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ABSTRACT
Computer architectures have evolved from single core to chips
with thousands of cores. Loop and instruction level parallelism
techniques like software pipelining that are successful for single
cores have limitations in the multi-core era. We extend the software
pipelining technology beyond the limits of fine-grained, instruction-
level parallelism. We accomplish this through dataflow software
pipelining technology and its extension. Specifically, we present
extensions to dataflow-based codelet model and its abstract machine
to exploit pipelined parallelism across loops.

We extend the runtime implementation of the codelet model with
our proposed extensions to take advantage of dataflow software
pipelining principles using efficient single-owner First-In-First-Out
(FIFO) buffer across Codelet’s dependencies. We show promising
improvements with the use of dataflow software pipelining tech-
niques by performing an in-depth case study of Cannon’s algorithm
for matrix multiplication.

CCS CONCEPTS
• Computer systems organization → Pipeline computing;
Multicore architectures.
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1 INTRODUCTION
The supercomputing landscape has fundamentally changed in the
past fifteen years [26]. Chips have evolved from single-core to multi-
threaded, multi- or even many-core chips. Chip architectures are
shifting from fewer, faster, functionally heavy cores to abundant,
slower, simpler cores to address pressing physical limitations such
as energy consumption and heat expenditure. To overcome these
challenges, hardware architectures like GPU, FPGA, and domain-
specific accelerators [5–8, 11, 30] that consist of multiple cores are
becoming more common.

Software Pipelining is an important code mapping scheme to ex-
ploit pipelined parallelism in a loop. It has been successfully applied
in compilers to exploit Instruction Level Parallelism (ILP) in a loop
body, capable of scheduling 10s (or up to a couple hundred) machine
instructions in pipelined execution. However, rapid advances in
chip technology and computer architecture have enabled the design
and production of chips with thousands of cores - some even reach
hundreds of thousands of cores on a wafer [3]- far beyond the limit
of ILP. An open challenge is determining if the software pipeline
technology be extended and applied to meet such challenges.

Dataflow Software Pipelining is a code mapping technique to ex-
ploit Instruction Level Parallelism (fine-grain) to yield high through-
put. However, exploiting pipelined parallelism across loops (coarse-
grain parallelism) remains an open question under dataflow soft-
ware pipelining. In this paper, we study how to apply dataflow
software pipelining techniques to exploit large-scale parallelism
beyond the limit of fine-grain instruction-level parallelism.

Today’s chip architectures and their execution models are based
on the sequential Von Neumann model dominated by data paral-
lelism, while there has been little progress in parallelism via Soft-
ware Pipelining techniques. The Codelet model is a hierarchical,
multi-threading, event-driven, multi-grained model rooted in the
dataflow model. It is possible to build upon the base Codelet Model
to exploit asynchronous task parallelism through dataflow software
pipelining techniques.

In this work, we address above mentioned open question by
extending the software pipelining technology beyond its limit of
fine-grained, instruction-level parallelism with the help of dataflow
software pipelining technology and its extension. The major con-
tributions of this work can be summarized as:
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• We extend software pipeline techniques to the coarse grain
to exploit pipelined parallelism across loops. This is accom-
plished by leveraging dataflow software pipelining principles,
eliminating the limits of fine-grain parallelism.
• We propose extensions to the dataflow-based Codelet Model
to efficiently support dataflow software pipelining. These
extensions are implemented for a runtime based on Codelet
model.
• We perform a detailed case study of Cannon’s algorithm to
demonstrate the effectiveness of dataflow software pipelin-
ing techniques and lay the groundwork for the seminal work
in this direction.

The remainder of this paper is organized as follows: Section 2
discusses the background terminology based on which the work in
the paper is based. Section 3 uses a motivating example to describe
our inspiration behind this work and formally defines the scope of
the problem this work targets to solve. Section 4 introduces the ex-
tension to codelet model to take advantage of principles of dataflow
software pipelining. Section 5 walks through the Cannon’s algo-
rithm case study and its implementation details. Section 6 discusses
the experimental results as well as their significance. Section 7 pro-
vided an overview of the related and inspirational work behind
current efforts, while section 8 discusses some of our ideas on the
future directions and next steps. Finally, we conclude our discussion
in section 9.

2 BACKGROUND
In this section, we introduce basic terminology and point to essen-
tial references with an aim to provide essential background for the
rest of this paper.

2.1 Software Pipelining
Software Pipelining [12, 28, 31, 42, 45] is one of the most important
out-of-order, loop scheduling methods used by parallelizing com-
pilers. It overlaps operations from various loop iterations in order
to exploit instruction level parallelism. Effective software pipelin-
ing takes into account several constraints like instruction latency,
resource availability, and register restrictions into account for the
target architecture. Finding a code sequence that satisfies these
constraints is NP-complete problem, a fact that has led to number
heuristic techniques. The pioneering work for formulation of the
software pipelining process for single basic block loops was stated
by B. Ramakrishna Rau et al. [42]. The classical software pipelining
survey work by Rau et. al. [41] and Allan Et al. [13] provide a good
overview of the field.

Today, these pioneering techniques are standard in modern com-
pilers optimizing execution for sequential code. In our work, we
wish to leverage upon these pioneering techniques mentioned
above as well as all the work that followed those techniques in
the decades to come. We leverage fine-grained Instruction Level
Parallelism at Codelet level (further details in section 3.2).

2.2 Dataflow Software Pipelining
Dataflow Software Pipelining [23] is a code mapping technique
to generate code that can be executed in a pipelined fashion with
high throughput. This is achieved by keeping the pipeline busy

and computation balanced [22]. Special dataflow ID nodes [14]
or FIFO buffers [24, 27] are used to optimally balance the dataflow
graph for maximum pipelining [22]. The minimum buffer allocation
and scheduling aspects of the dataflow software pipelining is an
NP-complete problem. The seminal work by Ning[36] shows that
one can allocate the minimum number of buffers to variables in
polynomial time under an extended static dataflow execution and
architecture model.

We extend dataflow software pipelining techniques to exploit
coarse-grained pipelined parallelism across codelets (further details
in section 4.1)

2.3 Codelet Model
Codelet model [21, 48] is a hierarchical, multi-threaded, event-
driven, multi-grained, hybrid von Neumann-dataflow execution
model designed for extreme-scale systems in mind that draws its
roots from the dataflow model. The Codelet execution model is
designed to leverage previous knowledge of parallelism, and to
develop a methodology for exploiting parallelism for a much larger
scale machine. Codelet model’s roots in a dataflow model provides
several important features including fine-grain synchronization,
functional programming, composability, and determinate execu-
tion.

A Codelet (CD) consists of a sequence of machine instructions
that execute non-preemptively and atomically. Codelets are linked
together to form a Codelet Graph (CDG). In a CDG, each codelet
represents a producer and/or consumer while the edge in between
them represents an event. A Codelet is scheduled upon availability
of specific resources, the primary one being data. Codelets may be
grouped into Threaded Procedure (TP). A TP is an asynchronous
function that acts as a container for a CDG and the data accessed
by its codelets giving sense of locality to codelets within a TP.

The Codelet Model relies upon its Codelet Abstract Machine
(CAM) which is mapped at runtime to the target many-core system.
Cores can be either Synchronization Unit (SU) or Compute Unit
(CU). A SU is in charge of allocating TPs and scheduling codelets
to CUs.

2.4 Delaware Adaptive Runtime System
Delaware Adaptive Runtime System (DARTS) [29, 43] is currently
the most faithful runtime implementation of the Codelet Model
and its Abstract Machine Model (AMM). A runtime provides flex-
ibility in satisfying a particular execution model’s requirements
by bridging the gap between software and hardware. DARTS pro-
vides two levels of parallelism, event-driven codelets permitting
fine-grained parallelism and invoked threaded procedures which
ensures locality.

A programmer uses DARTS runtime interface to define a CDG
comprised of CDs and grouped into TPs. TP and CD are defined as
class objects at compile time and are instantiated and scheduled at
runtime. A Programmer sets the mapping between the CAM and
the available machine hardware through the DARTS AMM. DARTS
is written for shared memory x86 architectures, written in C++ and
distributed as free and open-source software [1].
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3 MOTIVATION AND PROBLEM
FORMULATION

Dataflow Software Pipelining for codelet graphs is a broad field
of study that covers various techniques applicable to the general
class of codelet graphs. Section 3.1 provides a simple motivating
example to highlight the importance and need of dataflow soft-
ware pipelining for codelet model. In section 3.2, we define the
class of codelet graphs for which the dataflow software pipelining
techniques discussed in this paper will be applicable.

3.1 Motivating Example
Consider a scenario such as that presented in Figure 1a. Here we de-
pict a part of CDG, where two codelets are in a producer-consumer
relation. C1 is producer codelet, producing array A of size N, while
C2 is consumer codelet which is consuming array A and writing
results to array B of size N.

Let us assume:

• System has sufficient resources to schedule codelets on dif-
ferent CUs.
• SU schedules C1 & C2 on separate CUs.
• Each iteration of loops L1 and L2 take 1 unit time.
• Sending signal/ data from C1 to C2 takes 1 unit time.

Now, consider execution scenarios with and without dataflow
software pipelining for codelet model.

Scenario 1: Under original Codelet Model, execution will pro-
ceed as follows:

• C1 will receive a signal and start its execution.
• C1 will completely finish executing its code by performing
the N iterations of the loop.
• C1 signals C2 that data is available. C2 will receive a signal
and start its execution.
• C2 will completely finish executing its code by performing N
iterations of the loop.

In this case, we can see that both C1 and C2 each will take N units
of time. The total execution time in this scenario will be at least
N+N+1 unit time.

Scenario 2: Assuming perfect Dataflow Software Pipelining for
the Codelet Model, execution will proceed as follows:

• C1 will receive a signal and start its execution.
• C1 will send signal to C2 once it finishes the 1st iteration of
loop L1.
• C2 will begin execution of loop L2 while C1 continues exe-
cution of loop L1.

In this case, C1& C2 each take N units of time—same as scenario 1
above. Since, we allow execution of C2 to begin before the execution
of C1 finishes, the minimum total execution time for this case will
be N+1 units time for consumer codelet to wait until first iteration
of producer codelet finishes.

The producer-consumer behavior explained in this example is
quite common in scientific applications. This example shows the
importance of dataflow software pipelining for a simple case with
N iterations in loop. However, one can easily see that this technique
will also be very useful for streaming applications where input or
output data can potentially be infinite (e.g. 𝑁 →∞).

Producer 
Codelet

Consumer
Codelet

L1 : For (1 to N)
A[i] = i

L2 : For (1 to N)
B[i] = A[i] + 1

C1

C2

(a) Codelets

Producer 
Codelet

Consumer
Codelet

L1 : For (1 to N)
A[i] = i

L2 : For (1 to N)
B[i] = A[i] + 1

C1

C2

FIFO
Buffer

(b) Codelets with FIFO

Figure 1: Producer-Consumer Codelets in CDG

3.2 Problem Formulation
Traditional software pipelining techniques aremostly static, compile-
time, loop-optimization techniques, while dataflow software pipelin-
ing techniques are dynamic (due to nature of dataflow graphs) that
go beyond just loop optimization and consider the entire dataflow
graph for optimization opportunities. The high-level objective to
achieve through this formulation is to develop a Program Execution
Model (PXM) which can leverage coarse grain parallelism at the
CDG level and fine grain parallelism at the CD level by exploiting
traditional software pipelining.

With these high-level goals in mind, we categorize our formula-
tion at two levels:

1. Codelet Level: Our intentions are to leverage decades of
work done in the field of Instruction Level Parallelism and Software
Pipelining to exploit performance at the codelet level.

To achieve this, wewill be restricting the loops inside our codelets
to the class of loops which are analyzable by traditional software
pipelining and loop optimization techniques. Primarily, this means
the dependencies inside the loop should be known at compile time.
For the sake of further simplicity, at this stage of formulation, we
will also be restricting the loop dependencies to simple affine func-
tions—functions composed of a linear function and a constant,
taking the form:

𝑌 = 𝑢 × 𝑖 + 𝑣

Furthermore, we will be restricting the variable values in affine
function. Here are further details:

• Restrictions on u: We restrict u to only 1. This is to ensure
a single stride access to the array in both, the producer and
the consumer.
• Restrictions on i: We restrict i to only 1. This is to ensure
simple access patterns inside array (prohibit access of type
i2 or 3i).
• Restrictions on v: We restrict v to positive values. This will
ensure only forward access inside an array.
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The aforementioned formulation and restrictions described in
this section ensure constant and uniform production and consump-
tion of tokens between consecutive codelets. These simplifications
allows us to focus on dataflow software pipelining in between
codelets.

2. Codelet Graph Level: At this level, our intentions are to
exploit coarse grain parallelism in the codelet graph. We will be
restricting our formulation to class of CDG that satisfy the following
conditions -

• Class of Codelet graphs that are Directed Acyclic Graph
(DAG).
• Each node (codelet) in the DAG is a "nice loop" meaning
body is a simple statement and the index expression for the
loop is a simple affine function of the index, as explained
above.

To further clarify, please note that we are not allowing cycles
only at the coarse grain, codelet graph level. Cycles inside any
codelet are permitted as long as they follow these restrictions and
can be optimized by traditional software pipelining techniques.

4 EXTENSIONS TO ENABLE DATAFLOW
SOFTWARE PIPELINING FOR CODELET
MODEL

In this section, we will cover some ideas and the underlying thought
process to enable dataflow software pipelining for codelet model.

4.1 Extensions to Codelet Model
4.1.1 Extension to Codelet Program Execution Model (PXM). The
Original Codelet Model semantics do not allow the consumer codelet
to begin its execution before the output tokens are generated by
the producer codelet. In the case of codelets with loop, the con-
sumer codelet has to wait until all loop iterations of the producer
codelet finish and produce a data token (similar to our motivating
example in section 3.2). Under certain situations, we need to allow
the consumer codelet to begin its execution before the producer
codelet has finished its entire execution to allow dataflow software
pipelining in the codelet model.

The primary challenge to enable dataflow software pipelining
for the codelet model is to synchronize between codelets. We need
a mechanism to inform the consumer codelet when to start its exe-
cution after the producer codelet has finished part of its execution
and it has produced relevant data tokens needed for the consumer
codelet. Also, we need to ensure order of data tokens in-between
producer and consumer codelets.

This can be achieved by introducing a new type of event in
the PXM. One of the possible implementation can be achieved
using 2-bit flag and flip-flop-like logic in shared memory systems.
However, such approach could lead to inefficient implementations
due to the overhead carried by shared memory systems, especially
in NUMA(Non-uniform memory access) systems. Hence we have
extended our CAM to support this mechanism efficiently.

4.1.2 Extension to Codelet Abstract Machine Model (CAM). Extend-
ing the PXM is just the first step. In order to efficiently support
Dataflow Software Pipelining extension discussed above, they need

DRAM

CUCUCU
Write Back

Synchronize

LCCM

SU

Memory
Interface

Codelet Core

Figure 2: Extended Codelet Abstract Machine Model

to be supported in the Abstract Machine as well in order to exploit
optimal performance.

To accomplish this, there have been on-going efforts [17, 18]
to extend the Codelet Model. Figure 2 shows the portion of the
Extended Codelet Abstract Machine (xCAM) most relevant for this
paper. The main differences between the original CAM and xCAM
can be summarized as follows:

• Codelet Core is the most relevant part to focus on to un-
derstand mechanism needed to enable dataflow software
pipelining for codelet model.
• Local Codelet Core Memory (LCCM) is inside the Codelet
Core and uses smart implementation based on software-
hardware co-design. We envision its implementation as an
extended scratchpad memory or lower level cache with FIFO
queue-like capabilities.
• Memory sub-system has been moved out of Codelet Core to
hide memory operation latency. We envision its implemen-
tation in architecture as a higher-level cache or SDRAM.
• CU is now part of Codelet Core and multiple CUs can part
of it. CU can be mapped to CPU or GPU cores, or other
heterogeneous hardware in the architecture.

The incorporation of LCCM in the extended codelet model plays
a vital role in enabling software pipelining between codelets. LCCM
is shared between different CUs on the same codelet core to explic-
itly share frequently needed data. This avoids long latency memory
operation trips to the main memory and hence improves the over-
all performance. Codelets scheduled on the same codelet core can
use LCCM as FIFO buffers to enable dataflow software pipelining
in-between them. The extended codelet model can make intelligent
use of LCCM to support dataflow software pipelining of codelets.

4.2 FIFO Buffers
One of the most intuitive methods to store intermediate results
and ensure order of data tokens in-between two computation units,
especially when we have single producer and single consumer, is
to use temporary storage units like FIFO buffers. They can provide
a highly efficient data communication channel without relying
on operating system constructs such as semaphores, mutexes, or
monitors for data transfer.

In figure 1b, we show conceptual visualization of a FIFO chan-
nel between producer and consumer codelets using same example
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from section 3.2. The execution scenario with a FIFO buffer can be
summarized as:

• Both C1 & C2 will receive a signal and are enabled for execu-
tion. However, only C1 will start its execution as only data
needed for C1 is available.
• After first iteration of loop L1, the resulting data token will
be generated and stored at the head of FIFO buffer.
• C2 will receive this data token from FIFO buffer and start its
execution.

5 IMPLEMENTATION OF DATAFLOW
SOFTWARE PIPELINING FOR CODELET
MODEL

In this section, we offer details of how we implement dataflow soft-
ware pipelining extensions in the Codelet Model. We first provide a
brief background on Cannon’s Algorithm in section 5.1. Following
this, section 5.2 discusses mapping and implementation of Can-
non’s algorithm for the Codelet Model. Section 5.3 is a comparitive
discussion of how we extend the implementation in section 5.2
to leverage Dataflow Software Pipelining techniques using FIFO
Buffers.

5.1 Cannon’s Algorithm
Cannon’s Algorithm is a distributed algorithm for matrix multi-
plication of two-dimensional meshes, first described in 1969 by
Lynn Elliot Cannon [16] and suitable for computers laid out in an
N × N mesh. The Cannon’s algorithm assumes availability of P
processes for matrix multiplication, where P is square number. A &
B are input matrix while C is the resultant matrix. All A,B & C are
square matrices decomposed into block matrices and mapped to
processes. The main advantage of the algorithm is that its storage
requirements remain constant and are independent of the number
of processors.

Earlier in section 3.2, we formulated certain constraints at the
Codelet Graph level as well as at the Codelet level to define an im-
portant class of Codelet programs where pipelined parallelism can
be efficiently exploited across loops by Dataflow Software Pipelin-
ing techniques. The way we map Cannon’s algorithm to Codelet
model satisfies our constraints at the Codelet Graph level, as the
CDG for Cannons algorithm is Directed Acyclic Graph. Inside each
codelet, a matrix multiplication operation is followed by a shifting
operation which can take advantage of classical software pipelining.

The Cannon’s algorithm is described in Algorithm 1. It is not the
intent of this work to analyze and optimize the steps in the original
Cannon’s algorithm. The implementations discussed in section 5.2
and 5.3 stay faithful to the original algorithm. We will not go into a
detailed discussion of Cannon’s algorithm here, since that is not
the primary purpose of the discussion. Instead, the main steps of
Cannon’s algorithm relevant to this work can be summarized as
follow:

(1) Initial Skew Step: Initialize Matrix A & B by performing
left and upward circular shift in order to align matrices for
multiplication.

(2) Computation Step: Each process P multiplies its local sub-
matrices and partial result C is calculated.

Algorithm 1: Cannon’s Algorithm for Matrix Multiplica-
tion
Data: Two Square Input Matrices
Result: Square Resultant Matrix

Initialization- Skew Matrices
for 𝑖 ← 0 to 𝑁 − 1 do

Left circular shift row 𝑖 by 𝑖 ,
so that A(𝑖 ,j) is assigned A(𝑖 , ( 𝑗+𝑖) mod 𝑁 );

end
for 𝑗 ← 0 to 𝑁 − 1 do

Upward circular shift column j by j,
so that B(i,j) is assigned B((j+i)mod N, j);

end

Computation & Communication
for 𝑘 ← 0 to 𝑁 do

for 𝑖 ← 0 to 𝑁 − 1 do
for 𝑗 ← 0 to 𝑁 − 1 do

C(i,j) = C(i,j) + A(i,j) * B(i,j) ;
Left circular shift each row of A by 1,
so A(i,j) is assigned A(i,(j+1)modN) ;
Upward circular shift each column of B by 1,
so B(i,j) is assinged B((i+1)modN,j) ;

end
end

end

(3) Communication Step: Each process circular shifts its sub-
matrix of A & B to the left by 1 step and all sub-matrices to
the up by 1 step. But, the result matrix C does not move.

(4) Repeat step two and three for square root of P times.

When the above steps are complete, each process holds resultant
sub-matrix C.

At this stage of discussion, wewould like to point out that, the im-
plementation of Dataflow Software Pipelining techniques discussed
later in detail in section 5.3 achieve performance gains by optimiza-
tions in-between Computation (Step 2) and Communication (Step3)
phase. This is achieved by overlapping these two steps and storing
intermediate results in the FIFO buffers for all processes.

5.2 Cannon’s Algorithm without Dataflow
Software Pipelining under Codelet Model

Figure 3b shows the CDG for the Cannon’s algorithm without
dataflow software pipelining (DF-SWP). We divide all matrices
among P tiles and associate them to P codelets similar to algorithm 1.
Here P is the number of tiles in which matrices are divided. The
functionality of various codelets can be summarized as follows:

• CopyA and CopyB: These codelets copy original matrix
A and B to tile memory local to each codelet. P instances of
these codelets are created. Matrices are copied to tiles for
locality reasons.
• Skew: These codelets skew/initialize matrix A and B as de-
scribed in the skew step of algorithm 1. P instances of these
codelets are created.
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• loop: This codelet iterates P times. This codelet acts as a
barrier between different instances of compute codelet.
• Compute: This codelet, multiplies sub-matrix A and B, stores
results in sub-matrix C. It also circularly shifts sub-matrix A
and B. It sends a signal to loop codelet when finished.
• CopyC:When loop codelet finishes its P iterations, resultant
sub-matrix C computation is complete. Now, CopyC codelet
simply copies sub-matrix C back to main memory from tile
memory.

There is communication between the Skew phase and Compute
phase taking place inside this Codelet Graph. To further illustrate
this, please refer to Figure 3a, which shows these communications
as well as how matrices are divided and how codelets communicate
with the simple 3x3 tiles. For example:
• Each tile consists of blocks for sub-matrix A, B and C. Each
tile also contains blocks Aw and Bw which are used to write
sub-matrix from neighboring tiles in the skew and shifting
steps.
• The blue arrows show the data movement during the skew
phase while red arrows show the data movement during the
compute stage.
• To avoid congestion of communication arrows, we only show
skew phase communication for diagonal tiles highlighted
with darker gray. However, those communications are car-
ried out by all tiles.

There are four stages for Cannon’s algorithm implementation
under Codelet Model. For further clarification, we map these stages
from Codelet Graph to our sample 3x3 tiles example. The numerical
representation of stages (like ❶,❷,❸,❹) in Figure 3b correspond to
those in Figure 3a.
• Stage 1: CopyA and CopyB codelets copy sub-matrix A and B
frommain memory to tile memory of codelets. This is shown
with the bold arrows on (top and left periphery)
• Stage 2: Sub-matrix A and B are skewed. Skew codelet per-
forms this operation. Sub-matrix blocks for A and B along
with Aw and Bw are used with skew phase communication
shown using blue arrows.
• Stage 3: Sub-Matrix C is calculated using Compute codelet.
Sub-matrix A and B are circularly shifted causing computation
phase communication also shown using red arrows.
• Stage 4: Sub-matrix C is copied back to main memory from
tile memory of codelets. This is shown using bold arrows
(right side periphery).

5.3 Cannon’s Algorithm with Dataflow
Software Pipelining under Codelet Model

In this section, we will talk about a peculiar structure of Cannon’s
algorithm and the opportunities it provides to map it to the Codelet
Model to exploit pipelined parallelism across loops (Codelets). Fig-
ure 4b shows the CDG for the Cannon’s algorithm with dataflow
software pipelining (DF-SWP), while Figure 4a shows the sample
3x3 tiles example. These two figures are very synonymous with
their counterparts in the earlier section 5.2 and follow similar lo-
gistics. Instead of explaining those all again, here we focus on the
key differences between two approaches:

• FIFO Buffers: The main difference between Codelet Graph
of implementation without dataflow software pipelining (fig-
ure 3b) and that of with dataflow software pipelining (fig-
ure 4b) is the removal of loop codelet which acted as a
barrier between various iterations of compute codelet.
However, such a barrier is not needed anymore. Since we
use single owner FIFO buffers in between these various
iterations of codelets. Once the Compute codelet calculates
its result, it can simply Push it the FIFO buffer and continue
with its next iterations without waiting for the barrier.
Similarly, the next iteration of compute codelet does not
need to wait for the barrier as it can simply Pop its input
from the FIFO buffer and continue with its execution.
• To accomplish this, sub-matrix blocks for A and B are replaces
with FIFO buffers for respective matrices in figure 4a.
• The other difference is addition of explicit Barrier codelet
to act as synchronization point between skew and compute
phases. This is necessary as loop codelet was acting as this
synchronization barrier in the implementation of figure 3b.
Since we do not need loop codelet anymore, we need a
mechanism to make sure skew phase finishes completely and
matrices are in the correct order before compute codelets
can start execution in order to avoid data races.

6 EXPERIMENTAL RESULTS
In this section, we present the results of the runtime implementa-
tion of dataflow software pipelining extensions to codelet model.
To being, in section 6.1, we summarize the important results and
observations. The section 6.2 overviews the hardware as well as
software parameters for our experimental setup. The sections 6.3
and 6.4 go into the details of each observation made in the sec-
tion 6.1. Finally, we discuss the significance of these results and
draw conclusions in section 6.5.

6.1 A Summary of Results
Here are the major observations from our experimental results -
• Observation 1 (Refer Section 6.3): Relative Speedup of
1.4𝑥 is achieved with dataflow software pipeline enabled. In
general, the speedup increases with the increase in the core
count. Performance is negatively affected when codelets are
mapped to a different socket, and later when hyper-threading
comes into effect.
• Observation 2 (Refer Section 6.4): Better compute effi-
ciency is observed with dataflow software pipelining enabled.
As the size of matrix increases, a much better compute effi-
ciency is observed.
• Observation 3 (Refer Section 6.4): Synchronization over-
head decreases with dataflow software pipelining enabled.
The best speedup of 3.2𝑥 is observed for high thread counts
of 100.

6.2 Experimental Setup
6.2.1 Experimental Testbed. We performed our experiments on an
Intel-based shared memory machine. All cores feature 32𝐾𝐵 private
L1 instruction and data caches, and 1MB private unified L2 caches.
Each node has two sockets, with 28 cores per socket, featuring Intel
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Xeon Platinum 8180M (Skylake) processor clocked at 2.5GHz with
Hyper-Threading (HT). A 38.5𝑀𝐵 unified L3 cache is shared by
all the cores in the same socket. The total memory is 383𝐺𝐵 of
DRAM divided into two NUMA domains. The system runs Red Hat
Enterprise Linux 7.5 with Linux kernel 3.10. All experiments are
compiled with GCC 8.2 with optimizations set to -O3.

6.2.2 Experimental Design. Results shown in the following sections
were taken after performing 30 runs for each experiment. Unless
otherwise specified, each result is the average calculated from those
runs. Nomajor changes or additional optimizations other than those
discussed here were introduced in the source code of experiments
in order to perform a fair comparison.

In order to study the effects of enabling dataflow software pipelin-
ing extensions, we map threads on separate cores until all cores
were assigned at least one thread.We chose this in order tominimize
the effects of Hyper-Threading (HT) on our results. To achieve this,
we use KMP_AFFINITY parameter and set it to BALANCED with gran-
ularity as CORE. We fine-tune DARTS AMM by setting the scheduler
affinity policy as COMPACT_NO_SMT (SUs and CUs are pinned down
to physically contiguous cores without using Hyper-Threading un-
til all physical cores are used). In addition, we used Work Stealing
scheduling policy for TP scheduler as well as Micro-scheduler.

As explained earlier, our current implementation of Cannon’s
algorithm is restricted to only square matrices. Each element of ma-
trix is of type doublewith 8 bytes. The source code for experiments
is publicly accessible in a repository [9, 10].

6.2.3 Terminology. In section 6.3, we compared Matrix multiplica-
tion performance of various techniques. Here is brief information
about each of those techniques:

• Without DF-SWP: We map Cannon’s algorithm to codelet
model and implement it in dataflow-based runtimeDARTS [43].
This implementation uses a loop codelet as a barrier between
iterations of compute codelets as explained in the section 5.2.
We refer to this implementation as Without DF-SWP in our
experimental evaluation. This is our baseline implementa-
tion.
• With DF-SWP: We extend the above baseline implementa-
tion with dataflow software pipelining by using FIFO buffers
as explained in the section 5.3. We refer to this implementa-
tion With DF-SWP in our experimental evaluation.

6.3 Performance Evaluation
In this section, we discuss the experiments performed to quantify
the performance gains of dataflow software pipelining extensions.

6.3.1 Relative Speedup. The Speedup is defined as the ratio of the
serial runtime of the best sequential algorithm for solving a problem
to the time taken by the parallel algorithm to solve the same problem
on P processors. We calculate the Relative Speedup as the ratio of the
execution time of With DF-SWP implementation to that of Without
DF-SWP implementation.

𝑆𝑝𝑒𝑒𝑑𝑢𝑝𝑟𝑒𝑙𝑎𝑡𝑖𝑣𝑒 =
𝑇𝑖𝑚𝑒𝑊𝑖𝑡ℎ𝐷𝐹−𝑆𝑊𝑃

𝑇𝑖𝑚𝑒𝑊𝑖𝑡ℎ𝑜𝑢𝑡𝐷𝐹−𝑆𝑊𝑃

Figure 5 shows the relative speedup achieved with the use of
dataflow software pipelining extensions compared to the imple-
mentation that does not use dataflow software pipelining exten-
sions. We ran a Matrix-Matrix multiplication experiment with a
tile size of 64 per codelet/thread while using increasing the number
of threads/codelets. We achieved a maximum speedup of 1.4𝑥 for
a thread count of 64. In general, the speedup increases with the
increase in core count. We see a drop in speedup at thread count
26 as execution starts using the second socket at that point. We see
another drop in speedup after thread count 64 as hyper-threading
kicks in and multiple codelets get scheduled on the same physical
cores.

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1 4 9 16 25 36 49 64 81 100

Sp
ee

du
p

Number of Threads

Relative Speedup
With DF-SWP vs Without DF-SWP

Figure 5: Relative Speedup of With DF-SWP implementation

6.3.2 Compute Efficiency. efficiency is a performance metric re-
lated to speedup. Speedup is a metric to determine how much faster
parallel execution is, while efficiency indicates how well software
utilizes the computational resources of the system. To calculate
the efficiency of parallel execution, we take the observed speedup
and divide it by the number of threads used. This number is then
expressed as a percentage.

𝐶𝑜𝑚𝑝𝑢𝑡𝑒𝐸𝑓 𝑓 𝑖𝑐𝑖𝑒𝑛𝑐𝑦 =
𝑁𝑢𝑚𝑏𝑒𝑟𝑜 𝑓𝑇ℎ𝑟𝑒𝑎𝑑𝑠

𝑆𝑝𝑒𝑒𝑑𝑢𝑝

The figure 6 shows the compute efficiency of Without DF-SWP
& With DF-SWP implementations plotted for increasing size of ma-
trices with fixed 100 count of threads/ codelets. In general, the com-
pute efficiency of both methods improves as the size of matrix in-
crease. We can see that With DF-SWP implementation achieves bet-
ter compute efficiency compared against Without DF-SWP method.
As the size of the matrices increases, the results converge as the
elapsed time is dominated by computation, and the relative syn-
chronization cost is reduced.

6.4 Scalability Analysis
In this section, we talk about the experiments that we perform to
quantify scalability achieved by enabling dataflow software pipelin-
ing extensions.
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6.4.1 Weak Scaling. In Weak Scaling, the problem size assigned to
each processing element stays constant and additional elements are
used to solve a larger total problem. Figure 7 shows the weak scaling
analysis of Without DF-SWP and With DF-SWP implementations.
The tile size here is 32 for each matrix. We chose this size as both
input matrices and output matrix fit into L1 cache for this size and
tiles can use FIFO buffer using cache. In general, the weak scaling
curve shows better results for With DF-SWP method.

6.4.2 Strong Scaling. In Strong Scaling, the problem size stays fixed
but the number of processing elements is increased. Figure 8 shows
the strong scaling analysis of Without DF-SWP& With DF-SWP. The
size of matrices is 4000 for this study. We chose this size since it’s
the smallest matrix size that doesn’t fit in the L3 cache. In general,
a strong scaling curve shows better results with With DF-SWP
implementation.
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6.4.3 Synchronization Overhead. Figure 9 shows the synchroniza-
tion overhead analysis of Without DF-SWP and With DF-SWP im-
plementations. We compute synchronization overhead by omitting
time consumed by compute codelets from the total execution time.
The synchronization overhead tells us about the time consumed by
memory operations and synchronization between codelets. These
times typically grow as the number of compute units increase. We
achieve up to a 3.2𝑥 time decrease in synchronization overhead
when using FIFO Buffers. This also gives us insights into the
weak and strong scaling results discussed earlier.
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Figure 9: Synchronization Overhead analysis of Barrier and
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6.5 Discussion
Overall, enablingDataflow Software Pipelining extension for Codelet
Model achieve better results in terms of total throughput, latency,
compute efficiency, and scalability. The speedup of 1.4𝑥 may look
insignificant at first glance. However, it is achieved with the FIFO
buffers implemented via software under DARTS runtime on x86
architecture. This significantly impacts the true potential of this
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approach. Despite these limitations, our With DF-SWP implemen-
tation using FIFO buffers achieve better scalability which results
in the overall reduction in the synchronization overhead between
codelets.

The proposed work assumes the responsibility of identifying
suitable codelets for pipelining on the shoulders of the system that
creates Codelets (e.g. programmer or compiler). Once such a pair is
identified, a system can rely on the main contribution of this paper
to see performance benefits. However, the task of identifying the
optimal pair of codelets is out of the scope of this work. As a future
direction, we are exploring how the granularity of the Codelet and
the unit of synchronization in the FIFO queue can be balanced to
achieve higher performance. This topic is still an open question.

The proposed approach only works if the loops can be divided up
into a pair of codelets with a clear producer/consumer relationship
that allow us to for the directed acyclic Codelet graphs as explained
in Section 3.2. If there are multiple loops in the Codelets that is fine.
More complex iteration spaces would require an extension of the
supported affine functions described in section 3.2. As demonstrated
by state-of-the-art polyhedral optimizations, the proposed approach
is beneficial for inference-related machine learning (ML) workloads
where data is streamed from layer to layer (Layers represented as
Codelets/ Threaded Procedure and pipelined using proposed FIFO
buffers).

It should be noted that the intention behind this work is to
establish the feasibility and the advantages of Dataflow Software
Pipelining techniques using readily available runtime DARTS for
the codelet model. This is the beginning of seminal work of its type
and its implementation in open source DARTS platform provides
opportunities for others to further explore these techniques. The
results that we observe here through the extensions to PXM are
only one side of the coin. To exploit the full potential of this work,
we need to explore extensions to CAM. This will require efficient
implementation of FIFO buffers in the xCAM to take advantage of
specific hardware features. We shed more light on this ongoing
work in section 8.

7 RELATEDWORK
Here we provide a brief overview of other works that we find related
and inspiration behind the work discussed in this paper. The works
referenced here along with the references mentioned in those works
will give you a good idea of the overall landscape of related works.

Synchronous Dataflow (SDF) [32] is one of the most popular
dataflow models of computation where each arc is a FIFO queue
(buffer) which is used to pass data from one node to another in
the dataflow graph. The efficient buffer management technique
called shift buffering [19] has been proposed for automatic code
synthesis for synchronous dataflow graphs [32]. Reconfigurable
Dataflow [20] extends SDF with transformation rules that specify
how the topology and actors of the graph may be reconfigured.
There is also work on minimizing buffer sizes of dynamic dataflow
implementations [40] without introducing deadlocks or reducing
the performance. Implementation, validation, and comparison of
several buffer size optimization techniques for the generic class
of dynamic dataflow model of computation called the Dataflow

Process Network is studied. This work presents a heuristic capa-
ble of finding a close-to-minimum buffer size configuration for
deadlock-free executions. A unified algorithmic framework [37]
is proposed for concurrent scheduling and register allocation to
support time-optimal software pipelining. Register allocation is
treated as a constraint to the software pipelining scheduling pro-
cess — to derive, among all time-optimal schedules, the ones which
have the potential to use the minimum number of registers. There
is also work to exploit high parallelism for loop processing where
Pipelining Loop Optimization method (PLO) [44] is proposed. This
makes iterations in loops flow in the processing element (PE) array
of the dataflow accelerator.

The Open Computing Language (OpenCL) [25, 34] provides an at-
tractive programming interface to express parallel execution while
abstracting away many of the implementation details. OpenCL Pipes
are part of the OpenCL Specification since version 2.0 [2]. They can
be used as a channel of communication between two running ker-
nels. The API is similar to FIFO queue ("read_pipe", "write_pipe")
and may, in theory, be used to stream data from one kernel to an-
other. SYCL [4] is a single source, C++-based offload accelerator pro-
gramming framework from the Khronos group. Dataflow Pipes [33]
describes the FIFO pipe extension to SYCL, proposed by Intel in
their DPC++ compiler, that exposes a pipe abstraction close to the
OpenCL design. Only FPGA implementations exist as of yet.

The multi-core evolution has presented a new dimension of chal-
lenges— namely, how to orchestrate the best software pipelining
schedule in the face of resource-constrained architecture. A uni-
fied Integer Linear Programming (ILP) formulation [46] has been
proposed that combines the requirement of both rate-optimal soft-
ware pipelining and the minimization of inter-core communication
overhead. COStream [47] is a programming language based on a
Synchronous Data Flow execution model for data-driven applica-
tions. Stream Dataflow [38] is a general architecture (a hardware-
software interface) that can more efficiently express programs with
high computational intensity using - simple control patterns and
dependencies, and simple streaming memory access and reuse pat-
terns. This work explores the hardware and software implications
along with its detailed micro-architecture and performs an evalu-
ation. The approach of mapping streaming applications onto het-
erogeneous architectures using a Process Network (PN) model of
computation [15] for exploiting coarse-grain pipeline parallelism
exposed by a dataflow graph is also explored. The mapping onto
CPU-GPU architecture is explored using 4-slot FIFO stream buffers
implementations on shared memory systems where the cost of data
movement outweighs the computation time.

The problem of computing a software pipeline schedule of dataflow
programs with dynamic constructs [35] (like conditional paths in a
dataflow program) for self-timed execution on multi-core platforms
has been explored. A software pipeline scheduling technique is pro-
posed that reduces the variation in execution time across software
pipeline iterations. Hybrid Von Neumann/Dataflow approach [39]
is explored which can take advantage of both out-of-order and
explicit-dataflow availability in one processor. significant perfor-
mance and energy improvements are observed when cores can
benefit from dynamic switching during certain phases of an appli-
cation’s lifetime.
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8 FUTUREWORK
As briefly discussed previously in the section 6.5, the next step to
further exploit the potential of Dataflow Software Pipelining tech-
niques is to explore hardware-software co-design techniques. Specifi-
cally, the efficient implementation of Single Owner FIFO Buffer
is crucial. To achieve this we are looking at hardware architectures
that support features like programmer addressable fast scratchpad
memory which can be used to implement FIFO Buffers while tak-
ing advantage of locality.

We also wish to extend cannon’s algorithm case study with more
benchmarks from scientific as well as machine learning applica-
tion domains. The extensions to codelet model to take advantage
of dataflow software pipelining enable efficient streaming of data
through the codelet graph and hence we would like to study stream-
ing applications.

9 CONCLUSION
In this paper, we extend software pipeline techniques to the coarse-
grain to exploit pipelined parallelism across loops by leveraging
dataflow software pipelining principles, eliminating the limits of
fine-grain parallelism. We extend the dataflow-based codelet model
to efficiently support dataflow software pipelining. We perform a
detailed case study of Cannon’s algorithm demonstrating a relative
speedup of 1.4 times when dataflow software pipelining extensions
are enabled. We also show that overall synchronization overhead
is reduced by 3.2 times.

This improved performance is only part of the story which is
achieved from extensions to Codelet PXM and leaves room for fur-
ther performance exploitation by extending CAM to support these
extensions. Dataflow Software Pipelining achieved through the de-
sign principals of Software-Hardware Co-Design should truly unlock
the scalability and performance demands of the next generation of
exa-scale systems.
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