
A Methodology and Framework to Determine the Isolation
Capabilities of Virtualisation Technologies

Simon Volpert

Ulm University

Ulm, Germany

simon.volpert@uni-ulm.de

Benjamin Erb

Ulm University

Ulm, Germany

benjamin.erb@uni-ulm.de

Georg Eisenhart

Ulm University

Ulm, Germany

georg.eisenhart@uni-ulm.de

Daniel Seybold

Ulm University

Ulm, Germany

daniel.seybold@uni-ulm.de

Stefan Wesner

University of Cologne

Cologne, Germany

wesner@uni-koeln.de

Jörg Domaschka

Ulm University

Ulm, Germany

joerg.domaschka@uni-ulm.de

ABSTRACT
The capability to isolate system resources is an essential charac-

teristic of virtualisation technologies and is therefore important

for research and industry alike. It allows the co-location of exper-

iments and workloads, the partitioning of system resources and

enables multi-tenant business models such as cloud computing.

Poor isolation among tenants bears the risk of noisy-neighbour

and contention effects which negatively impacts all of those use-

cases. These effects describe the negative impact of one tenant onto

another by utilising shared resources.

Both industry and research provide many different concepts and

technologies to realise isolation. Yet, the isolation capabilities of all

these different approaches are not well understood; nor is there an

established way to measure the quality of their isolation capabilities.

Such an understanding, however, is of uttermost importance in

practice to elaborately decide on a suited implementation. Hence, in

this work, we present a novel methodology to measure the isolation

capabilities of virtualisation technologies for system resources, that

fulfils all requirements to benchmarking including reliability. It

relies on an immutable approach, based on Experiment-as-Code.

The complete process holistically includes everything from bare

metal resource provisioning to the actual experiment enactment.

The results determined by this methodology help in the decision

for a virtualisation technology regarding its capability to isolate

given resources. Such results are presented here as a closing exam-

ple in order to validate the proposed methodology.
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1 INTRODUCTION
Virtualisation has been driving the vision of software-defined in-

frastructure for almost two decades and is a major enabler for

cloud computing. Since its early days with Virtual Machines, the

landscape of tools, methodologies, approaches, and concepts has

continuously increased. Currently, users and software architects

are faced with a vast landscape of virtualisation concepts and tech-

nologies. Furthermore, the speed at which new approaches are

researched, new toolkits come up, and new software versions are

being released has not slowed down. Accordingly, it is increasingly

hard to keep track of all changes in the domain and even harder to

see different market claims.

There is work helping to understand the impact of virtualisation

technologies and their differences. This ranges from performance

impact and start-up time [26] over security considerations [3] to-

wards isolation capabilities [44]. Yet, there is no holistic approach

for their comparison and classification and in consequence no base-

line for any decision in favour or against a virtualisation technique.

Besides its impact on performance, a crucial differentiator for any

type of virtualisation technology is its capability to ensure isolation

of concurrent workloads and to withstand competing and possibly

interfering workloads. This is due to the fact that virtualisation is

the core technology for e.g. server consolidation [18] in order to

reduce total cost of infrastructure ownership [22]. In addition, it

is also the baseline of many cloud computing services where the

multi-tenant aspect causes a high incentive for proper isolation

mechanisms [25].

While much work exists to determine the performance impact

of a virtualisation technology, only little practical work has been

done on the quantification of isolation capabilities. Literature pro-

vides insight how to compute the isolation of environments, but

there is no established, widely adaptable methodology on how to

actually measure it. More precisely, for being able to quantify the
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isolation capabilities of a wide range of different virtualisation tech-

nologies, the following research questions need to be answered:

(i) which workloads and benchmarks are suited for driving the

such an evaluation and which hardware resources should be consid-

ered? (ii) which measurement technologies are available to support

measuring isolation for a wide range of virtualisation technolo-

gies? (iii) which evaluation methodology reduces disturbances and

increases repeatability.

This paper proposes a generally applicable benchmark-based

evaluation methodology supporting the evaluation of both perfor-

mance degradation and isolation capabilities of a wide range of

virtualisation technologies. More precisely, we present the follow-

ing contributions:

(1) The evaluation methodology for the multidimensional eval-

uation of isolation capabilities and performance degradation.

Much care has been taken to address typical, different types

of hardware resources, but also to keep the methodology

open with respect to workload generation and other types

of tooling.

(2) A proof-of-concept implementation of the methodology as a

benchmark-based evaluation framework with a strict focus

on aspects such as reproducibility, automation, and fine-

grained profiling.

(3) A validation of the proof-of-concept implementation of the

methodology measuring the isolation capabilities of podman
representing a container-based virtualisation technology

with respect to CPU, storage, memory, and networking.

The remainder of this paper is structured as follows: At first,

background information is presented in section 2 highlighting some

essential concepts referred to across this paper. This is followed by

related work in section 3. It further includes a brief reflection of their

respective findings put into contrast of our work. Subsequently,

an assumed system model is discussed in section 4 including a

presentation of essential requirements the isolation measurement

methodology imposes. This methodology is instantiated in section 5

by the implementation of a framework. This framework satisfies all

previously defined requirements and describes experiment work-

flows in detail. Finally, the measurement methodology is validated

in section 6. This is concluded with a discussion in section 7 and a

summary with outlook in section 8.

2 BACKGROUND
This section explains some fundamental and to this paper essen-

tial considerations. It briefly discusses virtualisation and presents

an approach for their classification. Subsequently benchmarking,

profiling, and their relation in the context of this work are discussed.

Isolation capabilities of various different virtualisation technolo-

gies have been researched in the past using different methods and

different terminology [20]. Therefore, this section concludes with

the discussion of the term “isolation” itself. Using this and related

terms, models for isolation quantification are further discussed.

2.1 Virtualisation Landscape
The possible manifestations of virtualisation technologies are man-

ifold. This section briefly presents the fundamental categories of

those including their respective enabling concepts. Namely, these

are the three virtualisation classes hypervisor, container and sand-

box. A fourth one named hybrid is an encompassing term to denote

those, that share characteristics of all classes. This classification is

represented in fig. 1.

h
y
b
r
i
d

Virtualisation

hypervisor

based

container

based

sandbox

based

Figure 1: Virtualisation Classification Overview

Hypervisor-Based. Goldberg [12], initially subdivided Hypervi-

sor-based virtualisation into two categories; Type-1 and Type-2.

The main distinction among them is whether it runs directly on

the hardware, or on top of another Operating System (OS). While

these two distinctions categorise hypervisors, further significant

properties are important. Hwang et al. [15] describes essential ones

highlighting three approaches on how the actual virtualisation layer

can be provided. These namely are (i) Full Virtualisation, (ii) Par-
avirtualisation and (iii) Hardware Assisted (HWA) Virtualisation.

Simply put, they describe the degree a virtualisation technology

makes use of special hardware functionality and the amount of

system calls intercepted by the Virtual Machine Monitor (VMM).

Container-Based. Container-based virtualisation or sometimes

called “OS-Virtualisation” is a widely applied approach on Linux

systems. They leverage the kernel functionalities (i) namespaces,

(ii) cgroups and (iii) capabilities. (i) Namespaces
1
isolate system

specific resources. It does so by wrapping them into an abstraction,

in order to present them to a process [5]. This enables processes to

yield completely different views of a system compared to the host

system. (ii) cgroups are a Linux feature that allows fine-grained

control over different system resources [14]. More specifically, it

enables to limit access to them. Lastly, (iii) capabilities2 allow or

prohibit the execution of specific operations. They can be granted

to a user or group.

Sandbox-Based. Sandboxes can be created by utilising system call

filtering provided by the Kernel [43]. Intercepting and thus filtering

those system calls can be achieved by different levers. Among those

are (i) ptrace and (ii) Seccomp-BPF.

2.2 Benchmarking
The purpose of benchmarking is the testing of performance in a

controlled manner.

Definition 2.1 (Benchmarking). A benchmark is a tool coupled

with a methodology for evaluating and comparing systems, or

components thereof, with respect to specific characteristics, such

as performance, energy efficiency, reliability, or security [20].

1
https://man7.org/linux/man-pages/man7/namespaces.7.html

2
https://man7.org/linux/man-pages/man7/capabilities.7.html
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To achieve their goals, benchmarks apply a range of different

workload ranging from artificial to real-world [13, 20] mostly classi-

fied as (i) micro-benchmark, (ii) simulation benchmark, (iii) replay
benchmark, and (iv) production benchmark. Our work relies on the

application of micro-benchmarks. These small, isolated, artificial

benchmarks stress a single resource such as CPU, cache, system

calls etc. [30]. Usually, they are simple to configure, repeatable and

quick to run.

Figure 2 highlights a superficial view on how a benchmarking

process looks like. The steps are (a) configuration, (b) load genera-

tion in parallel with (c) profiling and (d) resulting metric(s) export.

(a)
configura-

tion

(b)
load genera-

tion

(c)
profiling

(d)
data export

Figure 2: Superficial benchmarking workflow

Broadly speaking, the (b) load generation phase can be imple-

mented as two different approaches. Both will be briefly discussed

in the following.

Fixed-Work. These benchmarks keep the amount of work𝑊𝑓 a

benchmark needs to perform fixed, while the time 𝑡𝑣 it takes to do

so is variable. The resulting speed 𝑆𝑊 is the ratio between both of

them, as illustrated in eq. (1).

𝑆𝑊 =
𝑊𝑓

𝑡𝑣
(1)

Fixed-Time. benchmarks keep the duration of observation time

𝑡 fixed, whereas the amount of work𝑊 being done becomes vari-

able. The resulting speed 𝑆𝑇 is the ratio between both of them as

illustrated in eq. (2). Here it is assumed that more execution of a

workload in a fixed amount of time adds value to the result.

𝑆𝑇 =
𝑊𝑣

𝑡𝑓
(2)

2.3 Profiling
Profiling of systems is the act of analysing specific aspects of a

workload. These include CPU cycles, memory consumption, system

call frequency or disk write latency. It does so by instrumentation.

This instrumentation can happen within an application’s source

code or its binary. Moreover, this is not limited to applications but is

also possible on the OS level. Instrumentation itself is unspecific and

can range from simple emitted counters to complex event tracing.

Together with benchmarking, profiling is an essential aspect of

this work as already hinted in fig. 2. The possibilities regarding

the sampling precision, measurement overhead and exactness are

important upon crafting a method and selecting a tool or instru-

mentation decision.

In contrast to benchmarking, profiling does not create aworkload

or performs an experiment. It solely relies on available instrumen-

tation to observe. Profiling enables the creation and determination

of workload characteristics, that are already in place.

Here, a distinction between workload and OS profiling is made.

The first one implies fine-grained profiling of workload or appli-

cation processes, whereas the latter means a more abstract view

on the whole system. As mentioned, in order to profile applica-

tion specific aspects, source code instrumentation is necessary.

However, the Linux Kernel offers a lot of performance instrumen-

tation available to the user. These can be retrieved system-wide as

well as per process and is thus able to precisely target a workload.

The profiling subsystem of Linux is called “perf_events”. It is also

known as Performance Counters for Linux (PCL), Linux Perfor-

mance Events (LPE) or Performance Monitoring Counter (PMC).

It supports a multitude of events to be worked with, including (i)
counter, (ii) tracepoints, (iii) kprobes, (iv) uprobes and (v) USDT
[13].

2.4 Isolation Terminology
In order to define isolation in general, it is helpful to investigate

on the term itself and related ones. As previously mentioned, a

motivating reason for isolation, is the realisation of a fair environ-

ment among tenants. This is independent of the scope of cloud

computing and holds true for any multi-tenant application. In his

dissertation, Rouven Krebs [33] defines fairness by stating three

aspects:

Definition 2.2 (Fairness).
(1) Tenants working within their assigned quota should not

suffer performance degradation from tenants increasing their

workload.

(2) Tenants exceeding their quotas more should suffer higher

performance degradation than tenants exceeding their quota

less.

(3) Tenants exceeding their quota should not suffer performance

degradation, if tenants that comply with their quota are

unaffected.

Hereby, quota is defined as the amount of resources a tenant is

assigned and therefore allowed to consume. A tenant is “abiding”

if operating within these quotas, whereas it is “disruptive”, if it

operates outside it.

Following up on this definition is the definition of isolation.

Isolation occurs when two distinct workloads on shared resources

do not influence each other in a perceptive way [21, 44, 28]. A

workload exceeding its assigned resources or quota, will not degrade

another workload if sufficiently isolated. In contrast, a non-isolated

system bears the risk that distinct workloads interfere. Again, Krebs

et al. [21] defines performance isolation as follows:

Definition 2.3 (Isolation). Performance isolation is the ability of a

system to ensure that tenants working within their assigned quotas

(i.e., abiding tenants) will not suffer performance degradation due

to other tenants exceeding their quotas (i.e., disruptive tenants).

Such a disruptive tenant is also called “noisy neighbour”. It de-

scribes a workload, that exceeds its assigned resources or quota so

much, that its peers are no longer able to fully utilise their own
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guaranteed resources. It is assumed, that each workload is given

a fixed amount of resources, governed by an owner. Within the

scope of cloud computing they are typically written in a mutually

agreed on and signed Service Level Agreement (SLA) and imposed

by virtualisation technologies. According to Longbottom [25], the

noisy neighbour is defined as follows:

Definition 2.4 (Noisy Neighbour). A workload within a shared

environment is utilising one or more resources in a way, that it

impacts other workloads operating around it.

2.5 Isolation Quantification Models
A simple approach to quantify isolation, is the calculation of the

“performance loss rate”[39, 20, 44]. It foremost requires to mea-

sure a baseline performance of a workload 𝑝𝑎 in an uncontended

environment. Subsequently, the same workload in addition to an

interfering workload is started, resulting in the workload perfor-

mance 𝑝𝑏 . Hereby, two workloads compete against resources. The

isolation performance loss rate 𝐼𝑝𝑙𝑟 as rate between the difference of

both performance measurements, can then be determined as shown

in eq. (3). Additionally, the 𝐼𝑢𝑙𝑟 in eq. (4) refers to the utilisation

loss rate relative to the maximum possible utilisation a resource

can achieve.

𝐼𝑝𝑙𝑟 =
|𝑝𝑎 − 𝑝𝑏 |
𝑝𝑎

(3)

𝐼𝑢𝑙𝑟 =
|𝑝𝑎 − 𝑝𝑏 |
𝑝𝑚𝑎𝑥

(4)

As Rouven Krebs [33] points out, further models, approaches

and metrics are considerable. However, analysing and comparing

them is beyond this work and is considered as a further research

challenge.

3 RELATEDWORK
Literature in the domain of analysing the capabilities of virtualised

workloads is very broad and has been published since the idea of

virtualisation. However, the consideration of isolation among them

is less pursued. It can be divided into several categories. The (i) anal-
ysis of isolation capabilities, the (ii) detection of noisy neighbour

workloads and their (iii) workflow automation for measurements.

3.1 Isolation capabilities
Historically, benchmarking tools were not aware of virtualisation.

Isolation capabilities of hypervisors left a lot to be desired. Koh et al.

[19] highlight that and even claim, that low isolation is on purpose

to a certain degree for debugging and development concerns. For

that reason, Yuan et al. [46] developed a purpose built micro bench-

mark suite called VITS. This suite consists of six micro benchmark

components, each benchmarking their own domain, namely: CPU,

cache, memory bandwidth, memory utilisation, disk and network.

While their results are primarily focused on the Xen hypervisor,

they found that most isolation capabilities need improvement since

resources sharing is still unfair.

Compared to our approach, they measure performance loss with

a fixed-work based approach as briefly described in section 2.2.

They, therefore, measure the amount of time a workload needs in

an uncontended scenario and compare it with a contended scenario.

Measurement takes place fromwithin a virtual machine, to measure

the impact in time. In contrast, our paper aims to express distinct

resource utilisation degradation and thus pursues the black box

measurement approach with a fixed-time workload.

Rahma et al. [32] follow a similar approach regarding the applica-

tion of micro benchmarks. Among other characteristics they bench-

mark the isolation capabilities of CPU, disk and network within

a Kernel Virtual Machine (KVM) Hypervisor backed OpenStack.

While they do not give deep insight into the degree of isolation,

they find disk isolation insufficient.

With the rise of more lightweight virtualisation approaches like

container technologies, publications comparing them with tradi-

tional approaches had emerged. Tang et al. [39] compared recent

container technologies isolation capabilities with KVM. Their pro-

posed testing framework EIS gives a method of benchmarking

these properties similar to [46]. Here, they applied a fixed-time

workload, but performed the measurements from within the virtu-

alisation technology. Compared to our paper’s approach this limits

the amount of visible resources since they are isolated. They find

that CPU isolation works perfect, while other aspects suffer heavily

from performance degradation, concluding that KVM is superior

while still not optimal.

In order to compare isolation characteristics of virtualisation

technologies, a quantifyingmodel is necessary. A significant amount

of publications apply only slightly differing variations of the per-

formance loss ratio model, as proposed within this paper [39, 44].

Apart from that, some authors propose more complex models, that

are also discussed here [20, 33]. In line with prevailing literature,

we follow the performance loss ratio model.

3.2 Noisy neighbour detection
Regarding the detection of misbehaving workloads, different ap-

proaches utilising monitoring have been published. This is either

supported by Machine Learning approaches [7] or by analysing raw

metric thresholds. Regarding the latter approach most publications

focus on a single metric [31, 9, 45]. The most prominent metric is

the steal value [24] that allows detection of CPU over-provisioning.

The actual detection of noisy neighbour behaviour is only slightly

related to this paper.

Means tomitigate the effects caused by said resource competition

is manifold. A simple approach is a very static resource allocation

that is not changed later on. This tries to minimise possible con-

tentions and overbooking in general [47]. To achieve that, some

approaches make use of forecasting techniques [6]. Furthermore,

some suggest algorithms that dynamically migrate VMs across the

cloud infrastructure based on performance metrics [16, 40] or spe-

cial metric like the mentioned CPU steal [24]. Masdari et al. [27]

give a thorough overview of further and more in depth strategies

within this area.

3.3 Workflow automation
Workflow automation becomes relevant, as soon as there are so

manymeasurements performed, that they are hardlymanageable by

a single human. Automation reduces the risk of error and improves

reproducibility as stated throughout this paper.
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This fact is also considered by other works, including [34]. Here

they propose a complex model of an experiment as code within the

cloud. This contains everything from initial Virtual Machine (VM)

provisioning over measurement enactment towards data gathering.

Similarly, Seybold [35] presented a complex workflow in his disser-

tation about database assessment on multiple levels. Compared to

those works, the approach applied in this paper does not evaluate

on cloud infrastructure, but rather on bare-metal systems. The base

paradigms however, are adapted to make the handling of physical

servers similar to the handling of VMs.

If isolation measurements are pursued for more resources and

more technologies, a final conclusion regarding their respective

isolation capabilities can be drawn. Those could be put on an n-

dimensional matrix, with each dimension representing a resource.

Moreover, virtualisation technology vendors could use this method-

ology in order to distinguish themselves from competing vendors.

Seybold pursued that for database applications. Based on his in-

sights he published a ranked list for database applications and

offerings [4].

4 SYSTEM MODEL AND REQUIREMENTS
This section sets the frame for further discussions and design de-

cisions. In particular, section 4.1 defines a coarse-grained system

model based literature in order clarify which hardware resources

need to be considered for measuring isolation capabilities. More-

over, section 4.2 introduces five high-level requirements aiming

at a flexible and open evaluation framework supporting scientific

standards.

4.1 System Model
Modern computing systems feature a multitude of different re-

sources. In order to select representative coarse-grained ones, the

creation of a system model is necessary.

A large body of research work exists that assess performance

and other characteristics of virtualisation technologies for one or

multiple hardware resources such as CPU and disk. In the following,

we use this body of work to identify which typical resources are

investigated by other authors.

Wang et al. [44] review performance and isolation characteristics

of modern Container Runtime Interface (CRI) compatible container

runtimes. Hereby they focus on the system resources CPU, mem-

ory, disk and network regarding performance. Moreover, CPU is

considered for its isolation capabilities. Similarly, Soltesz et al. [37]

analyse hypervisors and propose container-based virtualisation

as an alternative. They therefore discuss CPU, memory, disk and

network performance and briefly discuss CPU isolation. Other than

that, Carver [8] investigate the consolidation capabilities of con-

tainers and virtual machines. They focus on CPU, memory and

disk. Sharma et al. [36] perform a comparative study regarding

virtualisation technology overhead, also focusing on CPU, memory,

disk and network.

Outside strictly academic peer reviewed publications Gregg [13]

extensively discusses distinct system resources and how to assess

them regarding their performance. They focus on CPU, memory,

disk, network and file systems.

While there are many more publications that address this topic,

this brief review shows a discernible direction: resources considered

include at least CPU, memory, disk, and network. Accordingly, these

should be supported by our work.

4.2 Requirements
In order to meet scientific standards, setting requirements towards

the implementedmethod need to bemade. The followingwill briefly

gather and describe them.

Isolation Measurement. This central requirement describes the

fact that the experiments need to be structured in a way, that allows

for the acquisition of isolation capabilities. Assuming the perfor-

mance loss ratio model in eq. (3), several measurements need to be

taken individually. This includes the measurement of a base per-

formance, as well as capturing performance under certain resource

contention scenarios.

Load Generation. In order to generate meaningful data through

measurements, specific load has to be generated. The configura-

tion needs to be fine-grained to specifically target the resources to

be analysed. This does not necessarily mean that a single tool is

used for every resource to be analysed, the chosen tool however

does need to satisfy this requirement. Moreover, it needs to be

independent of the virtualisation technology used.

Data Acquisition. Next to the generation of load, there need to

be means in place to gather data. Data in this case are the perfor-

mance characteristics, or more specifically the utilization degree

of resources. The acquisition needs to be independent of both,

the applied virtualisation technology and the load generation tool.

Moreover, the resource demand of the actual measurements must

not have significant impact onto the resources under test in order

to avoid measurement distortion.

Reproducibility. An experiment that cannot be reproduced with

the same or similar results, bears only low value. Experiments need

to be reproducible on a given system. Moreover, it should also be

reproducible on reasonable similar systems. This is tightly coupled

with concepts of resource provisioning.

Automatability. The amount of scenarios to run in order to com-

pare isolation capabilities of two or more technologies can quickly

become hard to manage. Therefore, the applied method needs to be

automatable. Ideally, every part of the lifecycle of a measurement

should be automized starting from resource provisioning over load

generation towards data acquisition.

5 EVALUATION FRAMEWORK
This section introduces the design and implementation aspects

of our evaluation framework. It takes the considerations and re-

quirements of section 4 and elaborates the selection as well as the

implementation of appropriate methods, processes, and technolo-

gies.

The structure of the section follows the requirements. Hence, in

the following, section 5.1 initially present how the requirement of

isolation measurement has been addressed. It is the core functional

requirement and addressing it defines the overall measurement pro-

cess. Subsequently, section 5.2 and section 5.3 address the remaining
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functional requirements of load generation and data acquisition

which constitute further elementary building blocks for meaningful

experiments.

section 5.4 then discusses the realisation of reproducibility by

establishing immutability and Infrastructure-as-Code as well as Ex-

periment-as-Code principles. The concluding section 5.5 addresses

automation, which is the enabler for being able to run a large num-

ber of experiments for statistical significance.

5.1 Isolation Measurement
The whole process of a single measurement begins with the (i)
spawning of a virtualisation technology process. Within this (ii)
stress is induced by the respective load generation tools. Shortly

after, the (iii) profiling process on the host system is started in

parallel. This profiling supervises and profiles the virtualisation

technology process. Upon success, data is (iv) acquired and (v)
stored on external storage. Figure 3 visually represents this flow.

Host

Virtualisation technology

Stress

Profile

External Storage

(𝑖𝑖𝑖) Profiling

(𝑖)
S
p
a
w
n

(𝑖𝑖) Ex
ec
ut
e

(𝑖𝑣) Acquire

(𝑣) Store

Figure 3: Flow of an abstract measurement

In order to determine the isolation characteristics for a specific

resource of a certain virtualisation technology, measurements for

the abiding and disruptive tenant need to be made. Consequently,

the measurements need to be performed in parallel. Further, the

terminology regarding experiments and scenarios will be defined

as follows:

Definition 5.1 (Scenario and experiment). A single measurement

run involving one or more tenants is called a scenario. All combined

scenarios together form an experiment.

Scenarios exist by the combination of behaviour of tenants.

Within this paper, four distinct behaviours are considered. The

first one is the (i) undercommitted state. This state means that the

workload itself is below 100% utilisation and thus does not reach

saturation. The (ii) saturated state however describes exactly that.

The resource fully utilises its granted resource and saturation might

happen. The workload does however try to not exceed saturation.

Whereas the (iii) overcommitted scenarios tries to do so. It tries

to utilise more resources than there are actually available. Lastly

id shortname tenant 𝑎 tenant 𝑏

1 𝑎𝑢 undercommited

2 𝑎𝑠 saturated

3 𝑎𝑜 overcommitted

4 𝑎𝑓 unrestricted

5 𝑎𝑢𝑏𝑢 undercommitted undercommitted

6 𝑎𝑢𝑏𝑠 undercommitted saturated

7 𝑎𝑢𝑏𝑜 undercommitted overcommitted

8 𝑎𝑢𝑏 𝑓 undercommitted unrestricted

9 𝑎𝑠𝑏𝑢 saturated undercommitted

10 𝑎𝑠𝑏𝑠 saturated saturated

11 𝑎𝑠𝑏𝑜 saturated overcommitted

12 𝑎𝑠𝑏 𝑓 saturated unrestricted

13 𝑎𝑜𝑏𝑢 overcommitted undercommitted

14 𝑎𝑜𝑏𝑠 overcommitted saturated

15 𝑎𝑜𝑏𝑜 overcommitted overcommitted

16 𝑎𝑜𝑏 𝑓 overcommitted unrestricted

Table 1: Experiment scenarios

there is the (vi) unrestricted state where there are no set boundaries
for a workload, and it simply tries to utilise as many resources

howsoever possible.

To systematically create all scenarios, a combination of all four

states of the two tenants is performed. The workload of tenant

𝑎 is fixed, while the workload of tenant 𝑏 is changed. Tenant 𝑎

cycles through the states (i) undercommitted, (ii) saturated and (iii)
overcommitted, whereas tenant 𝑏 iterates over (i), undercommitted,

(ii) saturated, (iii) overcommitted and (vi) unrestricted. Additionally,
before any combination of tenants and their workloads happen,

a baseline test is performed to measure the resource without any

contention happening. This is mandatory, to prove the utilisation

capabilities of a single resource. Table 1 shows all run scenarios of

an experiment in a table.

5.2 Load Generation
This section discusses load generation for several distinct resources

as presented in section 4.1. The tools themselves are selected ac-

cording to the requirements set in section 4.2.

CPU. Stressing the CPU is done via a tool called stress-ng3.
This micro benchmark allows generating load for a multitude of

different system resources. Most importantly it can generate specific

arbitrary load for Central Processing Units (CPUs). In its minimal

form, it simply stresses n cores with a set of different methods

over a fixed period of time. Experiments have shown that this

minimal operation mode is sufficient for the load tests necessary to

determine the isolation capabilities.

Memory. Analogous to the CPU load generation, memory load

is generated similarly. Again, the stress-ngmicro benchmark tool

is applied. However, the configuration in this case, is a little more

elaborated. stress-ng offers the possibility to directly target the

3
https://github.com/ColinIanKing/stress-ng
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virtual memory with n workers. Those workers continuously call

the system calls mmap and munmap to allocate and deallocate memory

within the allocated virtual memory. Since the idea of this stress

test is to allocate as much memory as possible the munmap part is
disabled by the –vm-keep flag.

Disk. Within the research and operations community, the mi-

cro benchmark Flexible I/O (FIO)
4
is rather popular. FIO allows a

multitude of options to test anything file system or storage block

device related. Especially the latter is of interest here. As FIO allows

setting a read/write ratio, separate stress tests for each one can be

performed, as well as arbitrary combinations of both. In order to

circumvent any possible implemented caches or unwanted optimi-

sations by using system memory, FIO can directly write to a disk

without any redirection. In contrast to memory load generation,

a single run is not supposed to fill the storage capacity of a disk,

but rather utilise it to a certain degree with a set amount of Input

Output Operations Per Second (IOPS). Therefore, files or even a file

system existing on the target disk is of no interest.

Network. Many tools are available within the domain of network

load generation. Some of those are very use-case specific and scoped

more narrow, like themeasurement of latency between links. Others

focus on Wi-Fi signal strength or jitter on a link. Similar to the

arguments for disk, utilisation is not as straight forward as it is for

CPU or memory. Here, throughput is the resource to be utilised.

Network throughput benchmarking as micro benchmark can be

implemented with iperf3
5
. In order to generate load, iperf3 needs a

client and a server. For this scenario, the server best runs on a remote

machine, but directly connected with as little latency as possible.

Depending on the configuration, the client either connects to the

server via TCP or UDP and tries to achieve as much throughput as

possible or a defined limit. Network interface cards with amaximum

possible throughput of more than 40 Gbit/s have shown not to be

easily utilisable with a single iperf3 process and thus needs to be

parallelized if desired [42]. This is not an option of iperf3 itself and

needs to be done outside its configuration, for example by running

multiple instances on their own ports.

5.3 Data Acquisition
This section discusses profiling for all resources of the system

model (cf. section 4.1). The tools themselves are selected according

to the requirements. All the discussed benchmarking and load gen-

eration tools previously mentioned, implement an output during

or after their execution. While their outputs would be theoretically

usable, they fall short of most of the requirements described. As

they are not decoupled from load generation, they are not able to

perform black-box measurements.

General purpose system monitoring tools on the other hand

offer more flexibility. They certainly are decoupled, but do not offer

high resolution. Tools in question include widespread Linux typical

tools such as vmstat6, sar7 and top8 but also monitoring stacks

4
https://github.com/axboe/fio

5
https://github.com/esnet/iperf

6
https://man7.org/linux/man-pages/man8/vmstat.8.html

7
https://man7.org/linux/man-pages/man1/sar.1.html

8
https://man7.org/linux/man-pages/man1/top.1.html

like Prometheus
9
or Influx

10
, which are often backed by time-series

databases. Yet, the performance impact of the latter is questionable.

Especially considering the fact that they usually collect way more

metrics than desired.

Due to those considerations, system profiling (cf. section 2.3)

becomes the natural choice. Profiling is technology independent,

as it merely targets processes and not necessarily a specific imple-

mentation. Moreover, it is decoupled from load generation since

it usually does not generate load itself. It is able to measure from

outside the virtual workload. The frequency for sampling is com-

pletely arbitrary and only limited by local storage and the involved

CPU. Of course the frequency needs to be sensibly set in order to

keep it lightweight.

In order to fully leverage every modern Linux instrumentation

we make use of the Extended Berkeley Packet Filter (eBPF) system.

The origins of eBPF lie within the initial implementation Berkeley

Packet Filter (BPF), done by McCanne et al. [29]. The idea behind

this technology, was the execution of a filter expression which is

passed to the kernel in order to be interpreted there. This enabled

the user to filter packets without transporting every packet from

the kernel to user space and back. The initial BPF was implemented

as a minimal and very limited VM residing inside the kernel.

eBPF follows up on that concept by improving the capabilities

of that VM significantly. Most notably, the amount of event targets

increased to allow the collection and manipulation for sources like

PMCs, tracepoints, kernel and user functions. Essentially, all the

instrumentation points mentioned previously are directly available

to the eBPF VM. This is visualised in fig. 4 as light grey boxes

connected to the BPF block.

verifier

BPF

maps

uprobes

kprobes

tracepoints

perf_events

BPF

bytecode

statistics

per-event

data

(i) generate

(ii)
load

(iii)
perf output

(iii)
async read

𝐾𝑒𝑟𝑛𝑒𝑙𝑈𝑠𝑒𝑟

Figure 4: eBPF internals

Compared to traditional approaches, eBPF offers a lot of benefits

to the user. One benefit is the availability of virtually any instru-

mentation point, without the need to load a specific kernel module

9
https://prometheus.io/

10
https://www.influxdata.com/
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or recompile the kernel. This fact makes the usage of those instru-

mentations very stable and usable in production, since the Linux

development project implements high quality standards.

Another benefit is the possibly low overhead compared to al-

ternative approaches [17, 11]. The actual specific overhead cannot

be easily determined since the overhead of metrics collection is

a function of the type, number, and instrumentation for the col-

lected metrics [23]. An aspect that potentially decreases overhead

though, is the fact, that data rarely needs to be transferred from

kernel to user space. The BPF program itself is capable of many

data analytics operations and inline inspection of data points. In

fact, a lot of eBPF based tools only report their metrics or findings

upon program exit. Of course, this is an arbitrary limitation. Results

can be transferred to user space at any time the user may do so.

This output and two mentioned techniques for gathering data are

annotated as (iii) perf_output and (iii) async read in fig. 4

There are a lot of possibilities to generate BPF byte-code. This is

usually the first step as highlighted in fig. 4 as (i) generate. Upon
generation, it is (ii) loaded into the kernel for a verifying step before
being passed to the BPF VM.

Bpftrace
11

is a reasonable compromise between simple com-

mand line tools like perf
12

and the more complex compiler collec-

tion bcc
13
. It is therefore the tool of choice for the measurement

methodology presented here. The tool itself is built on top of BCC

and acts as a high-level programming language inspired by the

awk14 language. While not being as powerful as bcc, it is still capa-

ble of tracing most scenarios with adequate necessary effort. For

this reason, the tool is chosen to interact with Linux events and

eBPF.

5.4 Reproducibility
There are many strategies to achieve reproducibility leveraging

different methodologies, tools and concepts. In order to be able to

ignore any pre-existing infrastructure and configuration we decide

to pursue an immutable approach. This approach does not assume

any provisioned system, but rather provisions anything on demand

ranging from the physical server OSs to the actual experiment. This

aligns to the findings of Traeger et al. [41], who suggest rebooting a

system after an experiment to minimise any traces from a previous

experiment.

Reaching reproducibility by immutability, as proposed, is sepa-

rated into two steps based on the involved layers. These namely are

the (i) physical system provisioning and the (ii) actual experiment

provisioning.

For (i) Fedora CoreOS15 synergises well with the immutability

paradigm. It is an immutable OS that can be provisioned directly

onto bare-metal. It therefore needs an existing network boot stack.

The OS itself is configured with a configuration file called “igni-

tion”. Packages can not be installed and have to be provided via

containers. In order to easily re-provision the server, the OS itself

is not installed into the system, but rather booted into memory. If

11
https://github.com/iovisor/bpftrace

12
https://man7.org/linux/man-pages/man1/perf.1.html

13
https://github.com/iovisor/bcc

14
https://man7.org/linux/man-pages/man1/awk.1p.html

15
https://getfedora.org/en/coreos

applicable, specified parts can be persisted on disk if configured

accordingly.

For (ii), a reasonable choice for common container engines is

anything involving runc. This technology is engine agnostic as

long as it implements the CRI specification. These containers can

be configured via environment variables and dynamic mounts. They

thus satisfy everything a non containerised application would also

satisfy.

Every immutable asset, being an artefact or a configuration, is

versioned in a repository and thus exists as code. These range from

OS configuration over runtime containers towards experiment con-

figuration. Hence, they exist as “Infrastructure as Code (IaC)”[2]

and “Configuration as Code (CaC)”[38]. Together they form “Ex-

periments as Code (ExaC)”[1].

5.5 Workflow Automation
The missing link between provisioning the immutable runtimes,

as well as the immutable experiments, is their actual enactment.

Experiments involve the creation of various resources on multiple

servers sequentially and in parallel. They have to be timed, and

results need to be gathered. In order to handle so many experiments

and to reduce the risk of human error, this has to be automated.

While simple approaches like procedural shell scripts might lead

to fast results, they are merely sufficient as a prototype. The task

flow necessary for the experiments within this work, outgrows

the possibilities of such a simple approach. Circumventing those

limitationswouldmake them unreasonable complex. A better fitting

approach would be the introduction of a workflow engine which

handles these kinds of orchestrations a lot better. It brings the

benefit of not only describing an experiment in a reproducible way,

but also describing the whole process/workflow that is involved. It

starts from configuring the runtimes, handles experiment execution

and ends in results gathering.

With respect to the immutability concept and ExaC mentioned

in section 5.4, workflows as code form representations of those.

They include both, the runtime environment and the experiment

configuration.

The workflow engine used here is Argo Workflow
16
, which re-

lies on Kubernetes
17

for container orchestration. This synergises

well with the conclusion of section 5.4, that introduced the usage

of immutable containers to improve reproducibility. Argo Work-

flow extends the capabilities of Kubernetes to enable it to schedule

complex scenarios. This foremost enables the modelling of tasks

as a directed acyclic graph (DAG). Tasks can be run in parallel and

sequential, they can wait for each other or skip tasks if necessary.

Also, concepts like scatter and gather are possible. Moreover, Argo

Workflow offers the possibility to gather workflow (i.e. experiments)

results on a remote storage.

6 VALIDATION
In order to validate the proposed measurement methodology de-

scribed in section section 4 and designed in section 5, this section

16
https://argoproj.github.io/workflows/

17
https://kubernetes.io/
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implements it for an example. The chosen technology here is “Pod-

man”
18
. Podman is a container-based virtualisation technology.

After a brief description of the experimental setup, selected mea-

surement results are presented and discussed.

6.1 Experimental Set-up
In total, five servers are used. Each of those servers are symmet-

rically configured. They are equipped with two Intel CPU of the

model “Intel(R) Xeon(R) CPU E5-2630 v3” with a basic clock fre-

quency of 2.40 GHz and maximum clock frequency of 3.20 GHz.

Those CPUs had a total of 16 · 16 = 256 GiB DDR4 memory clocked

at 2133 MHz available. The disk involved at the IOPS isolation tests

is a Samsung SM843TN, rated at 15000 IOPS “random write” per-

formance. Involved server types are two experiment nodes, one

boot-stack node that provides bare metal provisioning and one

experiment head node running Argo Workflow.

Networking between all involved nodes is implemented by Mel-

lanox Technologies network interface cards of the “MT27800 Con-

nectX-5” family. These are capable of a network throughput rate of

50 Gbit/s and are connected to a Mellanox Technologies “SN2100”.

This switch is capable of switching 16 100 Gbit/s clients at full rate.

Every node mentioned before is connected to such a 100 Gbit/s port

using a directly attached copper breakout cable that divides the 100

Gbit by two. This leads to two 50 Gbit QSFP28 connectors for the

clients and a single 100 Gbit QSFP28 connector for the switch.

6.2 Selected Measurements
CPU. Table 2 analyses the performance impact tenant b can have

on a. It therefore compares the baseline performance of a with the

performance a' according to eq. (3) and eq. (4). Generally speaking,

no induced workload by tenant b is able to significantly disturb

tenant a. The highest degradation observable happens for scenario

11where a is saturated and b tries to overcommit. Here a is reduced
by 6.07% or 0.76% if considering the total possible CPU utilisation.

The respective scenarios are highlighted in fig. 5a.

CPU isolation for Podman works very well and as expected.

Only scenarios that cannot be properly scheduled due to overcom-

mitment are not intuitive. While this certainly depends on the

configuration of the Linux scheduler, this behaviour needs further

investigation. In conclusion, this experiment shows, that CPU utili-

sation for this technology is effective.

Network. For every scenario presented here, no network isola-

tion is imposed. This is due to the fact, this it is not available for

the chosen technology. While container-based virtualisation offers

network isolation in terms of abstraction it does not impose limits

on its utilisation. This can be clearly seen from the undercommit-

ted. Slightly before the Network Interface Card (NIC) becomes fully

saturated, degradation starts to happen. This is visible from the last

scenario 𝑎𝑢𝑏𝑜 where tenant a almost degrades to zero.

This gets evenworse for the saturation scenarios as seen in fig. 5b.

Significant performance impact on tenant a can be seen even if

both tenants are given the exact same resources. Here seemingly,

the older processes get a slight performance benefit, even though

this behaviour is left for further investigation. As soon as one

18
https://podman.io/

Table 2: CPU isolation for every scenario

id shortname 𝑎 cpu 𝑎′ cpu 𝐼𝑢𝑙𝑟 𝐼𝑝𝑙𝑟

1 𝑎𝑢 12.47

2 𝑎𝑠 25.00

3 𝑎𝑜 25.00

4 𝑎𝑓 98.92

5 𝑎𝑢𝑏𝑢 12.47 12.48 0.00 0.06

6 𝑎𝑢𝑏𝑠 12.47 12.36 0.05 0.88

7 𝑎𝑢𝑏𝑜 12.47 12.35 0.06 1.03

8 𝑎𝑢𝑏 𝑓 12.47 12.20 0.14 2.23

9 𝑎𝑠𝑏𝑢 25.00 24.91 0.05 0.37

10 𝑎𝑠𝑏𝑠 25.00 24.06 0.47 3.74

11 𝑎𝑠𝑏𝑜 25.00 23.48 0.76 6.07

12 𝑎𝑠𝑏 𝑓 25.00 24.71 0.14 1.15

13 𝑎𝑜𝑏𝑢 25.00 25.00 0.00 0.01

14 𝑎𝑜𝑏𝑠 25.00 25.13 0.06 0.50

15 𝑎𝑜𝑏𝑜 25.00 25.08 0.04 0.30

16 𝑎𝑜𝑏 𝑓 25.00 25.09 0.04 0.33

Table 3: Network isolation for every scenario

id shortname 𝑎 network 𝑎′ network 𝐼𝑢𝑙𝑟 𝐼𝑝𝑙𝑟

1 𝑎𝑢 10.00

2 𝑎𝑠 50.12

3 𝑎𝑜 88.71

4 𝑎𝑓 93.29

5 𝑎𝑢𝑏𝑢 10.00 10.05 0.05 0.50

6 𝑎𝑢𝑏𝑠 10.00 10.00 0.00 0.01

7 𝑎𝑢𝑏𝑜 10.00 8.29 1.71 17.08

8 𝑎𝑢𝑏 𝑓 10.00 2.37 7.63 76.32

9 𝑎𝑠𝑏𝑢 50.12 49.99 0.13 0.25

10 𝑎𝑠𝑏𝑠 50.12 46.54 3.58 7.14

11 𝑎𝑠𝑏𝑜 50.12 28.38 21.74 43.37

12 𝑎𝑠𝑏 𝑓 50.12 12.89 37.23 74.27

13 𝑎𝑜𝑏𝑢 88.71 79.20 9.52 10.73

14 𝑎𝑜𝑏𝑠 88.71 61.13 27.59 31.10

15 𝑎𝑜𝑏𝑜 88.71 51.99 36.72 41.39

16 𝑎𝑜𝑏 𝑓 88.71 19.02 69.69 78.56

tenant utilises more clients than another, this tenant will win on

the resource contention. This is most visible on the last scenario

𝑎𝑠𝑏𝑜 where tenant a with 5 clients competes against tenant b with

32 ones.

Table 3 analyses the performance impact tenant b can have on

a. It therefore compares the baseline performance of a with the

performance a' according to eq. (3) and eq. (4). Network isolation

for Podman does not work at all, hence this was expected since

there is no specific resource isolation in place. In conclusion, this

experiment shows, that network isolation for this technology is not

effective and needs an appropriate integration.

Memory. Finally memory isolation is analysed. These scenarios

slightly differ from the previously presented. Memory, or more
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Table 4: Memory isolation for every scenario

id shortname 𝑎 memory 𝑎′ memory 𝐼𝑢𝑙𝑟 𝐼𝑝𝑙𝑟

1 𝑎𝑢 12.80

2 𝑎𝑠 24.14

3 𝑎𝑜 21.24

4 𝑎𝑓 71.94

5 𝑎𝑢𝑏𝑢 12.80 12.74 0.06 0.48

6 𝑎𝑢𝑏𝑠 12.80 12.68 0.12 0.91

7 𝑎𝑢𝑏𝑜 12.80 12.74 0.06 0.44

8 𝑎𝑢𝑏 𝑓 12.80 12.64 0.16 1.26

9 𝑎𝑠𝑏𝑢 24.14 24.39 0.25 1.02

10 𝑎𝑠𝑏𝑠 24.14 24.18 0.04 0.16

11 𝑎𝑠𝑏𝑜 24.14 24.20 0.06 0.27

12 𝑎𝑠𝑏 𝑓 24.14 24.24 0.10 0.40

13 𝑎𝑜𝑏𝑢 21.24 21.29 0.05 0.25

14 𝑎𝑜𝑏𝑠 21.24 21.21 0.03 0.13

15 𝑎𝑜𝑏𝑜 21.24 21.72 0.49 2.30

16 𝑎𝑜𝑏 𝑓 21.24 21.14 0.10 0.46

specifically the Resident Set Size (RSS), is not allocated instantly.

Moreover, if too many workers try to allocate a lot of memory as

fast as possible, the Linux scheduler will Out Of Memory (OOM)

terminate them at a high frequency possibly leading to an oscillating

system behaviour. This can be seen for the last scenario in fig. 5c

where the standard deviation of b is comparatively high. Most

importantly though, memory isolation is almost ideal. The abiding

tenant a is never disturbed by the b, even when trying to allocation

100% of the system memory. This can also be clearly seen in Table 4.

7 DISCUSSION
While we successfully validated our methodology and framework

with the example given in 6 there are open questions that require

a critical reflection. Most importantly is the adaptability of our

framework for other classes of virtualisation. Further, we highlight

possible threads to validity and briefly discuss them in the following.

7.1 Adaptability
The adaptability of the methodology proposed by us is a core con-

sideration. Specifically the discussion of load generation and data

acquisition in both section 4 and section 5 reflect that. These two

aspects are decoupled from the actual virtualisation technology.

Moreover and as mentioned previously, data acquisition needs

to be performed outside the virtualisation technology. This in turn

creates the demand for adequate instrumentation points. Since we

concentrate on the evaluation of Linux enabled virtualisation tech-

nologies we can rely on the availability of Kernel instrumentation.

While there are technology specific ones available, we deliberately

decide on general purpose ones to make sure adaptability is ensured.

The Linux kernel provides a vast amount of instrumentation that

recently improved even further with the possibilities of eBPF. Since

we heavily utilise this technology, we are very confident to be able

to profile any existing and upcoming Linux based virtualisation

technology.

7.2 Threats to validity
The eBPF based profiling approach is one of essential strengths of

this framework, but also possible pitfall. Not every kernel instru-

mentation point can be used and assumed to be stable. They might

change across major releases, but some dynamic ones might even

change upon minor ones. In consequence, the framework needs to

be changed as the kernel itself changes. Of course, this depends on

the actual profiling implementation.

Further, and as mentioned throughout this paper, this frame-

work completely depends on the Linux kernel. While the method-

ology can be conceptually applied to any operation system, the

specific implementations cannot be easily adapted. However, there

are efforts regarding the execution of eBPF code on Windows
19

in

progress [10].

The load generation phase leverages micro benchmarks to gen-

erate different levels of load. While it is an important initial step to

examine distinct resources on their own, possible side effects are

completely neglected. More sophisticated and complex benchmarks

could yield different results and might reveal some dependencies

that remain undetected.

19
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8 CONCLUSION
The isolation measurement methodology, as well as the design con-

siderations proposed here, can help to file decisions regarding a

virtualisation technology from a practical perspective. The results

can be used to compare two or more virtualisation technologies

regarding specific isolation requirements. These naturally depend

on the requirements the use case imposes. The isolation quantifi-

cation model applied here sufficiently enables the comparison of

those technologies. What it does not consider though, are other

implications that do not directly relate to performance isolation.

This includes virtualisation overhead in terms of resources, security

isolation or licensing fees.

To conclude, this paper has developed a generally applicable

methodology and implemented a framework to determine isolation

characteristics of virtualisation technologies. It is highly config-

urable and extendable in terms of applied technologies and un-

derpinned system model. Its flexibility further allows to craft any

arbitrary scenarios within any kind of experiment.
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