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ABSTRACT
Stable and repeatable measurements are essential for comparing
the performance of different systems or applications, and bench-
marks are used to ensure accuracy and replication. However, if the
corresponding measurements are not stable and repeatable, wrong
conclusions can be drawn. To facilitate the task of determining
whether the measurements are similar, we used a data set of 586
micro-benchmarks to (i) analyze the data set itself, (ii) examine
our previous approach, and (iii) propose and evaluate a heuristic.
To evaluate the different approaches, we perform a peer review to
assess the dissimilarity of the benchmark runs. Our results show
that this task is challenging even for humans and that our heuristic
exhibits a sensitivity of 92%.

CCS CONCEPTS
• General and reference → Measurement; Metrics; • Software
and its engineering → Software performance; • Information
systems → Similarity measures.
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1 INTRODUCTION
To compare the performance of different systems or applications, it
is essential to have consistent and repeatable measurements from
one test to the next. Companies and researchers apply benchmarks
for collecting and analyzing data to ensure that their findings are
accurate and can be replicated by others. Hence, according to their
definition [9], benchmarks promise accurate, reliable, and fair com-
parisons between different systems or applications.

To further increase the reliability of benchmarks, measurement
runs are performed multiple times. Ideally, all of these measure-
ment runs should be similar to each other. However, suppose the
measurements are not stable and repeatable. Then, it is difficult to
determine whether any observed differences between systems or
applications are due to actual differences in their performance or
simply due to variability in the measurement process itself or any
external factors. This can lead to incorrect conclusions.

Consequently, assessing the similarity of experiment runs is a
mandatory task. To understand the performance behavior of a par-
ticular system or process, expert knowledge is required. However, it
is not always feasible to consult an expert, for instance, to compare
many different applications at once, as performed in the underlying
data set [8] used in this work. So, the interpretation of the results
is the responsibility of non-experts and may be error-prone. To
accommodate this, often mean and standard deviation are used for
the interpretation [6].

By stating this, the aim of this paper is threefold: (i) We examine
the underlying data set [8] by assessing the similarity of perfor-
mance measurements of 586 micro-benchmarks from 30 popular
Java open source projects; (ii) We use the data set to investigate our
former approach, which we henceforth refer to as SAME, for de-
tecting dissimilar measurement runs [6], which was only applied to
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three data sets; (iii) We introduce a heuristic for detecting dissimilar
measurement runs based on five different dissimilarity measures1.
To investigate SAME and the proposed heuristic, we performed
a peer review on whether each benchmark run is similar. The re-
viewers had an average agreement of only 55% in the assessment,
demonstrating that assessing the similarity of a benchmark run is
challenging. We only considered the benchmark runs where the
reviewers agreed to evaluate SAME and the proposed heuristic. On
this subset, SAME exhibits a specificity of 83% while our heuristic
yields a sensitivity of 92%. Simply put, SAME can detect 83% of the
similar benchmark runs, whereas the proposed heuristic can find
92% of the dissimilar benchmark runs. In summary, SAME and our
heuristics give good results for the severity of the task. Therefore,
they can be used to pre-select whether a benchmark run is similar
so that an expert can finally evaluate them.

The remainder of this paper is structured as follows: In Section 2,
we introduce the data set, the statistical measurement we apply,
SAME, and related work. In Section 3, we explain the proposed
heuristic and investigate the data set. In Section 4, we discuss the
evaluation of the peer review, SAME, and the heuristic. In Section 5,
we conclude the paper.

2 BACKGROUND
2.1 Data Set
Traini et al. [8] provided the data set2 used in this paper. It includes
a large set of performance measurements for 586 microbenchmarks
from 30 popular Java open-source projects. These microbench-
marks were executed using the Java Microbenchmark Harness
(JMH) framework in a controlled environment, and the results in-
clude 3000 measurement batches per benchmark, repeated in 10
runs. This results in over 9 billion benchmark invocations. The data
set also contains the Git revisions at which the benchmarks were
executed. In this article, we consider only the benchmark runs.

2.2 Fleiss’ Kappa Analysis
To decide whether all measurement runs of a benchmark are similar,
we performed a peer-review analysis (see Section 4). As humans
do this assessment, there may be conflicting reviews. To this end,
we apply the statistical measurement Fleiss’ Kappa analysis [1, 3]
computing a value ^ to quantify the level of agreement between
reviewers and factor out agreement due to chance. Based on [5],
^ < 0 is equivalent to a low agreement, ^ ∈ [0.01, 0.2] is equivalent
to a slight agreement,^ ∈ (0.2, 0.4] is equivalent to a fair agreement,
^ ∈ (0.4, 0.6] is equivalent to a moderate match, ^ ∈ (0.6, 0.8]
is equivalent to a substantial match, and finally ^ ∈ (0.8, 1] is
equivalent to a almost perfect match.

2.3 SAME
In a previous work [6], we proposed an automated approach to
detect dissimilar measurement runs, which we refer to as SAME.
The key idea is to calculate four (dis)similar measures for each
pair of runs, resulting in four 𝑛 × 𝑛 matrices with 𝑛 being the
number of measurement runs, each entry describing the similarity
1The implementation of the heuristic, SAME, and the complete evaluation is available
at https://codeocean.com/capsule/2914545/tree/v1
2GitHub: https://github.com/SEALABQualityGroup/icpe-data-challenge-jmh

between two measurements. The calculated measures are Cosine
similarity, Wave-Hedgets distance, Kumar-Hassebrook distance,
and scaled root mean squared error. Then, these four matrices are
averaged into one 𝑛 × 𝑛 matrix. Afterward, this matrix is fed into
an agglomerative clustering algorithm. If all measurement runs are
similar, the clustering finds only one cluster. If there are at least
two clusters, it is assumed that there are divergent runs.

2.4 Related Work
Different work, such as empirical studies, guidelines, or methods
for detection, have been proposed to address dissimilar benchmark
runs. For instance, Traini et al. [8] showed that a significant num-
ber of the 586 benchmarks they examined do not always reach a
steady state. That is, these benchmarks suffer from performance
fluctuations and thus produce dissimilar experiment runs. In an-
other work, Costa et al. [2] investigated 123 Java projects and their
micro-benchmarks regarding five bad practices. To mitigate these
bad practices, the authors provide several recommendations for
developing such benchmarks. To predict whether a benchmark is
stable ahead of its execution, Laaber et al. [4] introduced a machine
learning-based approach utilizing 58 statistical source code features.
The model was trained on 4,461 Go benchmarks and exhibited an
area under the curve of up to 90%.

3 APPROACH
3.1 Dissimilarity Measures
In contrast to SAME, which relies only on distance-based measures,
our approach utilizes measures that capture different relationships
between a pair of measurements. In the following, we describe the
five measures ∈ [0; 1] describing the similarity of two measurement
runs (we refer to it as time series) 𝑌 and𝑋 with length 𝑛. The closer
a measure is to 0, the more similar 𝑌 and 𝑋 are to each other.
M1 The Correlation Dissimilarity considers the Pearson correlation
coefficient 𝜌𝑋,𝑌 to capture whether two time series have the same
timely behavior. We calculate 1 −𝑚𝑎𝑥 (𝜌𝑋,𝑌 , 0) to have a perfect
correlation yielding zero.
M2 The key idea of Compression-based Dissimilarity is to compress
two time series and find similar patterns within them. First, each
time series is transformed into a string of characters with Symbolic
Aggregate approXimation (SAX) [7]. Then, each transformed time
series is compressed by finding recurring patterns in the time series
and replacing them with a symbol. If two time series show the
same patterns but are shifted in time, the two compressions yield
the same length. Let 𝑐𝑋𝑌 be the length of the compression of the
concatenated time series, 𝑐𝑋 and 𝑐𝑌 the length of the compression
of the individual time series, we calculate this measure as 2·𝑐𝑋𝑌

𝑐𝑋 +𝑐𝑌 −1.
M3 The Fourier Coefficient Distance quantifies the distance between
the time series in the spectral domain. To this end, the fast Fourier
transformation is applied to each time series. Then, the normalized
L2 norm ∥𝑋−𝑌 ∥2

∥𝑋 ∥2+∥𝑌 ∥2 is applied to measure the similarity between
the transformed time series.
M4 The Cosine Dissimilarity quantifies the similarity of two time
series with the cosine similarity 𝑆𝑐 =

⟨𝑋,𝑌 ⟩
∥𝑋 ∥22+∥𝑌 ∥22

. To have an abso-
lute similarity yielding zero, we calculate 1 −𝑚𝑎𝑥 (𝑆𝑐 (𝑋,𝑌 ), 0).
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M5 The Kolmogorov–Smirnov Statistic quantifies the maximum dis-
tance between the two empirical distribution functions 𝐹 of the
two time series and is defined as sup𝑡 |𝐹𝑋 (𝑡) − 𝐹𝑌 (𝑡) |.

3.2 Proposed Heuristic
To assess the similarity between two measurement runs, we apply
the measures M1 to M5. In case the majority of measures (i.e., at
least three of five) exhibit a value above a pre-set threshold \ , we
consider two runs dissimilar. We set the threshold3 \ = 0.25 because
we tend to be risk-averse and would rather repeat a benchmark
run than publish a dissimilar run. Figure 1 shows four examples
with the associated measures (red indicates a value > 0.25). The
offset examples (left column) and the double frequency example
(top right) are labeled dissimilar as at least three measures exhibit
a value greater than 0.25. In contrast, the noise example (bottom
right) is labeled as similar.
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Figure 1: Schematic idea of the proposed heuristic.

To decide if a benchmark run (in this case of the data set, the
ten measurement repetitions) is dissimilar, Algorithm 1 is applied.
First, the heuristic calculates for each pair of measurement runs
the five measures (Line 3–6), leading to 5 · ∑𝑛−1

𝑖 𝑖 = 5
2 (𝑛 − 1)𝑛

measures stored in a 0.5(𝑛 − 1)𝑛 × 5 matrix. In the case of the
data set, the resulting matrix has the dimensions 45 × 5. Then in
Line 7, the mean is applied to the different measures so that each
of the five measures represents the averaged value over the whole
benchmark run. Finally, if three of the five averaged measures yield
a value higher than 0.25, the benchmark run is considered dissimilar
(Line 11–13).

3.3 Analysis of the Data Set
To illustrate the used measures and analyze the data set, Figure 2
shows averaged values for each application in the data set and for
each dissimilarity measure. More precisely, each cell is the averaged
measure over all benchmarks in the application. Again, a value of
0 means perfect similarity according to the measure. Measure M2
reports high values for dissimilarity throughout all applications,

3We have tried different numbers, and setting the threshold to 0.25 had shown the
best results according to our risk aversion

Algorithm 1: Proposed heuristic.
Data: measurement runs 𝑟
Result: Decision 𝑑 whether the runs are similar.

1 m = [];
2 count = 0;
3 for i = 0; i < size(r)-1; i++ do
4 for j = i+1; i < size(r); j++ do
5 [𝑚1,𝑚2,𝑚3,𝑚4,𝑚5] = calcDissimilarity(r[i],r[j]);
6 m.appedRow([𝑚1,𝑚2,𝑚3,𝑚4,𝑚5]);

7 m = columnMean(m);
8 for i = 0; i < 5; i++ do
9 if m[i] > \ then
10 count++;

11 if count > 2 then
12 return dissimilar
13 return similar

while other measures like M4 or M5 report low values for all ap-
plications. The application exhibiting the highest dissimilarity is
HdrHistogram. To this end, Figure 3 depicts the dissimilarity mea-
sure for each benchmark used for HdrHistogram. Here, Measure
M1–M4 yield high values for almost all benchmarks. The bench-
mark run with the highest dissimilarity is B17, which can be ex-
plained by taking Figure 4 into account. For instance, the last 500
measurements of all runs are different. In addition, some runs, such
as Run 1 or 7, show a wave pattern, while others, such as Run 8,
show no or very weak wave patterns.
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Figure 2: Averaged measures for each application.
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Figure 3: Averaged measures for each benchmark for the
HdrHistogram application.
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Figure 4: Measurement runs for B17 from HdrHistogramm.

4 EVALUATION
4.1 Peer Review Assessment
We applied a peer review-based approach with four reviewers, lead-
ing to six review pairs. To this end, we divided the data set randomly
into six parts. Each part was then analyzed by one of the possible
reviewer pairs. The assignment of the pairs was unknown to the
reviewers to guarantee unbiased reviews. To analyze a benchmark
run, the reviewer saw all ten measurements at the same time and
had to decide if the measurements are similar or dissimilar.

To assess the agreement of the four reviewers, we first investigate
the pairwise agreement. To this end, Table 1 shows the agreement
between the reviewers in percentage. The first and second reviewer
had the lowest agreement, while the second and fourth reviewer
had the highest agreement. In total, the reviewers agreed on 55% of
all runs. The corresponding Fleiss’ Kappa analysis yielded a value
of 0.1, that is, a slight agreement between the four reviewers. The
agreement rate and the low kappa value indicate that deciding
whether a benchmark run is similar in the data set is challenging
and might even be subjective.

Table 1: Reviewer agreement.

R1 - R2 R1 - R3 R1 - R4 R2 - R3 R2 - R4 R3 - R4

47% 57% 35% 53% 77% 62%

In the following, we only consider the cases where the reviewers
agreed, that is, 324 out of the original 568 benchmark runs. On this
subset, the reviewers identified 189 benchmark runs as dissimilar
and 135 as similar.

4.2 Investigation of SAME
As mentioned above, we evaluated SAME on the remaining 324
benchmark runs. Table 2 shows the comparison of SAME’s classi-
fication with the reviewed results. SAME correctly identified 112
of 135 benchmark runs as similar, resulting in a specificity of 82%

(i.e., the quality of the approach detecting similar benchmark runs).
However, SAME also classified 137 runs as similar, even though
they were labeled dissimilar.

Table 2: Confusion matrix between review and classification.

Review
SAME Similar Dissimilar

Similar 112 23
Dissimilar 137 52

4.3 Investigation of the Heuristic
We evaluated our heuristic on the remaining 324 benchmark runs.
Table 3 shows the confusion matrix between the classification of
the heuristic and the reviewed results. Our heuristic found 173 of
189 benchmark runs that were labeled as dissimilar. This leads to a
sensitivity of 92%, that is, the quality of our heuristic’s ability to
detect dissimilar benchmark runs. However, the heuristic wrongly
classifies 82 benchmark runs as dissimilar. Nonetheless, in this case,
it is better to classify one benchmark run too many as dissimilar
than to overlook one dissimilar benchmark run. This is because the
dissimilar classified benchmark runs can still be analyzed afterward.

Table 3: Confusion matrix between review and classification.

Review
Heuristic Similar Dissimilar

Similar 53 82
Dissimilar 16 173

4.4 Discussion and Threats to Validity
As our heuristic was evaluated on a peer-reviewed analysis, the
results must be viewed critically, as the analysis may be prone
to errors. Thus, we cannot verify the correctness of the heuristic.
However, we see the heuristic as a helpful tool that can be used
to pre-filter dissimilar runs, and then an expert can make a final
decision. Nonetheless, applying the heuristic on labeled data sets is
easy because it is generic. Also, the heuristic can be easily adapted
for other purposes since the only parameter is the similarity thresh-
old \ , which can be set individually. In case measurements should
be wrongly classified as dissimilar rather than vice versa, we recom-
mend low values (e.g., 0.25, as we did in the experiments). However,
the parameter could also be tuned to any data set.

5 CONCLUSION
To support the task of determining whether performance measure-
ments are similar, we used a data set of 586 micro-benchmarks to
analyze the data, evaluate the approach of Leznik et al. [6], and
propose and test a heuristic. We used a peer review to assess the
dissimilarity of 586 micro-benchmark runs and found that even for
humans, this task is difficult. Our heuristic exhibits a sensitivity of
92% on this data set, enabling a pre-filtering of measurements that
an expert can verify.
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