance differences.

Goethals et al. [10] designed their own lightweight container
orchestrator for resource-constrained edge devices called FLEDGE.
They found that FLEDGE has similar storage and memory require-
ments as k3s, but only 25 percent of memory usage compared to
K8s. FLEDGE is however no longer maintained.

Böhm and Wirtz [5] set the goal to profile lightweight container
platforms over several life-cycle phases. On four Ubuntu VMs, they
compared K8s, MicroK8s, and k3s when executing a workflow of
the following actions: start controller, idle, add workers, idle, create
deployment, deployment idle, delete deployment, drain workers,
stop controller. In idle conditions the controller CPU utilization
on 2 cores differed between K8s (4.27%), MicroK8s (8.83%) and
k3s (3.77%). MicroK8s also showed exceptionally high latencies for
adding or draining workers, although these are comparably rare
operations. When performing cluster operations, both MicroK8s
and k3s showed significantly higher CPU utilizations than K8s. The
experiments only started up to three nginx containers, but did not
stress the control or data plane exhaustively.

Telenyk et al. [19] conducted a similar study to the one from
Böhm and Wirtz. They compared K8s, MicroK8s and k3s for dif-
ferent operations, such as starting a controller or applying a de-
ployment. On four VMs in the Google cloud they observed that
K8s consumed the least CPU and memory, although k3s had sig-
nificantly lower disk usage (thanks to SQLite). For most metrics,
MicroK8s and k3s showed similar results though.

Kvikmäki [15] executed K8s, MicroK8s, and k3s on an Intel NUC
serving as controller node and a single Raspberry Pi 4 serving as
edge worker node. MicroK8s had significantly higher CPU utiliza-
tionwhen running a testing application producing a series of MQTT
messages. Also disk and memory utilization was the highest with
MicroK8s.

Kjorveziroski and Filiposka [16] conducted a series of experi-
ments investigating the performance of serverless applications on
K8s, k3s, and MicroK8s. They adapted the FunctionBench server-
less benchmark [14] and used 14 tests to stress CPU (e.g., matrix
multiplications), disk (e.g., GZip compression), and network (e.g.,
large file download). Using OpenFaaS as serverless platform, they
measured cold-start latencies in a cluster of one controller and five
worker nodes running Ubuntu 20.04 with 8 GB RAM. The authors
considered the latency differences between k3s (5.6 sec) and K8s (6.4
sec) as significant. For the benchmark applications throughput was
also almost equal across K8s distributions.Also average response
times did not vary more than 3 percent in most cases. These tests

19

ICPE ’23, April 15–19, 2023, Coimbra, Portugal Heiko Koziolek & Nafise Eskandani

Reference Fathoni2019 [8] Goethals2019 [10] Böhm2021 [5] Telenyk2021 [19] Kivimäki2021 [15] Kjorvezirovsk2022 [16]

Title Performance Comparison of
Lightweight Kubernetes in
Edge Devices

FLEDGE: Kubernetes
Compatible
Container Orchestration on
Low-resource Edge Devices

Profiling Lightweight
Container Platforms:
MicroK8s and k3s in
Comparison to Kubernetes

A Comparison of Kubernetes
and Kubernetes-
Compatible Platforms

Evaluation of Lightweight
Kubernetes Distributions in
Edge Computing Context

Kubernetes distributions for
the edge: serverless
performance evaluation

Venue Int. Symp. on Pervasive
Systems, Algorithms and
Networks, I-SPAN 2019

6th International Conference
on Internet of Vehicles, 2019

13th ZEUS Workshop,
ZEUS 2021

11th IEEE Int. Conf. on
Intelligent Data Acquisition
and Advanced Computing
System, IDAACS 2021

MSc Thesis, 2021 The Journal of
Supercomputing, Volume 78,
pages 13728 - 13755

Organization Springer Springer http://ceur-ws.org IEEE Tampere University, FI Springer
Date 2019 2019 2021 2021 2021 2022
K8s
Distributions

KubeEdge, k3s K8s, k3s, FLEDGE K8s, MicroK8s, k3s K8s, MicroK8s, k3s K8s, MicroK8s, k3s K8s (KubeSpray), MicroK8s,
k3s

Test
Environment

2 Raspberry Pi 3+ Model B,
Quad Core 1,2 Ghz, 1 GB
RAM, 32 GB MicroSD

AMD Opteron 2212, 2Ghz, 4
GB RAM + 1 Raspberry Pi 2,
Quad Core, 1.2 Ghz, 1 GB
RAM

4 Ubuntu VMs running on
KVM, 2 vCPUs, 4 GB RAM,
fast SSD (AMD Ryzen 7
3700X, 8 cores)

4x 2 vCPUs in Google Cloud,
Xeon Scalable Platinum
8173M Processor, 2.0 Ghz, 8
GB RAM, Debian

Raspberry Pi 4, Quad-core, 4
GB RAM + Intel NUC
NUC7i7BNH, Ubuntu

6x Intel Xeon X5647, 8 GB
RAM, 320 GB Disk space,
Ubuntu

Benchmark Custom GPS location
simulator container

n/a Three replicas of nginx "Public container image" 0-40 MQTT message
simulators instances

OpenFAAS + 14
benchmarking functions

Test Scope Idle time, Load Test Idle Time Idle time, start/stop master,
add/delete worker, apply/delete
deployment, drain workers

Idle time, start/stop master,
add/delete worker, apply/delete
deployment

Idle time, start/stop master,
add/delete worker, apply/delete
deployment

Container startup + application
execution

Test Metrics CPU, memory usage Memory, storage usage CPU, memory, disk usage CPU, memory, disk usage CPU, memory, disk usage Response times, throughput
Measurement
tool(s)

htop df, pmap netdata netdata pidstat hey

Results k3s idle: 14% CPU util,
KubeEdge idle: 10% CPU
usage

K8s at > 500MB storage,
Fledge, k3s < 200 MB storage

MicroK8s slightly more
resource consuming than K8s,
k3s

K8s outperforms k3s,
MicroK8s

MicroK8s consuming
significantly more CPU +
memory

Almost identical measures for
K8s, k3s, MicroK8s

Table 2: Former Performance Analysis Studies of Lightweight K8s Distributions

did not provide resource utilizations, but focused on throughputs
and response times. The study did not attempt to stress the K8s
distributions with heavy control plane operations.

To summarize, existing lightweight performance studies often
observed in MicroK8s slightly longer latencies and higher resource
demand than in k3s. None of the works analyzed k0s and Mi-
croShift due to their novelty. None of the existing studies exten-
sively stressed the K8s control plane, rather they performed small
scale tests with less than 10 pods and containers being deployed at
once, which is not representative of production workloads.

4 EXPERIMENT SETUP

Table 3 provides the GQM template framing our experiments. The
goal was to characterize the performance of lightweight K8s dis-
tributions, enhancing former studies. As minimal resource usage
is essential for scenarios with resource-constrained devices, our
question Q1 asks about the K8s distributions’ resource utilization
when idling and not hosting any application pods. Practitioners and
researchers can use these values in combination with their target
hardware specifications to characterize the resources available for
their application pods. Metrics of main interest here are total CPU
and memory utilization of respective nodes, which includes the
utilization of essential operating system processes.

The K8s distributions themselves should mainly influence sys-
tem performance during control plane operations, such as creating
pods, deleting deployments, or updating services. Application work-
loads in turn should hardly be affected by the used K8s distribution,
when no control plane operations are executed. Their runtime per-
formance then rather depends on the container runtime, operating
system, and hardware. Our question Q2 aimed at characterizing
the performance in stressing control plane operation scenarios. We

Goal: Characterize the performance of lightweight Kubernetes distributions
on resource-constrained devices for software developers.

Q1: What is the resource usage when being idle?
M1_1: Average CPU utilization
M1_2: Average Memory utilization

Q2: What is the resource usage for the control plane in stress scenarios?
M2_1: Average Pod creation throughput
M2_2: Average Pod creation latency
M2_3: Latency for deployment operations (create/get/list/update/delete)
M2_4: Latency for pod operations (create/get/list/update/delete)

Q3: What is the resource usage for the data plane in stress scenarios?
M3_1: Average Latency for benchmark operations
M3_2: Throughput for benchmark operations

Table 3: Goal/Question/Metric Template

picked as representative metrics the average pod creation through-
put and latency, as well as the latency for CRUD operations on
deployments and pods in stress scenarios.

To complete the performance characterization, Q3 analyzes the
data plane resource usage in stress scenarios. This implies simulat-
ing resource-intensive application workloads and characterizing
their maximal throughput for a given K8s distribution. Besides the
throughput, we also captured the average latency for benchmark
operations to understand reaction times in extreme load scenarios.

As testbed, we chose Microsoft Azure VMs, since they provided
less overhead for setup than locally hosted VMs. This could in-
troduce distortions due to competing workloads from the cloud
hoster, so that we executed experiments multiple times to detect
the potential effect of such distortions. Fig. 1 provides a schematic
view. We used five ”Standard_D2s_v3” VMs with Intel Xeon E5-
2673 v3 CPUs at 2.4 GHz, 2 cores and 8 GB RAM each, all in the
same location (“West Europe”). To avoid influencing the results by

20

Lightweight K8s Comparison ICPE ’23, April 15–19, 2023, Coimbra, Portugal

different OSs, we used Ubuntu 20.04 images on each VM, except
one. For MicroShift, there are no installation packages available
for Ubuntu yet, so we used the recommended Red Hat Enterprise
Linux 8.6 OS and installed MicroShift via RPM packages. Further-
more, MicroShift cannot yet operate in a multi-node cluster, so
we performed all MicroShift measurements only on a single node
(’kerberos’).

The node ’pluto’ served as the experiment coordinator and exe-
cuted Ansible playbooks to install the K8s distributions and execute
the experiments. ’charon’ served as K8s controller for MicroK8s,
k3s, and k0s, while ’nix’ and ’hydra’ served as workers. We did not
use K8s metrics servers to measure pod resource utilization inside
the cluster, but instead measured the performance metrics in more
detail on the operating system level.

For data collection, we selected netdata11, an OSS Linux daemon
to monitor various metrics (e.g., CPU and memory usage), because
it incurs a low CPU overhead of only about 2 percent. We compiled
netdata from source to enable an exporting module for MongoDB,
which we hosted on the ’pluto’ node separate from K8s cluster
nodes to avoid experiment interferences. We configured netdata to
sample the system metrics every 5 seconds on each VM. To retrieve
the metrics from MongoDB, we used the mongolite package for
the R-programming language and visualized the metrics using the
ggplot2 package inside RStudio.

Microsoft Azure Cloud

pluto

MongoDB

Ansible

charon
MicroK8s
Controller

k3s
Controller

k0s
Controller

Ubuntu Linux 20.04

netdata
k-bench

nix
MicroK8s

Worker
k3s

Worker
k0s

Worker

Ubuntu Linux 20.04

netdata

hydra
MicroK8s

Worker
k3s

Worker
k0s

Worker

Ubuntu Linux 20.04

netdata

kerberos
MicroShift

Controller / Worker

Red Hat Ent. 8.6

netdata
k-bench

Ubuntu Linux 20.04

start

issue workloads

monitoring
data

start

issue workloads

Figure 1: Experiment Setup: 5 Azure VM serve as K8s con-

troller and worker nodes as well as experiment coordinator.

After searching for an appropriate test driver, we chose the OSS
benchmark program K-Bench12 from VMware Tanzu to generate
appropriate workloads. This was the only available Kubernetes
testing tool useful for our experiments which we could identify.
It is written in Go and can create an configurable amount of arbi-
trary K8s resources, such as pods, namespaces, and services, via its

11http://www.netadata.cloud
12https://github.com/vmware-tanzu/k-bench

Resource Manager. Its JSON configuration files allow to specify a
series of control plane operations with a user-defined number of
concurrent clients.

K-Bench has a number of pre-defined benchmarking scenarios
simulating typical cluster operations (e.g., starting a deployment
of 5 pods or running a Redis database benchmark). Its integrated
K8s client issues the CRUD requests towards the K8s API server
configured in the user’s home directory. The tool reports on a
number of metrics, such as pod scheduling latency, latency for API
calls, or transaction throughput.

Instructions for setting up an according testbed, as well as the
benchmark configurations and the raw data of the experiments
are published separately in repository to allow of independent
replication13.

5 BENCHMARKING RESULTS

5.1 Resource Usage

The lightweight K8s distributions’ resource utilization shall be
as low as possible to enable deployment on resource constrained
edge/IoT devices. Therefore, we first investigated the distributions’
bare resource usage after startup of a default configuration without
any application workloads. As an illustrative example, Fig. 2 shows
the CPU, memory, and disk utilization of a MicroK8s controller
node when running for 5 minutes, but not performing any cluster
operations. Even in this ”idle” condition, the CPU is continuously
being utilized at around 17 percent with the processes kubelite,
dqlite, and calico. Visible in the results are occasional disk accesses
every few minutes, which coincide with increased CPU usages.

Figure 2: TimelinesMicroK8s resource utilizationwhen being

started and idle

The overall memory utilization was constant at 19.9 percent
during the experiment. We used the ’systemctl status’ command
to collect the the memory usage of each distribution in Tab. 4.
For MicroK8s, together with default system services, 1520 MB are
already consumed with MicroK8s when the cluster is idle. This

13https://doi.org/10.5281/zenodo.7604863

21

ICPE ’23, April 15–19, 2023, Coimbra, Portugal Heiko Koziolek & Nafise Eskandani

implies that MicroK8s needs at least 2 GB main memory to run
even minimal application workloads.

MicroK8s k3s k0s MicroShift
Tasks (#): 100 115 115 16
Memory (MB): 1103 757,4 846,5 1000

Table 4: Memory consumption of lightweight K8s distribu-

tions.

Figure 3: Resource utilizations of controllers and workers

when idling. CPU is continuously utilized, none of the K8s

distributions is sticking out.

We conducted the same ”idling” experiment with all lightweight
K8s distributions, recording the system metrics both for K8s con-
trollers and workers. For MicroShift we could only collect metrics
from a single combined controller/worker node, since the current
version does not support a multi-node cluster. Fig. 3 summarizes
the collected data as a violin plot.

The CPU utilization (M1_1, see Tab. 3) on controller nodes is on
average between 12.49% (k0s) and 20.43% (k3s). MicroK8s shows
some outliers coinciding with disk accesses (also see Fig. 2). Com-
pared to the controller CPU utilizations measured by Böhm and
Wirtz (3-9%), our measurements show significantly higher values,
since the Azure VM’s CPUs we used (Intel Xeon E5-2673) are ap-
proximately 50% slower than the CPU used in their experiments
(AMD Ryzen 7 3700X). On our worker nodes, the CPU utilization

is much lower, between 3.82% (k0s) and 6.51% (MicroK8s), as they
host much fewer components than the controllers.

Memory utilization (M1_2) is almost constant during idling show-
ing no fluctuations, both for controllers and workers for all distri-
butions (Fig. 3). Controller nodes naturally show a higher memory
utilization (19-27%) than worker nodes (12-15%) hosting control
plane components, such as the control plane datastore. Disk uti-
lization was above 10% for k3s and MicroShift and below 5% for
MicroK8s and k0s on controller nodes. On worker nodes, the disks
were almost completely idle.

Overall, the results show no surprises and are in line with former
results. Hosts with a 2-core CPU and 2 GB RAM should be sufficient
to serve clusters, when the application workloads are modest. The
results for k0s and MicroShift are novel with respect to related
work, but show no significant outliers compared to the other K8s
distributions. Users should provide controller nodes sufficient re-
sources to manage the cluster, possibly having dedicated nodes and
hosting application workloads only on worker nodes. For k0s, this
is the default configuration.

Q1Answer: In idle conditions, CPU utilizations for controllers
(M1_1) are on average 12.49% (k0s), 20.43% (k3s), 17.48% (Mi-
croK8s), and 19.49% (MicroShift). The controller memory con-
sumptions (M1_2) are 23.41% (k0s), 23.29% (k3s), 27.16% (Mi-
croK8s), and 19.90% (MicroShift). For worker nodes, CPU uti-
lizations were measured on average at 3.82% (k0s), 5.27% (k3s),
6.51% (MicroK8s) and memory utilizations were 15.93% (k0s),
11.74% (k3s), and 12.20% (MicroK8s). k0s has marginally the
lowest idle usage.

5.2 Control Plane Performance

We used K-Bench to analyze control plane performance and first
aimed at calibrating the benchmark configuration, so that it could
provide meaningful results in our test environment. Therefore, a
first experiment intended to characterize the bottlenecks in the
system, by successively starting more and more pods to stress the
control plane on a single combined controller/worker node.

Fig. 4 shows the CPU, memory, disk, and network utilization
from this experiment using MicroK8s. We configured K-Bench to
start one pod, delete it after creation, start two pods, delete them
after creation, up to starting 16 pods in parallel. The pod container
was a simple ”pause” application14 to not create computational
overhead to distort the results.

Fig. 4 shows that the combined controller/worker CPU was uti-
lized at around 100 percent already in the middle of the experiment
when about 8 pods were started parallel. Due to the high CPU
utilization, queuing effects occur that lead to longer pod start up
times. While disk usage is also increasing with a higher number
of pods started in parallel, the disk as well as memory and net-
work utilization show only modest increase over the duration of
the experiment. We thus concluded that the CPU is the bottleneck
for control plane operations and that starting more than 8 pods in
parallel likely leads to prolonged queuing.

14https://github.com/kubernetes/kubernetes/tree/master/build/pause

22

Lightweight K8s Comparison ICPE ’23, April 15–19, 2023, Coimbra, Portugal

Figure 4: Resource utilization for successively starting 1 to 16

pods in parallel (Microshift). CPU is exhausted during pod

creation for about eight pods in parallel.

To characterize the queuing effects further, we tested scenarios
with starting much higher number of pods in parallel. K8s best
practice15 states that K8s is designed to support not more than 110
pods per node. Thus we tested the lightweight K8s distributions
with experiments doubling the number of started pods, from 10,
20, 40, 80, up to 160 pods in parallel, which worked functionally
successful, but led to significant queuing effects. Fig. 5 provides the
pod startup latency for an increasing number of pods. While for 6-8
pods starting in parallel the latency per pod is typically between
2-4 seconds, for a 160 pod scenario, the maximum latency goes up
to more than 300 seconds. The curve visibly grows superlinearly
for the maximum pod latency at 40 pods started in parallel. We con-
cluded that while such extreme scenarios are functionally feasible,
they occur only rarely and lead to undesired queuing effects for
the benchmarking. Thus, we only analyzed scenarios with up to 40
pods per node in the following.

Figure 5: Pod startup latency vs. number of pods started in

parallel (MicroK8s): more than 40 pods started in parallel

causes excessive queueing

The following tests aimed at answering our research question
Q2 and were conducted on three nodes (i.e., charon, nix, hydra) for

15https://kubernetes.io/docs/setup/best-practices/cluster-large/

MicroK8s, k3s, and k0s, and one a combined controller/worker node
for MicroShift (i.e., kerberos). We configured K-Bench to individu-
ally start 8 pods in parallel, delete them, start a single deployment
(i.e. a collection) of 40 pods, delete it, and then conduct a number of
CRUD operations for namespaces and services. This entire proce-
dure was repeated once during each experiment run and K-Bench
averaged the collected metrics over both iterations.

Figure 6: For illustration purposes: resource utilizations dur-

ing MicroK8s Control Plane Experiment Run (8 clients, up

to 40 pods in Deployment)

For reference, Fig. 6 exemplary shows the resource utilizations
on the controller node during the control plane experiment (here
for MicroK8s). The controller’s CPU and disk utilization show brief
spikes up to 100 percent when starting the 8 pods and subsequently
the deployment of 40 pods. The namespace and service operations
also cause visible CPU usage, albeit much less than for the pod
operations. Network utilization is visible, as the pods are scheduled
across all three nodes of the mini-cluster. The resource utilization
profile is similar for the other lightweight distributions, but for
brevity we only provide the overall throughputs and latencies from
the experiments in the following.

K-Bench collected benchmark results are illustrated in Fig. 7.
In the upper row, it shows the throughputs for individual pod
creations (i.e., eight pods in parallel), as well as the pod creation
average latency. The latter is not to be confused with pod startup
latency in Fig. 5, since here it is computed by substracting the pod
creation timestamp from the first timestamp of the scheduling event
associatedwith the pod, which excludes the phase after pod creation
before the pod’s status changes to "Running". k3s marginally shows
the highest throughput and lowest latency here, although MicroK8s
and k0s are not far off (about 15 percent difference). The results for
MicroShift are not directly comparable, since the pods were created
on a single node and could not be distributed in a cluster of three
nodes.

The lower row of Fig. 7 show the same metrics for starting a
deployment consisting of 40 pods (i.e. around 13 pods per node).
Again k3s barely shows the highest throughput and lowest latency,

23

ICPE ’23, April 15–19, 2023, Coimbra, Portugal Heiko Koziolek & Nafise Eskandani

although the differences are even less pronounced. Compared to
the former 8-pod creation the pod creation latencies go up from
2-4 seconds to 9-18 seconds for all distributions, indicating the
aforementioned queueing effects.

Figure 7: Pod creation throughput and latencies (8 clients).Mi-

croShift was tested on a single, combined controller/worker

node, therefore the measurements are not directly compara-

ble to the others.

Fig. 8 visualizes latencies when creating, deleting, getting, listing,
and updating a K8s deployment resource. The values are depicted
as min/median/max values since these are the only values reported
by K-Bench from the experiments. These operations only cause
data operations on the controller nodes and are independent of
the number of nodes used. There, also the MicroShift results are
meaningful. The "create" and "delete" operations by far show the
highest latencies, while the "get", "list", and "update" operations are
much shorter. MicroK8s shows the highest latencies with "delete"
operations going up to a maximum of 470 ms. The differences
are likely caused by the different control plane data stores, where
for example MicroK8s uses dqlite and k3s uses SQLite. k0s was
significantly faster in deleting deployment compared to the other
distributions.

We decided to extend our results by running a three times as
heavy workload in order to find out how the throughputs and
latencies were affected. Fig. 9 provides the results from a separate
series of K-Bench experiments, now starting 24 pods in parallel,
as well as starting a more extreme scenario of 120 pods in parallel
(i.e. 40 pods per node). The pod creation throughput increases to
a maximum of 152 pods per minute (k0s), while the pod creation
latency increases up to 37.7 seconds (MicroK8s). k3s and k0s show
significantly higher throughputs and lower latencies thanMicroK8s,
results for MicroShift are omitted due to the restriction to a single
node.

In the latter experiments, we also recorded the pod operation
latencies, depicted in Fig. 10. Under the higher workload the laten-
cies are significantly higher than for the deployment operations in
Fig. 8, but again a similar profile is visible, with MicroK8s showing
the longest creation and deletion latencies and k0s and MicroShift
having the shortest latencies.

Figure 8: Deployment operations (8 clients, 40 pods), latency

as min/median/max

Figure 9: Pod creation throughput and latencies (24 clients)

All types of operations (create/delete/get/list/update) coarsely
lead to the same ranking of the lightweight K8s distributions. Mi-
croK8s shows then longest latencies for the different operations.
Its dqlite database is a distributed version of SQLite that can hori-
zontally scale and uses C-Raft, an optimized Raft implementation
in C, as consensus algorithm. It could be that the longer latencies
for MicroK8s are related to the Raft algorithm that ensures data
consistency in a cluster, while SQLite may not need any locking in
our scenario with a single controller node.

There seems to be a correlation between the deployment create
operation latencies visible in Fig. 8 and the deployment throughputs
in Fig.7, although we were not able to verify this statistically. This
could indicate that the deployment throughput is driven by the
database latencies to a large extend. In our experiments, we did
not change each distribution’s default database, but exchanging
the database to further optimize performance for extreme stress
scenarios could be an option and subject to further research.

24

Lightweight K8s Comparison ICPE ’23, April 15–19, 2023, Coimbra, Portugal

Figure 10: Pod operations (24 clients, 120 pods), latency as

min/median/max

Q2 Answer: For a control plane stress scenario starting 40
pods at once in a single deployment, we measured:
M2_1: throughputs in pods/min of 115.18 (MicroK8s), 133.73
(k3s), 129.42 (k0s), 62.05 (MicroShift single node).
M2_2: pod creation latencies in ms of 10.31 (MicroK8s), 9.01
(k3s), 9.34 (k0s), 18.12 (MicroShift single node).
For Pod and Deployment operations as detailed in Fig. 8 and
10, ’create’ and ’delete’ actions had the longest latencies (M2_3

/M2_4). For the multi-node scenario, k3s and k0s thus achieve
higher throughput and lower latency than MicroK8s.

5.3 Data Plane Performance

To understand the data plane performance of the lightweight K8s
distributions, we used K-Bench to execute the memtier_benchmark
from Redis Labs16 which is a command line tool to test the perfor-
mance of NoSQL databases. We performed the measurements in
a single-node, combined controller/worker configuration for each
distribution and started two pods in parallel so that each memtier
test fully utilized one of the available CPU cores of the node. As
the individual memtier workloads do not interact with each other,
we do not expect significanly different data plane results from a
multi-node configuration.

The data plane experiment first creates two containers from
nginx images and then installs the redis server using an apt package.
It pulls memtier from git and compiles it within the container. Then
it starts memtier with a configured run time of 600 seconds (10
mins). The default configuration starts 4 threads and connects 50
clients per thread, which each issue 1000 requests. The default ratio
between get and set requests is 1:10.

As an example for MicroK8s, Fig. 11 shows different resource
utilizations over the course of one benchmark run. After installing
the software in the pods in the first two minutes of the experiment,
the CPU is fully exhausted during the actual memtier execution,
which lasts for 10 minutes. There are a few disk accesses, which

16https://redis.com/blog/memtier_benchmark-a-high-throughput-benchmarking-
tool-for-redis-memcached/

are however unrelated to the benchmark workload itself. Main
memory consumption and network traffic remain rather flat, as this
test mainly stresses the node’s CPU.

Figure 11: Resource utilizations of the single combined con-

troller/worker node during a 12.5 minute dataplane experi-

ment with MicroK8s. The CPU is 100 percent utilized during

the memtier benchmark run, other resources remain mostly

idle.

Fig. 12 visualizes the measurement results collected by memtier
and K-Bench. The average latency for the database operations lie
between 10 and 19 ms on average, with few outliers going up
to 174 ms. MicroShift was the fastest distribution here, showing
average latencies 15 percent shorter than MicroK8s and 38 percent
shorter than k3s. The achieved throughput is a consequence of
the latencies, so MicroShift also has the highest numbers both for
operation throughput (Fig. 12).

The data plane performance experiments, used the same con-
tainer (nginx), same application (memtier), same workload, and
same hardware. As there are hardly control plane operations in
these experiments, a major factor contributing to the results is
the container runtime. MicroShift uses cri-o, while the other dis-
tributions use containerd. MicroShift executed on RHEL instead
of Ubuntu, which may also influence the results. Furthermore, as
seen earlier in Fig. 3, each distribution has a considerable CPU
overhead even when being idle. This may explain the comparably
poor data plane performance results for k3s, which also had the
highest controller CPU utilization in the idle experiments.

Q3 Answer: In data plane stress scenarios, the distributions
could handle between 17172 (k0s), 10537 (k3s), 14819 (Mi-
croK8s), and 18354 (MicroShift) operations per second (M3_1)
and required latencies of 11.6 ms (k0s), 18.9 ms (k3s), 13.5 ms
(MicroK8s), and 10.9 ms (MicroShift) (M3_2) in the memtier
test. MicroShift thus showed the highest performance by a
small amount, k3s throughput was significantly lower.

25

ICPE ’23, April 15–19, 2023, Coimbra, Portugal Heiko Koziolek & Nafise Eskandani

Figure 12: Comparison of the memtier results from the data-

plane experiments: MicroShift showed the lowest latencies

and the highest throughput.

6 ANALYSIS

6.1 Result Interpretation

Our results onminimal resource consumption confirmed that all
the lightweight K8s are suited for low-end single-board computers
(e.g., edge devices), given that the controller node has at least 1-2 GB
of RAM. Worker nodes have even less hardware requirements and
may work with single-core CPUs and 512 MB RAM. Using K8s on a
single, combined controller/worker node however invalidates some
of the advantages of container orchestration, such as horizontal
auto-scaling, fail-over from crashed nodes or load balancing. Rolling
updates, restarting failed pods, and the declarative specification in
K8s however stay intact.

For even smaller embedded devices, the use of Linux containers
and container orchestration may however be challenging. Wind
River has announced an OCI-compliant container runtime for its
RTOS VxWorks, which reportedly has a memory footprint of less
than 100 KByte, but still preserves the RTOS deterministic execution
and certification17. An alternative to using full-blown containers
could be usingWebAssembly outside of the browser18, which is also
sandboxed and portable. Krustlet is a Kubelet that schedules work-
loads in a WebAssembly runtime19. WebAssemblies can be very
small, sometimes in the order of bytes. However, unlike containers
they require re-compilation of the source code to WebAssembly.

Regarding control plane performance, our tests showed mar-
ginal differences between the lightweight K8s distributions, with
MicroK8s having slightly poorer performance than k3s and k0s.
The latter two performed almost identical regarding pod through-
put and pod creation latency. We measured the performance for
the default configurations of the distributions, although we deac-
tivated default metrics-servers for all of them, and re-configured
k0s to allow combined controller worker nodes, to achieve a fair

17https://bit.ly/3Vu7I6B
18https://github.com/WebAssembly/WASI
19https://krustlet.dev/

comparison. It may be possible to optimize the performance fur-
ther by re-configuring the K8s distributions or integrating custom
components via their different extension mechanisms.

Our control plane tests were performed on artificially created
extreme stress scenarios, which may be rare in day-to-day practice,
especially on resource-constrained edge devices. For more modest
regular workloads, developers may not perceive significant perfor-
mance differences from the used K8s distribution. However, our
results confirmed that the creation of more than 100 pods is feasible
on a single node for all distributions. This implies that the K8s
distributions set no limits on the possible workloads, which are
more constrained by the available hardware.

Data plane performance showed some more significant differ-
ences between the distributions, with k3s having poor performance
on the combined controller/woker node in this scenario. This seems
to correlate with the high controller resource usage of k3s in idle
conditions, which was also visible in Fig. 3. Possibly the contin-
uous resource usage of the control plane components decreased
the achievable throughput in this scenario. However, in practice
such high load scenarios may be using dedicated worker nodes,
which would be released from control plane resource usage. On
some stand-alone edge devices with challenging machine learning
workloads the data plane performance may be relevant. However,
when the lightweight K8s distributions are used on powerful devel-
oper workstation, this should be less of a problem. The results of
Kjorveziroski et al. [16] indicated that the data plane performance
is very similar between MicroK8s and k3s, however they did not
fully exhaust the available resources.

Other scenarios, such as starting the cluster, on-boarding new
workers, or draining nodes occur rather rarely in day-to-day prac-
tice, thus the latency and resource usage in such scenarios is only a
minor factor to the overall performance. Böhm and Wirtz [5] have
measured according latencies and found that MicroK8s exhibited
sometimes higher latencies than k3s in such scenarios.

6.2 Decision Support

The decision for a particular lightweight K8s distribution depends
on many factors, with performance only being one of them. Usabil-
ity, security, integration into an ecosystem, commercial support,
and extensibility may be other factors.

MicroK8s was initially meant for developer workstations and
was only subsequently optimized further for low memory footprint.
It favors easy extensibility over minimal resource usage. It may be a
preferred choice when using Ubuntu and the Snap packagemanager,
although it also can be installed in Windows. High availability in
MicroK8s gets automatically activated on clusters with three or
more nodes. Patch release updates are installed automatically in
MicroK8s. Our tests confirmed the convenient activation of pre-
built addons (e.g., dashboard, prometheus) via single commands,
which in contrast typically require a number of configuration steps
for the other distributions.

k3s has been consequently designed to reduce binary size (64.5
MB) and memory footprint targeting resource constrained edge
clusters besides developer workstations. Memory footprint has
been reduced by combining all component into a single process,

26

Lightweight K8s Comparison ICPE ’23, April 15–19, 2023, Coimbra, Portugal

while binary size has been reduced by for example removing 3rd-
party storage drivers and cloud providers from K8s. Updates follow
the upstream K8s releases, with a goal of patch release within one
week and new minor releases within 30 days. It found widespread
popularity due to its lightweightness and easy install procedure
with only most essential components included. k3s may be a pre-
ferred choice for resource-constrained devices, especially if those
are dedicated worker nodes.

k0s appears similar to k3s, also rigorously tuned for low re-
source usage and easy installation. It has so far only low popularity.
The developers highlight that the design was done with security
in mind, allowing a 100% FIPS compliance if a proper toolchain is
in place. Due to the self-containment of the k0s binary, security
vulnerabilities can potentially be quickly fixed within k0s, not being
dependent on external components. k0s intentionally reduces bun-
dled add-ons, such as ingresses, service meshes, and storage, since
these are deemed opinionated and may complicate maintenance.
In our tests, k0s appeared lean and streamlined, with a very easy
install procedure.

MicroShift is still experimental and should not yet be used in
production environments, although improving quickly. It is more
tied to the Red Hat ecosystem, but there are demos of running it on
MacOS and Windows. It is designed to be installable and operable
in air-gapped situations including adverse network connectivity.
Remote device management, as well as auto-configuration and
automatic recovery from failed updates were intended design goals.
Furthermore, security guidelines from DISA STIG and FedRAMP
were considered. In our tests, it was more cumbersome to install
and showed compatibility issues with older RHEL versions, but
these issues will likely be resolved soon.

7 DISCUSSION

7.1 Limitations

Our benchmarking study is intended as a representative analysis
that covers typical scenarios in which developers use lightweight
K8s distributions, but is of course influenced by the authors’ per-
spective. Additional studies could explore further subjects, add
more depth, or test other environments.

Regarding the test subjects, our study focused on MicroK8s, k3s,
k0s, and Microshift, since these are typical, and popular lightweight
K8s distributions. We did not conduct a comparison of the mea-
surements to a regular K8s distribution, since this has already been
done by other works (e.g., [10, 5, 19]). We did not test KubeSpray20

or KubeEdge21, since they do not include an own lightweight K8s
distribution, but use the vanilla K8s distribution.We excluded k3d22,
which runs k3s in a container, and kind23, which runs a local K8s
cluster in Docker nodes, since these are rarely used in production.
For the same reason we excluded minikube24, since this is used
mainly for training on a single node.

We did not execute actual production workloads, but used artifi-
cial benchmark scenarios. These scenarios however fully exhausted

20https://kubernetes.io/docs/setup/production-environment/tools/kubespray/
21https://kubeedge.io/
22https://k3d.io/
23https://kind.sigs.k8s.io/
24https://minikube.sigs.k8s.io/

the control and data plane and can be considered more extreme
than typical production workloads. We tested small cluster sizes of
up to three nodes, which could be addressed in future work with
testing larger clusters. Our workloads were mainly concerned with
starting and deleting many pods, but future studies could also eval-
uate more sophisticated dynamic changes, such as rolling updates,
horizontal auto-scaling, or node draining in more detail.

Regarding the depth of our study, we relied on black-box mea-
surements of the lightweight K8s distributions, using data captured
both from k-bench and netdata. We did not attempt a white-box
approach instrumenting and profiling the source code of the k8s
distributions and getting more detail on hotspots and bottlenecks
that constraint the measurements we observed. We relied on the
data produced by k-bench and netdata, but did not cross-check their
output with other tools. Future studies could also determine how
many experiments are needed for statistical significance, whereas
our study only featured a few repetitions of the experiments to
account for temporary glitches.

Regarding the test environment, for convenience we chose using
a number of Microsoft Azure Virtual Machines, which are only
loosely representative of edge devices in IoT scenarios. Future stud-
ies could test the lightweight K8s distributions on even more mem-
ory constrained devices, although this is not recommended by the
K8s distribution developers. Further studies could investigate K8s
performance on Windows, MacOS, or other operating systems,
whereas our study only used Linux operating systems. Our test en-
vironment only included local network traffic, whereas specific IoT
scenarios may required distributed K8s clusters involving wide-area
connections.

7.2 Threats to validity

To assess the robustness of our study, we discuss threats to the
internal validity, the construct validity, and the external validity.

The internal validity is concerned with assuring that the mea-
sured outcomes actually are caused by the changed dependent
variables and not influenced by interfering variables. In our case,
each experiment run included a repetition of stimulating the K8s
distributions with the configured workload to avoid temporary
glitches when executing them, which could have affected the mea-
sured CPU, memory, disk, and network utilizations. We also ran
the experiments multiple times on different times of the day to
avoid interfering workloads on cloud resources as experienced by
other authors [1]. Due to time constraints these repetitions were
not conducted systematically, which could be addressed in future
work. However, we did not observe surprising outliers in the re-
sults measured so far, therefore we do not anticipate this interfering
factor to be significant.

We could not retrieve the standard deviations and confidence
intervals for the control plane latencies, since these values were not
reported by the used benchmark tool k-bench. Another interfering
variable may be the measurement tools themselves, since they could
distort the results or even have bugs that lead to wrong outputs.
We know that netdata can cause a CPU utilization overhead of
1-2 percent, so this overhead could be deducted from the CPU

27

ICPE ’23, April 15–19, 2023, Coimbra, Portugal Heiko Koziolek & Nafise Eskandani

utilizations reported in Fig. 3. We did not systematically cross-
check the reported results with other tools, although we used tools
like htop in an ad-hoc manner to validate the system utilizations.

We also did not break down the CPU utilization to individual pro-
cesses, but instead measured the overall system utilization, which
includes background processes from the operating system. How-
ever except for MicroShift we used the same operating system and
background processes for the different distributions. We accounted
for slight differences in the lightweight K8s distributions and for
example configured k0s to also host pods on the controller nodes
as the other distributions, since this not enabled in the standard
configuration. Experiment configuration, raw data, and visualiza-
tion scripts are published25 separately and can be evaluated for
assessing the internal validity further.

The construct validity is concerned with assuring the the con-
structs used in the study (e.g., the test subjects and the testing
environments) are actually sufficiently representative, so that the
results are meaningful substitutes for results obtained in production
settings. Based on Github popularity and literature, we deem our
test subjects MicroK8s, k3s, k0s, and MicroShift as representative
constructs for lightweight K8s distributions. Our test environment
consisted of Microsoft Azure virtual machines that were configured
to provide similar CPU performance and memory as host typically
used as IoT devices or edge gateways. We argue that netdata is a typ-
ical measurement tool in this domain, since it has wide popularity
and was also used in related work.

The test workloadswere generated using k-bench, so they are not
exact representatives of real production workloads. As noted earlier,
we argue that they represent even more severe conditions than
typical IoT application and therefore allow an even more refined
comparison of the lightweight K8s distributions.We only used small
clusters with a few nodes, which may not be representative of larger
edge clusters. Since K8s is however known to scale to much larger
clusters, we do not expect significantly different results in larger
clusters if all nodes are similarly utilized as in our benchmarks.

The external validity is concerned with validating how well the
obtained results can be transferred to other situations and scenarios
that are not an exact replication of experiment setup. We did not use
a proprietary application, but generic benchmark workloads which
can be easily replicated in other settings. Therefore the results
should be valid in a wide range of application scenarios, e.g., smart
cities, smart buildings, smart factories, etc. In fact, k-bench could be
easily configured to mimic production workloads in such scenarios.

The results may not hold for other kinds of lightweight k8s
distributions or even other container orchestration frameworks
(e.g., Nomad26). The reported resource utilizations could be used to
calculate the expected utilization in environments that have slightly
more powerful or less powerful computing nodes comparing the
hardware specifications of those environments to the ones reported
in this paper. The results may not directly transfer systems using
Windows, MacOS, or other kinds of operating systems.

25https://doi.org/10.5281/zenodo.7604863
26https://www.nomadproject.io/

8 CONCLUSION

We compared the features and performance of MicroK8s, k3s, k0s,
and MicroShift as representative lightweight K8s distributions. In
stress scenarios, k3s and k0s marginally showed the highest control
plane throughput, while MicroShift achieved the highest data plane
throughput. Our experiments are the first in stressing the light-
weight K8s distributions with more than 100 pods, furthermore
they are the first published performance evaluations for k0s and
MicroShift.

Practitioners receive support to make informed decisions when
selecting an appropriate K8s distribution for a given use case. They
can check the performance metrics and relate our testbed to their
target hardware. Researchers can replicate our experiments, reuse
the testing method as well as the utilized measurement tool chain
to extend the results.

Testing lightweight K8s could be extended to additional K8s dis-
tributions (e.g., regular K8s, minikube, OpenShift, etc.), additional
software platforms (e.g., Windows, MacOS, RTOS), and additional
hardware (e.g., single-board computers, mini PCs, Industrial PCs)
in future work. Other types of control plane operations, such as
rolling updates, creating persistent volumes, or horizontal auto-
scaling could be tested. Collected data could be used to construct
performance models that allow predicting the performance for a
particular use case given an anticipated workload profile and the
target hardware.

REFERENCES
[1] Mohab Aly, Foutse Khomh, and Soumaya Yacout. 2018. Kubernetes or open-

shift? which technology best suits eclipse hono iot deployments. In 2018 IEEE
11th Conference on Service-Oriented Computing and Applications (SOCA). IEEE,
113–120.

[2] Marco Barletta, Marcello Cinque, Luigi De Simone, and Raffaele Della Corte.
2022. Introducing k4.0s: a model for mixed-criticality container orchestration
in industry 4.0. arXiv preprint arXiv:2205.14188.

[3] Victor R Basili. 1994. Goal question metric paradigm. Encyclopedia of software
engineering, 528–532.

[4] David Bernstein. 2014. Containers and cloud: from lxc to docker to kubernetes.
IEEE cloud computing, 1, 3, 81–84.

[5] Sebastian Böhm and Guido Wirtz. 2021. Profiling lightweight container plat-
forms: microk8s and k3s in comparison to kubernetes. In ZEUS, 65–73.

[6] Brendan Burns, Joe Beda, Kelsey Hightower, and Lachlan Evenson. 2022. Ku-
bernetes: up and running. " O’Reilly Media, Inc.".

[7] Simon Eismann, Cor-Paul Bezemer, Weiyi Shang, Dušan Okanović, and André
van Hoorn. 2020. Microservices: a performance tester’s dream or nightmare?
In Proceedings of the ACM/SPEC International Conference on Performance Engi-
neering, 138–149.

[8] Halim Fathoni, Chao-Tung Yang, Chih-Hung Chang, and Chin-Yin Huang.
2019. Performance comparison of lightweight kubernetes in edge devices.
In International Symposium on Pervasive Systems, Algorithms and Networks.
Springer, 304–309.

[9] Arnaldo Pereira Ferreira and Richard Sinnott. 2019. A performance evaluation
of containers running on managed kubernetes services. In 2019 IEEE Inter-
national Conference on Cloud Computing Technology and Science (CloudCom).
IEEE, 199–208.

[10] Tom Goethals, Filip De Turck, and Bruno Volckaert. 2019. Fledge: kubernetes
compatible container orchestration on low-resource edge devices. In Interna-
tional Conference on Internet of Vehicles. Springer, 174–189.

[11] Robert Heinrich, André VanHoorn, Holger Knoche, Fei Li, Lucy Ellen Lwakatare,
Claus Pahl, Stefan Schulte, and Johannes Wettinger. 2017. Performance engi-
neering for microservices: research challenges and directions. In Proceedings
of the 8th ACM/SPEC on International Conference on Performance Engineering
Companion, 223–226.

[12] Anshul Jindal, Vladimir Podolskiy, andMichael Gerndt. 2019. Performancemod-
eling for cloud microservice applications. In Proceedings of the 2019 ACM/SPEC
International Conference on Performance Engineering, 25–32.

28

Lightweight K8s Comparison ICPE ’23, April 15–19, 2023, Coimbra, Portugal

[13] Paridhika Kayal. 2020. Kubernetes in fog computing: feasibility demonstration,
limitations and improvement scope. In 2020 IEEE 6th World Forum on Internet
of Things (WF-IoT). IEEE, 1–6.

[14] Jeongchul Kim and Kyungyong Lee. 2019. Functionbench: a suite of workloads
for serverless cloud function service. In 2019 IEEE 12th International Conference
on Cloud Computing (CLOUD). IEEE, 502–504.

[15] Antti Kivimaki. 2021. Evaluation of Lightweight Kubernetes Distributions in
Edge Computing Context. Master’s thesis. Tampere University.

[16] Vojdan Kjorveziroski and Sonja Filiposka. 2022. Kubernetes distributions for
the edge: serverless performance evaluation. The Journal of Supercomputing,
1–28.

[17] Ritik Kumar and Munesh Chandra Trivedi. 2021. Networking analysis and
performance comparison of kubernetes cni plugins. In Advances in Computer,
Communication and Computational Sciences. Springer, 99–109.

[18] Victor Medel, Rafael Tolosana-Calasanz, José Ángel Bañares, Unai Arronategui,
and Omer F Rana. 2018. Characterising resource management performance in
kubernetes. Computers & Electrical Engineering, 68, 286–297.

[19] Sergii Telenyk, Oleksii Sopov, Eduard Zharikov, and Grzegorz Nowakowski.
2021. A comparison of kubernetes and kubernetes-compatible platforms. In
2021 11th IEEE International Conference on Intelligent Data Acquisition and
Advanced Computing Systems: Technology and Applications (IDAACS). Vol. 1.
IEEE, 313–317.

[20] László Toka, Gergely Dobreff, Balázs Fodor, and Balázs Sonkoly. 2021. Ma-
chine learning-based scaling management for kubernetes edge clusters. IEEE
Transactions on Network and Service Management, 18, 1, 958–972.

[21] Olaf Zimmermann. 2017. Microservices tenets. Computer Science-Research and
Development, 32, 3, 301–310.

29

