
A Method to Evaluate the Performance of Predictors in
Cyber-Physical Systems

Leonardo Passig Horstmann
∗

Software/Hardware Integration Lab,

Federal University of Santa Catarina

Florianopolis, Santa Catarina, Brazil

horstmann@lisha.ufsc.br

Matheus Wagner
∗

Software/Hardware Integration Lab,

Federal University of Santa Catarina

Florianopolis, Santa Catarina, Brazil

wagner@lisha.ufsc.br

Antônio Augusto Fröhlich

Software/Hardware Integration Lab,

Federal University of Santa Catarina

Florianopolis, Santa Catarina, Brazil

guto@lisha.ufsc.br

ABSTRACT
Cyber-Physical Systems (CPS) rely on sensing to control and opti-

mize their operation. Nevertheless, sensing itself is prone to errors

that can originate at several stages, from sampling to communica-

tion. In this context, several systems adopt multivariate predictors

to assess the quality of the sensed data, to replace data from faulty

sensors, or to derive variables that cannot be directly sensed. These

predictors are often evaluated based on their accuracy and comput-

ing demands, however, such evaluations often do not consider the

system’s architecture from a broader perspective, ignoring the way

components are interconnected and how they cascade as inputs of

other Machine Learning (ML) models. In this work, we introduce a

method to evaluate the performance of interdependent predictors

based on the stability of the estimation error dynamics in faulty

scenarios. The proposed method estimates the ability of a predictor

to produce accurate predictions while accounting for the impacts

of cascading predicted values as its inputs. The prediction correct-

ness is estimated based solely on information acquired during the

training of the multivariate predictors and mathematical properties

of the ML activation functions. The proposed method is evaluated

with a meaningful dataset in the scope of monitoring and control

of a Cyber-Physical System, and the evaluation demonstrates the

ability of the proposed method to account for the interdependence

of data predictors.

CCS CONCEPTS
• Mathematics of computing→ Functional analysis; • Infor-
mation systems→ Data mining; • Computing methodologies
→Machine learning;Machine learning algorithms; •Computer
systems organization→ Embedded and cyber-physical sys-
tems.

KEYWORDS
stability analysis, predictors, machine learning, estimation error

dynamics
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1 INTRODUCTION
Cyber-Physical Systems (CPSs) can be seen as a composition of

software and hardware components in which the outputs produced

by some are used as inputs by others. Some components are mod-

eled around sensors, some derive variables from sensors and other

inputs, and, in fact, the whole composition is usually very sensitive

to sensed values. Notwithstanding, sensing operations are prone to

errors ranging from incorrect sampling (e.g., gain, stuck-at, spike,

and noise errors) to communication problems. Therefore, CPSs of-

ten use predictors to assess the quality of the sensed data, derive

variables that cannot be directly sensed, and to replace data from

faulty sensors.

In this context, works like Richman et al. [13] have shown mul-

tivariate predictors using Machine Learning (ML) mechanisms like

Artificial Neural Networks (ANNs) and Support Vector Regression

(SVR) demonstrate higher prediction accuracy as they are able

to better mimic data variance aspects. [14, 15] proposed a semi-

supervised multivariate ANN to cope with sensing faults. These

predictors are usually evaluated for accuracy, with Mean Squared

Error (MSE), Root Mean Squared Error (RMSE), and Mean Absolute

Error (MAE), and computing power demands. However, as pointed

by Yang et al. [18], traditional methods for evaluation of predictors

usually consider Independent and Identically Distributed samplings,

do not account for the different impacts of prediction errors and

misclassifications, and do not take into consideration specificities of

the domain or real-world applications. For instance, in the CPS do-

main, traditional evaluation techniques usually do not consider the

system’s architecture from a broader perspective, ignoring the way

components are integrated and the resulting topologies, which di-

rectly impact the quality of predictors as they take other predictions

as input.

In this work, we introduce a methodology to evaluate predic-

tors based on their ability to produce accurate predictions while

accounting for the impacts of adopting predicted values as their

input. First, ML multivariate models are built for data prediction

considering data correlation. To do so, a fault-free period of the

time-series is selected and feature selection algorithms are applied

to determine the subset of most correlated features for each of the

variables. Next, an ANN is trained to predict a variable based on
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the input composed of its most correlated features. Finally, the

prediction expected correctness when dealing with inputs com-

posed of predicted data is then evaluated as the error propagation

between predictors. The evaluation method is based solely on infor-

mation acquired during the predictor’s training and mathematical

properties of the ML activation functions
1
. Furthermore, the pre-

sented method provides one with the ability to assess, at design

time, whether the prediction errors would remain bounded when

dealing with scenarios where predicted data is used as input for

new predictions. The main contributions of this work are:

• A mathematical analysis of the error propagation for inter-

dependent predictors.

• Amethod to evaluate data predictors based on the impacts of

the utilization of predicted inputs and successive predictions.

• A method that allows design-time assessment of the bound-

edness of prediction error when using inputs generated by

predictors.

The remaining of this paper is organized as follows. Section 2

presents correlated works and discusses the main differences when

compared to the approach presented here. Section 3 describes the

method proposed to evaluate the performance of data predictors

based on their interdependence. Section 4 presents our case study

and shows the results achieved through the proposed method. Fi-

nally, Section 5 discusses the proposed method in light of the pre-

sented results and finishes this paper presenting its final remarks.

2 RELATEDWORKS
As pointed by Yang et al. [18], traditional methods for evaluation of

predictors usually consider Independent and Identically Distributed

samplings, do not account for the different impacts of prediction

errors and misclassifications, and do not take into consideration

specificities of the domain or real-world applications. In this section

we review works that propose different mechanisms to evaluate

predictive models.

Ghobbar and Friend [5] adopted an Analysis of Variance to ex-

plain relationship between variation in the input variables (factors)

with the variations in the predicted variable (response variable).

They used a general linear model consisting of the extension of sim-

ple and multiple regression to measure the impact of the variation

of each factor in the response variable. In this way, they estimate

prediction accuracy for any set of factors. The best prediction mech-

anism would be the one with the lowest impact of the inputs (i.e.,

lowest factors). Besides using regression to estimate the impacts

of the variation of the input variables on the prediction accuracy,

the solution they propose does not account for the utilization of

predicted data and their inherent prediction error impact on the

input of other prediction mechanism, not considering the possible

error propagation.

Nicolis et al. [10] derived properties of the evolution of meteorol-

ogy prediction errors under the effect of initial errors (i.e., variations

to the initial assumptions of the predictor) and model natural errors

(i.e., deviations in terms of the representation of the nature). In

their analysis, they bounded prediction errors for specific scenarios.

The solution proposed in this paper, on the other hand, focuses on

1
The code and data produced for the experiments presented in this paper are available

at https://gitlab.lisha.ufsc.br/matheuswgr/icpe-predictor-performance.

errors introduced and propagated by the utilization of predicted

values as inputs for data prediction. Schillaci et al. [16] analyzed the

prediction error dynamics to enhance the learning performance of

ML models. They track two types of error. The first one, a general

approach based on the MSE of the forward model calculated on

a test dataset and the second one based on the distance between

the goal and the predicted sensory state estimated by the forward

model. While the Schillaci et al. work focuses on the prediction

error dynamics, it does consider a traditional metric in the evalua-

tion, namely MSE, and does not track the impact of the propagated

prediction error over other predictors.

Alessandri et al. [1] presented an stability analysis for prediction

error dynamics based on the sensitivity of a system to the variation

of data to demonstrate the error introduced by a Moving Horizon

Estimation (MHE) is bounded. Liu and Wang [8] stochastically ana-

lyzed the estimation error of a MHE with binary encoding schemes

to ensure its boundedness. Similarly, Karg and Lucia [7] analyzed

the impact that the approximation error of different learned com-

ponents on the closed-loop control performance to evaluate a MHE.

The authors approximated the resulting changes in the successor

state of the controller with respect to the deviations of optimal

input by considering a first order Taylor approximation. Similar

the approach presented in this paper, authors also adopted Taylor

series approximation to estimate impact caused by a deviation in

optimal input. However, we differ from both works by considering

scenarios with interdependent predictors, taking into considera-

tion expected prediction error as the optimal input deviation, and

accounting for error propagation.

Finally, Cao and Hovakimyan [3] demonstrated the boundedness

of the error for a Neural Network (NN)-based adaptive control sys-

tem analytically by limiting the adaptation gain of the NN model

to a constant value. Similarly, Chen et al. [4] presented an ana-

lytic analysis of a Fuzzy NN-based adaptive control algorithm to

demonstrate boundedness of the Fuzzy NN approximation error by

using Lyapunov analysis. Besides analyzing the boundedness of a

NN solution, these works also do not analyze the specific case of

interdependent NN models and the error propagated by adopting

the approximations produced by an NN as input of another model.

On the other hand, considering the problem of evaluating the

performance of CPSs, Muttillo et al. [9] presented a framework

using Machine Learning to estimate the timing performance of CPS

based on code analysis. Smith [17] analyzed software patterns that

deteriorated the performance of CPS and proposed less intrusive

alternatives. Postema et al. [12] studied the interaction between

powermanagement strategies and thermal-aware controllers. These

works differ from our approach since they focus on the timing and

thermal aspects of the performance of CPS while we focused on

the data quality of the CPS. In fact, Arlitt et al. [2] also focused on

the data aspect of a CPS, however, they proposed a benchmark to

represent IoT use cases while we proposed a mechanism to evaluate

the quality of the predictors that are used to replace or generate

new data for the CPS they compose.

3 THE METHOD
The solution proposed in this paper evaluates multivariate predic-

tors in terms of its ability to deal with input data composed of
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predicted values. In other words, this work proposes a method to

estimate the impact of using predicted values as input for a mul-

tivariate predictor. In this way, it is important to notice that the

proposed method does not concern the design of high-performance

predictors, but their robustness in terms of being able to provide

bounded predictions when dealing with interdependence and hav-

ing predicted data as inputs. In this way, the study of the behavior

of a predictor operating under normal conditions (i.e., no predicted

data as input) and the optimization of a predictor are not in the

scope of this work. In the following subsections, we recapitulate

the main concepts and assumptions behind the predictor’s model

and present the method proposed to estimate predictor’s interde-

pendence.

3.1 Predictor’s Model
A myriad of strategies to build data predictors are proposed in the

literature. The simplest methods use linear interpolation, use the

dataset mean value, or even the last observed value (called zero or-

der hold). Another simple way to perform interpolation is to adopt

non-linear interpolation methods, using polynomial, spline, and

Autoregressive Integrated Moving Average (ARIMA) algorithms. Fi-

nally, there are complex alternatives like to use a multivariate ANN

Predictor. Using a multivariate predictor based on an ANN pro-

duces more accurate values compared with the other methods. This

happens mostly because linear solutions are not able to reproduce

variability. Second-order interpolation, and other similar strategies,

are not able to simulate the behavior of a variable that presents

inherent dependency to other components of a multivariate system.

Similarly, forecasting methods like ARIMA are penalized because

they use the model that was trained before the first prediction to

predict the whole time-series, not considering new data or pre-

dicted values for the successive predictions. In fact, Richman et

al. [13] demonstrated that simple prediction mechanisms underesti-

mate the actual variance of data, while ANN and other multivariate

solutions presented higher ability to capture this variance.

In light of the higher accuracy presented by multivariate predic-

tor’s and the increasing usage of ML-based applications, this work

assumes data predictors to be ANNs with multivariate inputs. To

build a predictive model for each variable, first we select a subset of

variables of interest that can be used as the predictor’s input, using

some feature selection method. With this subset of variables, the

models should be trained using moments of the time-series with

correct sampling. After the training process, a predictor should be

available for each of the sensed variables.

Finally, a predictor is a function 𝑣𝑖 = 𝑔𝑖 ( ®𝑥𝑖 ) that maps a vector

of inputs ®𝑥𝑖 to a scalar quantity 𝑣𝑖 that represents the prediction

of the 𝑖𝑡ℎ variable in a set. In this work, 𝑔𝑖 ( ®𝑥𝑖 ) is assumed to be

infinitely differentiable, so it can be expanded into a Taylor series

representation
2
. This assumption holds, for example, if the predictor

is based on ANNs with infinitely differentiable activation functions,

for instance, hyperbolic tangent or sigmoid.

2
Several of the most-used activation functions, including Sigmoid, TanH, Softmax,

Swish, and CoLU are infinitely differentiable. Therefore, the assumption makes the

proposal suitable for several applications. The proposed solution does not apply to

ANNs built with other (not continuously differentiable) activation functions.

3.2 Evaluating Interdependent Predictor’s
We can estimate the impacts of dealing with data points coming

from other predictors by calculating a metric for the expected cor-

rectness for each prediction. To measure and track correctness of a

prediction, we first need an estimate of the prediction error. This

estimate can be built based on the expected error of the predictor

and on the deviation of the inputs from their respective predictions.

We assume predictor’s expected error as the MAE computed over

the training dataset. The deviations of the input variables from their

respective predictors can be propagated to the current predictor’s

output using a linear approximation.

Given a predictor 𝑣𝑖 = 𝑔𝑖 ( ®𝑥𝑖 ), there is a Taylor series expansion,
as described by equation (1), centered at 𝑣𝑖

∗ = 𝑔𝑖 ( ®𝑥∗𝑖 ), that denotes
the predictor output when the input values match exactly their

predicted values (this condition is denoted by ®𝑥∗
𝑖
). The operator

𝜕𝑔𝑖 ( ®𝑥𝑖 )
𝜕 ®𝑥𝑖 is the gradient of the function 𝑔𝑖 with respect to it’s input

vector.

𝑣𝑖 = 𝑣𝑖
∗ +

𝜕𝑔𝑖 ( ®𝑥∗𝑖 )
𝜕®𝑥𝑖

( ®𝑥𝑖 − ®𝑥∗𝑖 ) +
1

2

𝜕2𝑔𝑖 ( ®𝑥∗𝑖 )
𝜕®𝑥2

𝑖

( ®𝑥𝑖 − ®𝑥∗𝑖 )
2 + ... (1)

When the deviation of the predictor’s input from ®𝑥∗
𝑖
is small

or when 𝑔𝑖 ( ®𝑥𝑖 ) resembles a linear function, the terms with order

greater than one may be negligible. In this scenario, a truncation

of the Taylor series at the first-order term provides a linear ap-

proximation of the model. Note that highly correlated variables are

linearly related. Therefore, using correlation as a metric to select

input variables leads to models that should preserve this linear

relationship.

Based on this correlation between variables, we consider solely

the first-order term of equation (1) and rewrite it as equation (2).

One can relate the deviation of a prediction from a most accurate

prediction to the deviation of the predictor’s inputs from those

that yield the maximum accuracy of their respective predictors. It

characterizes a measure of the prediction’s correctness, even in the

absence of some data in the input to be compared with.

𝑣𝑖 − 𝑣𝑖∗ =
𝜕𝑔𝑖 ( ®𝑥∗𝑖 )
𝜕®𝑥𝑖

( ®𝑥𝑖 − ®𝑥∗𝑖 ) (2)

In compact form, equation (2) is rewritten again in equation (3),

in which the inner product is expressed as a summation over the N

components of the input vector. The terms 𝑥𝑖, 𝑗 used in the partial

derivatives stand for the 𝑗𝑡ℎ component of the input vector to the

predictor of the 𝑖𝑡ℎ variable.

𝑒𝑖 =

𝑁−1∑︁
𝑗=0

𝜕𝑔𝑖 ( ®𝑥∗𝑖 )
𝜕𝑥𝑖, 𝑗

𝑒 𝑗 (3)

In equation (3), 𝑒𝑖 is the estimated error for the predictor of the

𝑖𝑡ℎ variable computed based only on the individual deviations of

its inputs from their respective predictions, expressed as 𝑒 𝑗 .

Once the predictor gradient with respect to its inputs is a function

of ®𝑥∗
𝑖
(the prediction of each input variable), in case all the necessary

information to make a prediction is available, all the information

necessary to estimate its error is also available.
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The error estimation in equation (3) can be enhanced by adding

the predictor’s expected error, leading to equation (4). By doing

so, we assume that even if the input errors are equal to zero, the

predicted output error is at least equal to the𝑀𝐴𝐸 obtained while

training the model.

𝑒𝑖 =

𝑁−1∑︁
𝑗=0

𝜕𝑔𝑖 ( ®𝑥∗𝑖 )
𝜕𝑥𝑖, 𝑗

𝑒 𝑗 +𝑀𝐴𝐸𝑖 (4)

3.3 Stability of Error Estimation Chains
The prediction method established by equation (4) assumes that

the deviations between inputs and their respective predictions can

be measured. However, input data for the predictors could also

consist of predicted values and hence their deviations must also be

estimated, forming an error estimation chain.

This work considers three configurations of error estimation

chains: cascade, feedback, and loop, presented in Figures 1, 2,

and 3, respectively. In cascade, the output of a predictor is used as

one of the inputs to another predictor. In feedback, the output of a
predictor is used as one of the inputs to itself. In loop, the output of
a predictor is used as one of the inputs to another predictor whose

output is, in turn, used as one of the inputs to the first predictor.

Figure 1: Two predictors associated in a cascade configura-
tion.

Figure 2: Single predictor in a feedback configuration due to
self dependence.

For the cascade configuration, the error made by the first pre-

dictor propagates to the output of the second predictor, whose

prediction will also have an associated error. Given that the ex-

pected error of each predictor is finite and that the gradient of each

predictor’s output with respect to its input is bounded, any finite

Figure 3: Two predictors in a loop configuration due to pre-
dictor’s interdependence.

error associated with any input will produce a finite propagated

error to the predictor’s output. Hence, any chain in cascade con-

figuration with a finite number of predictors will produce a finite

propagated error. Note that common activation functions, such as

hyperbolic tangent and sigmoid, have bounded derivatives, hence,

ANNs with bounded gradients are viable.

In feedback configurations, the error made by the predictor be-

comes the error associated with one of its inputs, which is then

propagated to a next output, producing a cycle. In loop configu-

rations the error made by the first predictor is propagated to the

output of the second predictor whose error is propagated to the

output of the first predictor, also producing a cycle. For these cases,

even if predictor’s expected error is finite and the gradient of each

predictor’s output with respect to its input is bounded, the propa-

gated error through the cycle can become infinite. Since the problem

can be modeled as a recurrence, stability analysis, a tool borrowed

from the theory of linear systems, can be employed to establish the

conditions in which the accumulated prediction errors do not be-

come infinite. The application of stability analysis to discrete-time

linear systems modeled as recurrences is concerned with determin-

ing whether the evolution of a given recurrence converges to a

finite value. The reader may refer to [11] for a deeper discussion of

the topic.

At this point, it is relevant to state that although higher-order

Taylor series approximations of 𝑔𝑖 ( ®𝑥𝑖 ) could be used to estimate

prediction errors, a linear approximation is convenient as it allows

the stability analysis to be performed using tools from the linear

systems theory. Initially, equation (4) must be rewritten as a lin-

ear time-invariant system. Although it already represents a linear

system, it can be considered as time-variant because the predictor

gradient changes over time. By assuming that the components of

the predicted gradient are bounded in absolute value, a worst-case

evaluation of the error’s linear approximation can be built as in

equations (5) and (6). As the partial derivatives and the inputs’

errors can assume positive and negative values, the sum of their

absolute values will be greater or equal than the sum of their regu-

lar values, as stated in equation (5). By taking the maximum value

of the predictor gradient, we ensure that we are dealing with the

worst case.
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∥𝑒𝑖 ∥ =







𝑁−1∑︁
𝑗=0

𝜕𝑔𝑖 ( ®𝑥∗𝑖 )
𝜕𝑥𝑖, 𝑗

𝑒 𝑗







 ≤ 𝑁−1∑︁
𝑗=0





 𝜕𝑔𝑖 ( ®𝑥∗𝑖 )𝜕𝑥𝑖, 𝑗





 ∥𝑒 𝑗 ∥ (5)

∥𝑒𝑖 ∥ ≤
𝑁−1∑︁
𝑗=0





 𝜕𝑔𝑖 ( ®𝑥∗𝑖 )𝜕𝑥𝑖, 𝑗





 ∥𝑒 𝑗 ∥ ≤ 𝑁−1∑︁
𝑗=0

𝑚𝑎𝑥

{



 𝜕𝑔𝑖 ( ®𝑥∗𝑖 )𝜕𝑥𝑖, 𝑗





} ∥𝑒 𝑗 ∥ (6)

Equation (7) renames the maximum absolute value of the gradi-

ent components in order to keep the notation clean. 𝜆
𝑗
𝑖
stands for

the 𝑗𝑡ℎ component of the predictor’s maximum gradient in absolute

value. Note that the maximum gradient components can be com-

puted analytically or numerically by an optimization algorithm. It

can also be estimated by selecting the maximum gradient evaluated

over the training dataset.

𝜆
𝑗
𝑖
=𝑚𝑎𝑥

{



 𝜕𝑔𝑖 ( ®𝑥∗𝑖 )𝜕𝑥𝑖, 𝑗





} (7)

By replacing equation (7) into equation (6) and adding the predic-

tor’s expected error to the right side of the inequality in equation

(6), a bound for the error estimation can be defined as equation 8.

∥𝑒𝑖 ∥ ≤
𝑁−1∑︁
𝑗=0

𝜆
𝑗
𝑖
∥𝑒 𝑗 ∥ +𝑀𝐴𝐸𝑖 (8)

The estimation error’s bound will be expressed by 𝜉𝑖 , defined

by equation (9). To explicitly account for time in the equation, the

letter 𝑘 is used to represent the 𝑘𝑡ℎ instant of discrete time, hence

a continuous time sample is given by 𝑡 = 𝑘𝑇 , for a given period 𝑇 .

The term 𝑒 𝑗 [𝑘 − 1] expresses the fact that the error associated with
an input is computed based on information from the previous time

period.

𝜉𝑖 [𝑘] =
𝑁−1∑︁
𝑗=0

𝜆
𝑗
𝑖
∥𝑒 𝑗 [𝑘 − 1] ∥ +𝑀𝐴𝐸𝑖 (9)

A system with all error estimate chains simultaneously is consid-

ered for the stability analysis. Expressing equation (9) in terms of a

linear system that captures the effects of all three error prediction

chain configurations demands that the input variables are separated

into three sets. The first is the set 𝐼𝑖 of input variables that are not

in the feedback or loop chains. The second is the set 𝐷𝑖 of input

variables that comprise a loop chain. The third set is given by the

output of the 𝑖𝑡ℎ predictor, since this is the variable that composes

the feedback loop. This is denoted by 𝜆𝑟
𝑖
𝜉𝑖 [𝑘 − 1] in equation (10)

that describes this scenario mathematically.

𝜉𝑖 [𝑘] = 𝜆𝑟𝑖 𝜉𝑖 [𝑘 − 1] +
∑︁
𝑗∈𝐷𝑖

𝜆
𝑗
𝑖



𝑒 𝑗 [𝑘 − 1]

+∑︁
𝑝∈𝐼𝑖

𝜆
𝑝

𝑖



𝑒𝑝 [𝑘 − 1]

 +𝑀𝐴𝐸𝑖

(10)

Stability in the Bounded-Input Bounded-Output (BIBO) sense

is a property of the natural response of a linear system. Hence, all

terms that do not depend on 𝜉𝑖 [𝑘 − 𝑛] for any value of 𝑛 can be

dropped from equation (10), including 𝑀𝐴𝐸𝑖 , leading to equation

(11).

𝜉𝑖 [𝑘] = 𝜆𝑟𝑖 𝜉𝑖 [𝑘 − 1] +
∑︁
𝑗∈𝐷𝑖

𝜆
𝑗
𝑖



𝑒 𝑗 [𝑘 − 1]


(11)

By realizing that



𝑒 𝑗 [𝑘 − 1]

 respects an inequation as (8), this

term can be defined as in the equation. The term



𝑒 𝑗 [𝑘 − 1]

 can
be replaced in equation (11) by 𝜆𝑖

𝑗
𝜉𝑖 [𝑘 − 2] since all other terms in

equation (12) that are not a function of 𝜉𝑖 [𝑘 − 𝑛] do not contribute

to the natural response of 𝜉𝑖 [𝑘].

∥𝑒 𝑗 [𝑘 − 1] ∥ ≤ 𝜆𝑖𝑗 𝜉𝑖 [𝑘 − 2] +
𝑁−1∑︁
𝑛=0
𝑛≠𝑖

𝜆𝑛𝑗 ∥𝑒𝑛 [𝑘 − 2] ∥ (12)

Finally, equation (13) describes the natural dynamics of error

estimates for the 𝑖𝑡ℎ variable in the presence of both loop and

feedback chains. Note that this recurrence only accepts positive

initial conditions due to the definition of 𝜉𝑖 .

𝜉𝑖 [𝑘] = 𝜆𝑟𝑖 𝜉𝑖 [𝑘 − 1] +
∑︁
𝑗∈𝐷𝑖

𝜆𝑖𝑗𝜆
𝑗
𝑖
𝜉𝑖 [𝑘 − 2] (13)

Stability analysis can be carried out by taking the Z-transform

on both sides of equation (13) and rearranging the terms, leading

to equation (14). In this new equation the polynomial in z gives the

characteristic equation of the system. The error estimate remains

stable in the BIBO sense if, and only if, the solutions of the char-

acteristic equation remain on the unit circle in the complex plane.

This is expressed mathematically by equation (15)

©­«𝑧2 − 𝜆𝑟𝑖 𝑧 −
∑︁
𝑗∈𝐷𝑖

𝜆𝑖𝑗𝜆
𝑗
𝑖

ª®¬𝐸𝑖 (𝑍 ) = 0 (14)

∥𝑧1,2∥ =
1

2








𝜆𝑟𝑖 ±

√︄
(𝜆𝑟

𝑖
)2 + 4

∑︁
𝑗∈𝐷𝑖

𝜆𝑖
𝑗
𝜆
𝑗
𝑖








 ≤ 1 (15)

While equation (15) expresses the stability condition for scenar-

ios with both loop and feedback chains, note that in the absence of

the feedback chain, the stability condition becomes the stated in

equation (16). If the models do not have a loop chain, the stability

condition is represented by equation (17)

∥𝑧1,2∥ =
√︄∑︁

𝑗∈𝐷𝑖

𝜆𝑖
𝑗
𝜆
𝑗
𝑖
≤ 1 (16)

∥𝑧1 | = 𝜆𝑟𝑖 ≤ 1 (17)

According to how the variables depend on each other, higher

order systemsmay arise. In this case, new stability conditions can be

derived for any specific dependency relationship. The convergence

conditions defined in equations (15) to (17) are useful to estimate

how long the predictor can still produce accurate outputs. When

the convergence conditions are not met, the estimated errors grow

in an unbounded way, leading to a fast accuracy drop.

The error estimation needed when the predictor’s input is com-

posed by predicted values is described in algorithm 1. We assume

that three global vectors are available: ®𝑋𝑠𝑡𝑎𝑟 , that holds the predic-
tions of all data points from the previous period; ®𝑋𝑎𝑐𝑡𝑢𝑎𝑙 , that holds

all available data points from the previous period; and ®𝐸, that holds
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the errors – calculated or estimated – of all data points from the

previous round.

At each round — time interval𝑇 in which all values are expected

to arrive at least once — the arrived data is processed by algorithm 1

to update ®𝑋𝑠𝑡𝑎𝑟 and ®𝐸. When the period expires, all predicted inputs

𝑗 will have their values predicted and errors estimated, updating

®𝑋𝑠𝑡𝑎𝑟 [ 𝑗] and ®𝐸 [ 𝑗], respectively.
The function 𝑖𝑛𝑝𝑢𝑡𝑠 (𝑖, ®𝑋𝑎𝑐𝑡𝑢𝑎𝑙 , ®𝑋𝑠𝑡𝑎𝑟 ) returns a vector of inputs

to the predictor. If an input is produced by a predictor itself in

the vector of data points ®𝑋𝑎𝑐𝑡𝑢𝑎𝑙 , then it is replaced by its pre-

diction available in ®𝑋𝑠𝑡𝑎𝑟 . The functions 𝑖𝑛𝑝𝑢𝑡_𝑒𝑟𝑟𝑜𝑟𝑠 (𝑖, ®𝐸) and
𝑖𝑛𝑝𝑢𝑡_𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛𝑠 (𝑖, ®𝑋𝑠𝑡𝑎𝑟 ) only take the subsets of the compo-

nents of ®𝐸 and ®𝑋𝑠𝑡𝑎𝑟 , respectively, that correspond to the input

variables of the 𝑖𝑡ℎ predictor.

Algorithm 1 Prediction Error Update

1: procedure Error_Update(𝑣, i)
2: ®𝑥𝑖 ← 𝑖𝑛𝑝𝑢𝑡𝑠 (𝑖, ®𝑋𝑠𝑡𝑎𝑟 , ®𝑋𝑎𝑐𝑡𝑢𝑎𝑙 )
3: ®𝐸𝑖 ← 𝑖𝑛𝑝𝑢𝑡_𝑒𝑟𝑟𝑜𝑟𝑠 (𝑖, ®𝐸 )
4: ®𝑥∗𝑖 ← 𝑖𝑛𝑝𝑢𝑡_𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛𝑠 (𝑖, ®𝑋𝑠𝑡𝑎𝑟 )
5: 𝑣 ← 𝑝𝑟𝑒𝑑𝑖𝑐𝑡 ( ®𝑥𝑖 )
6: if is_empty( 𝑣 ) then
7: 𝑔𝑟𝑎𝑑𝑔 ← 𝑔𝑟𝑎𝑑𝑖𝑒𝑛𝑡 (𝑔 ( ®𝑥∗𝑖 ), ®𝑥∗𝑖 )
8: ®𝐸 [𝑖 ] ← (𝑔𝑟𝑎𝑑𝑔 · ®𝐸𝑖 ) +𝑀𝐴𝐸𝑖
9: else
10: ®𝐸 [𝑖 ] ← | |𝑣 − 𝑣 | |
11: 𝑒𝑟𝑟𝑜𝑟 ← ®𝐸 [𝑖 ]/𝑑𝑎𝑡𝑎𝑠𝑒𝑡_𝑚𝑒𝑎𝑛

12: ®𝑋𝑠𝑡𝑎𝑟 [𝑖 ] ← 𝑣

Finally, in order to clarify the process of performing the stability

analysis, we modeled the algorithm 2 based on the aforementioned

equations and algorithms.

Algorithm 2 Procedure for Analysis

1: Proceed with Feature Selection

2: Train the respective prediction models

3: Verify interdependence between predictors:

4: Check if the target variable of the predictor is also used as input to the predictor,

this implies the existence of feedback interdependence

5: if the target variable of the predictor is also used as input to the predictor then
6: this implies the existence of feedback interdependence

7: if the target variable of the predictor is also used as input to another predictor

then
8: this implies the existence of cascade interdependence

9: if the target variable of the predictor is also used as input to another predictor

whose target variable is input to the first predictor then
10: this implies the existence of loop interdependence

11: For each interdependence between predictors, compute the parameters 𝜆𝑖,𝑗 , in

case of loop dependence, and 𝜆𝑟,𝑖 , in case of feedback dependence, based on the

models acquired during training.

12: Use the stability conditions to compute ||z|| and verify whether each predictor is

stable in the presence of missing data for the considered interdependence.

4 CASE STUDY
This section describes the case study used to evaluate the proposed

method. We first describe the dataset and its representativeness in

the scope of CPS. Next, we describe the processes of generating

the predictive models, i.e., preprocessing, feature selection, and

training. Finally, we present the results of the experiments using the

proposed method for tracking error propagation for interdependent

predictors.

4.1 Dataset
The experiments presented in this paper were conducted over a

publicly available dataset for condition monitoring of a hydraulic

test rig [6]. The data was collected using a test rig that allows for

reversible degradation of the system’s condition, aiming at provid-

ing information about different faults that can occur during the

system’s operation. The test rig is composed of a primary working

and a secondary cooling-filtration circuit connected via the oil tank.

The measurements of process values were acquired in a constant

load condition that cyclically repeats. Since the goal of this work

is not to detect faults in the system operation, only the portion of

the dataset that does not represent faulty scenarios was used to

train the model. The description of the variables monitored by the

system is presented in Table 1.

Sensor

Physical

Quantity

Sampling

Frequency

PS1 Pressure [bar] 100 Hz

PS2 Pressure [bar] 100 Hz

PS3 Pressure [bar] 100 Hz

PS4 Pressure [bar] 100 Hz

PS5 Pressure [bar] 100 Hz

PS6 Pressure [bar] 100 Hz

MPW Motor Power [W] 100 Hz

FS1 Volume Flow [L/min] 10 Hz

FS2 Volume Flow [L/min] 10 Hz

TS1 Temperature [
◦𝐶] 1 Hz

TS2 Temperature [
◦𝐶] 1 Hz

TS3 Temperature [
◦𝐶] 1 Hz

TS4 Temperature [
◦𝐶] 1 Hz

VS1 Vibration [mm/s] 1 Hz

CE Cooling Efficiency [%] 1 Hz

CP Cooling Power [W] 1 Hz

SE Efficiency Factor [%] 1 Hz

Table 1: Description of dataset variables

4.2 Model Generation
This section describes the processes that led to the generation of

the predictive models evaluated in this paper. We first normalized

each variable with the Min-Max normalization (i.e., data is valued

from 0 to 1, with 0 as the minimum value and 1 as the maximum

observed value). The normalized data were then submitted to a

feature selection process using Pearson Correlation to select the

subset of the most correlated features for each one of the target

variables. To do so, we first defined the number of model inputs K

(total features selection). Next, the Pearson correlations between

a target feature and each other features, lagged by one sample

with respect to the target feature, in the dataset are computed. The

K features with the greatest Pearson correlation with the target

feature are selected.
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To evaluate all possible scenarios of predictor interdependence,

two models were developed for each target variable. One allows

for the prediction of the variable to depend on its last measured

value, and the other does not, namely, autoregressive and non-

autoregressive, respectively. The former leads to a predictor in

feedback, while the latter leads to a predictor in either cascade or
loop configuration.

Feature Selection results for the non-autoregressive and autore-

gressive cases are presented in tables 3 and 2, respectively. Note that

the models are built to make predictions considering the values of

the previous sampling interaction. All models use the same neural

network architecture, consisting of a single hidden layer with 64

neurons with a hyperbolic tangent activation function.

Target Selected Inputs

PS1 PS1, MPW, SE, FS1

PS2 PS2, FS1, SE, PS3

PS3 PS3, FS1, PS2, SE

PS4 PS4, CE, TS2, TS4

PS5 PS5, PS6, TS3, TS4

PS6 PS6,PS5, TS3, TS4

MPW MPW, PS1, SE, PS2

FS1 FS1, PS3, PS2, SE

FS2 FS2, TS4, TS3, TS2

TS1 TS1, TS2, TS4, TS3

TS2 TS2, TS4, TS1, TS3

TS3 TS3, TS4, TS2, TS1

TS4 TS4, TS3, TS2, TS1

VS1 VS1, FS2, CE, CP

CE CE, TS4, CP, TS2

CP CP, CE, TS4, TS2

SE SE, PS2, FS1, PS1

Table 2: Selected inputs for autoregressive predictors

4.3 Results
In this section, we evaluate the performance of interdependent

predictors in five scenarios accounting for the three configurations

(cascade, loop, and feedback) for both stable and unstable situations.

The cascade configuration is always stable. Therefore, we analyze

a single scenario for this configuration.

The autoregressive models were used for the scenarios consid-

ering a feedback configuration. For all other scenarios, the non-

autoregressive models were applied.

4.3.1 Scenario 1 - Cascade Configuration. In this scenario, we re-

place data points from the MPW sensor by their predictions and

evaluate the effect of such replacement on the performance of the

predictor for PS1 sensor data in terms of absolute prediction error.

Since only MPW sensor data points are replaced by their predic-

tions, this scenario corresponds to a cascade configuration, and we

do not conduct the stability analysis.

In Figures 4 and 5, a comparison of the performance of the pre-

dictions with and without interdependence is presented. It is clear

that the prediction error is not highly affected by the replacement

Target Selected Inputs

PS1 MPW, SE, FS1

PS2 FS1, SE, PS3

PS3 FS1, PS2, SE

PS4 CE, TS2, TS4

PS5 PS6, TS3, TS4

PS6 PS5, TS3, TS4

MPW PS1, SE, FS1

FS1 PS3, PS2, SE

FS2 TS4, TS3, TS2

TS1 TS2, TS4, TS3

TS2 TS4, TS1, TS3

TS3 TS4, TS2, TS1

TS4 TS3, TS2, TS1

VS1 FS2, CE, CP

CE TS4, CP, TS2

CP CE, TS4, TS2

SE PS2, FS1, PS1

Table 3: Selected inputs for non-autoregressive predictors

of the inputs by predictions. Moreover, the estimated error provides

a pessimistic estimation of the effects of measurement replacement,

as intended.

Still regarding Figure 4, as one can notice, the predictions with no

interdependence deviate from the measurements and, when there is

interdependence, the waveform resembles more the original signal

than otherwise. However, by taking a close look at Figure 5, one can

see that in both situations the prediction errors remain roughly the

same, and since the predictors are trained to minimize error, both

cases lead to predictions that are equally good from the prediction

error perspective.

Nevertheless, the difference between the estimated prediction er-

ror with interdependence and the actual prediction error is expected,

as described by the mathematical analysis, since the estimated pre-

diction error is an estimate of an upper bound on prediction errors

in case one of the inputs of the predictor is not available.

4.3.2 Scenario 2 - Stable Loop Configuration. In this scenario, we

assume that the data points from PS6 and PS5 sensors are replaced

with their predictions. We evaluate the effect of such replacement

on the performance of the predictor for PS5 sensor data in terms

of absolute prediction error. Since PS5 sensor data serves as input

to the predictor of PS6 sensor data, and PS6 sensor data, in turn,

serves as input to the predictor of PS5 sensor data, this scenario

stands for a loop interdependence configuration.

By evaluating the maximum gradient of both predictor’s outputs,

it is possible to find 𝜆𝑃𝑆6
𝑃𝑆5

= 0.70 and 𝜆𝑃𝑆5
𝑃𝑆6

= 0.67, which implies in

𝑧 = 0.68, as stated in equation 16. Hence, the predictions of PS5’s

values are expected to remain stable.

As expected, Figures 6 and 7 show that even though the predic-

tion error significantly increases when measurements are replaced

by predictions, it remains bounded. The curve labeled "Estimated

Prediction Error - With Interdepence" is computed via error prop-

agation, while the other curves are computed as the difference

between predictions and measurements. Besides the confirmation
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Figure 4: Measurements and predictions for the PS1 sensor
before and after measurements from the MPW sensor are
replaced by predictions. The measurements from MPW start
to be replaced by predictions at t = 0.5s, leading to interde-
pendence between the predictions for PS1 and MPW.

Figure 5: Prediction error and estimated prediction error for
the PS1 sensor before and aftermeasurements from theMPW
sensor are replaced by predictions. The measurements from
MPW start to be replaced by predictions at t = 0.5s, leading to
interdependence between the predictions for PS1 and MPW.

of the stability analysis, the results show that the prediction error

estimation agrees with the observation.

4.3.3 Scenario 3 - Loop Unstable. In this scenario, we assume that

the data points from PS1 and MPW sensors are replaced by their

Figure 6: Measurements and predictions for the PS5 sensor
before and aftermeasurements from both PS5 and PS6 sensor
are replaced by predictions. Themeasurements from PS5 and
PS6 start to be replaced by predictions at t = 0.5s, leading to
interdependence between the predictions for PS5 and PS6.

Figure 7: Prediction error and estimated prediction error for
the PS5 sensor before and after measurements from both
PS5 and PS6 sensor are replaced by predictions. The measure-
ments from PS5 and PS6 start to be replaced by predictions at
t = 0.5s, leading to interdependence between the predictions
for PS5 and PS6.

predictions and evaluate the effect of such replacement in the per-

formance of the predictor for PS1 sensor data in terms of absolute

120



A Method to Evaluate the Performance of Predictors in Cyber-Physical Systems ICPE ’23, April 15–19, 2023, Coimbra, Portugal

Figure 8: Measurements and predictions for the PS1 sensor
before and after measurements from both PS1 and MPW
sensor are replaced by predictions. The measurements from
PS1 and MPW start to be replaced by predictions at t = 0.5s,
leading to interdependence between the predictions for PS1
and MPW.

prediction error. Since PS1 sensor data serves as input to the pre-

dictor of MPW sensor data and MPW sensor data, in turn, serves

as input to the predictor of PS1 sensor data, this scenario stands for

a loop interdependence configuration.

By evaluating the maximum gradient of both predictor’s outputs,

it is possible to find 𝜆𝑀𝑃𝑊
𝑃𝑆1

= 1.03 and 𝜆𝑃𝑆1
𝑀𝑃𝑊

= 1.01, which implies

in 𝑧 = 1.02, as stated in equation 16. Hence, the predictions of PS1’s

values are expected to become unstable.

Figures 8 and 9 show that the predictions get unstable, as pre-

dicted via stability analysis, which means that the prediction error

grows exponentially as time evolves, an effect that is also captured

by the estimated prediction error, which accurately captures the

temporal evolution of the actual prediction error.

4.3.4 Scenario 4 - Feedback Stable. In this scenario, we assume

that the data points from the PS6 sensor are replaced by their

predictions and evaluate the effect of such replacement on the

predictor’s performance for its own sensor data in terms of absolute

prediction error. As PS6 sensor data serves as input to its own

predictor, this scenario represents a feedback configuration.

By evaluating the maximum gradient of the predictor’s output,

it is possible to find 𝜆𝑟
𝑃𝑆6

= 0.36, which implies in 𝑧 = 0.36, as

stated in equation 17. The predictions of PS6’s values are expected

to remain stable.

Figures 10 and 11 show that the prediction errors increase once

the measurements are replaced by predictions, but remain stable, as

predicted via the stability analysis. It is also clear that the estimation

for the predicted error matches the observations for this case.

4.3.5 Scenario 5 - Feedback Unstable. In this scenario, we assume

that the data points from the PS2 sensor are replaced by their

Figure 9: Prediction error and estimated prediction error for
the PS1 sensor before and aftermeasurements from theMPW
sensor are replaced by predictions. The measurements from
PS1 and MPW start to be replaced by predictions at t = 0.5s,
leading to interdependence between the predictions for PS1
and MPW.

Figure 10: Measurements and predictions for the PS6 sensor
before and after its measurements are replaced by predic-
tions. The measurements from PS6 to be replaced by pre-
dictions at t = 0.5s, leading to a recurrent interdependence
between the predictions for PS6.

predictions and evaluate the effect of such replacement on the

performance of the predictor for its own sensor data in terms of

absolute prediction error. Since PS2 sensor data serves as input to its
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Figure 11: Prediction error and estimated prediction error
for the PS6 sensor before and after its measurements are
replaced by predictions. The measurements from PS6 to be
replaced by predictions at t = 0.5s, leading to a recurrent
interdependence between the predictions for PS6.

own predictor, this scenario represents a feedback interdependence

configuration.

By evaluating the maximum gradient of the predictor’s output, it

is possible to find 𝜆𝑟
𝑃𝑆2

= 1.01, which implies in 𝑧 = 1.01, as stated

in equation 17. The predictions of PS2’s values are expected to go

unstable.

Figures 12 and 13 show that the prediction errors increase indef-

initely once the measurements are replaced by predictions, charac-

terizing, as expected, an unstable system. In this case, the estimated

prediction error is not an accurate representation of the actual

prediction error, but it still represents an upper bound for it and

captures the unstable behavior of the predictor in this situation.

5 FINAL REMARKS
Multivariate predictors are usually able to produce more accurate

predictions than other strategies. However, the accuracy of such

predictors can decrease significantly whenever one or more of its in-

puts are actually outputs of other predictors. This effect can be even

more intense in cases where there are cyclic dependencies between

different predictors, as in the loop and feedback configurations

described in Section 3.

In this work, we proposed a method to evaluate whether or not

the dependencies between different predictors, that is, when inputs

of some predictors are outputs of others, will lead to an unbounded

growth of the prediction error due to the dynamics of error propa-

gation, using techniques based on the stability analysis of discrete

linear systems. This method can be used to assess the performance

of systems that make use of several predictors qualitatively, in

terms of prediction error stability, as well as quantitatively, in terms

Figure 12: Measurements and predictions for the PS2 sensor
before and after its measurements are replaced by predic-
tions. The measurements from PS2 to be replaced by pre-
dictions at t = 0.5s, leading to a recurrent interdependence
between the predictions for PS2.

Figure 13: Prediction error and estimated prediction error
for the PS2 sensor before and after its measurements are
replaced by predictions. The measurements from PS2 to be
replaced by predictions at t = 0.5s, leading to a recurrent
interdependence between the predictions for PS2.

of the sensibility of the performance of a predictor with respect

to the correctness of its inputs. Besides the stability analysis, the

proposed method also provides an estimate for the upper bound of
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a predictor’s error based on the error propagation along the ANN

model.

The results presented in the previous section illustrate the ef-

fectiveness of the proposed method. In the first scenario, in which

there was no cyclic dependence between predictors, the predictor’s

error remains bounded, as expected, and the proposed algorithm

for estimating an upper bound for the prediction error is shown to

produce accurate estimates. In cases like the one presented in the

first scenario, an evaluation of the maximum absolute value of the

predictor’s gradient components, with respect to its inputs, a neces-

sary step for the stability analysis, may still be useful to characterize

the sensibility of the predictor to variations of its inputs.

The effectiveness of the method is corroborated by the results

for scenarios 2, 3, 4, and 5, in which the predictors present different

forms of cyclic dependency. The parameters of the predictors, ac-

quired right after the training stage, were used to evaluate the roots

of the characteristic equation for the error propagation dynamics,

and the result of such process accurately predicted whether or not

there would be unbounded growth of prediction error. For both

stable and unstable configurations, the strategy used to estimate an

upper bound fulfilled its purpose, being very accurate for scenarios

2, 3, and 4, but providing a poor estimate for the prediction error in

scenario 5, yet still an upper bound.

When considering the possible impacts of different levels of vari-

ability of the input data on the results, one can assume different

levels of variability of input data would present impacts on the

predictors. The performance of ANN-based predictors is highly

dependent on the training process and, in consequence, the data. In

terms of the impacts on the presented method, in case the variabil-

ity is caused by random noise, it is expected that the sensibility of

the well-trained predictor’s output to each specific variable would

be smaller. Since the mutual information between the predictor’s

output and each input would be smaller, it is expected that the pre-

dictor would be more robust in terms of having a greater margin of

stability, but less accurate. Furthermore, in case of higher variability

in the random noise sense, the expected prediction error would be

higher. Then, our estimate for the upper bound on prediction error

would also be higher.

Other than that, we can also discuss the sensitivity of the pre-

sented method to different datasets. For this discussion, it is impor-

tant to notice that, as previously mentioned, the ANN-based predic-

tor performance is highly dependent on the input data. However,

while the different datasets may incur a faster or slower decrease

in the prediction error (according to the properties of the gener-

ated predictors), the dataset should not affect the validity of the

mathematical analysis presented in the paper as long as the infinite

differentiability property is still valid for the activation function of

the trained predictors.

Given the presented results, the proposed solution represents

two major contributions. The first is a method to estimate the uncer-

tainty of a prediction, in terms of an upper bound for the predictor’s

error, even in the absence of measurement for the prediction to be

compared against. The second is an analytical method to evaluate,

at design time, the conditions in which a set of predictors with

cyclic dependencies will generate predictions with bounded errors.

This is a valuable contribution since, in many CPSs, the instability

of a set of predictors may lead to problems in the decision-making

process and even system failure.
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