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ABSTRACT
Performability is the classic metric for performance evaluation
of static systems in case of failures. Compared to static systems,
Self-Adaptive Systems (SASs) are inherently more complex due to
their constantly changing nature. Thus software architects are fac-
ing more complex design decisions which are preferably evaluated
at design-time. Model-Based Quality Analysis (MBQA) provides
valuable support by putting software architects in a position to
take well-founded design decisions about software system quality
attributes over the whole development phase of a system. We claim
that combining methods from MBQA and established performabil-
ity concepts support software architects in this decision making
process to design effective fault-tolerant adaptation strategies. Our
contribution is a model-based approach to evaluate performability-
oriented adaptation strategies of SAS at design-time. We demon-
strate the applicability of our approach by a proof-of-concept.

CCS CONCEPTS
• Software and its engineering → Software architectures;
Model-driven software engineering; Extra-functional prop-
erties.
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1 INTRODUCTION
Performability has brought together the disciplines for modeling
and evaluating performance, reliability and availability attributes
of software systems. Failure types (e.g. hardware, software and net-
work failures) are known causes in performance engineering that
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lead to undesirable conditions or system degradation. Performabil-
ity is the classic metric for performance evaluation in the presence
of system failures. It allows the impact of failures on system Quality
Attributes (QA) to be measurable and comprehensible. Well-known
works in this context have focused on modeling and evaluating
static software systems [9, 12].

As Self-Adaptive Systems (SASs) are known to operate in highly
interconnected and volatile environments, we argue that they pro-
vide essential means for dealing with performability-specific qual-
ity objectives. Unlike static systems, SASs introduce challenges
that one must consider during development: (𝑖) the increased de-
sign space and (𝑖𝑖) the dynamic behaviour of SAS. As SASs are
generalizations of static systems, the design space is expanded by
SAS-specific design decisions. The dynamic behaviour of an SAS is
induced by the operating environment and the adaptation strategy.
SASs rely on adaptation strategies to realize runtime adaptations
[7]. The changes by adaptations may have long-term effects on
the quality objectives - known as Parameters over time [6] - that
one has to consider when assessing the quality of an adaptation
strategy and are hard to foresee. Performability-specific quality
attributes are observed at runtime but must be already considered
at design-time (DT) to make design decisions that meet the quality
requirements. Thus a challenge at DT is to evaluate the effective-
ness of fault-tolerant runtime adaptation strategies in situations
like node failures. Poorly implemented adaptation strategies can
result in operational and economic losses.

Model-Based Quality Analysis (MBQA) methods have proven
successful in making informed decisions about system QA in the
design phase. Various modeling and simulation tools exist that
allow the prediction of performance or reliability attributes at DT
(e.g. the Palladio approach [16] for static systems and SimuLizar
[3] for SASs). We argue that combining established performability
concepts with existing MBQA methods allow the evaluation of SAS
adaptation strategies at DT to help building more resilient software
systems by preventing system degradation through the design of
effective adaptation strategies.

In this paper we address the research question: How to de-
termine and evaluate the effectiveness of adaptation strategies with
respect to QA fulfillment in case of runtime uncertainties? We discuss
the required concepts to transfer the performability domain [9] to
SASs together with the integration into an appropriate MBQA anal-
ysis framework [17] to evaluate SAS runtime adaptation strategies
at system DT. The focus of [17] was in developing a framework for
(i) modeling the operating environment of an SAS and (ii) an anal-
ysis approach that evaluates the quality of an adaptation strategy
w.r.t. the modelled environment and specific quality objectives. This
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paper reuses the concepts of [17] to evaluate adaptation strategies
w.r.t. performability-specific quality objectives. We contribute to
this line of work in three ways:

C1 Using SAS to maintain performability attributes of a
system:We generalize formally and informally existing and
well-known work from the performability domain to SAS.

C2 Simulation of failure scenarios: A simulation approach
to predict performance attributes which reflect the quality
objectives the SAS must maintain in the presence of system
failures.

C3 Performability-specific adaptation strategy evaluation:
We integrate performability metrics from literature as per-
formance indicators to assess the quality of an adaptation
strategy.

Existing approaches useMarkov Reward Models (MRMs) as basis for
DT evaluation. However, MRMs assume a static and non-adaptive
system behaviour. As for contribution C1, we expand the concept to
Markov Decision Processes (MDPs) to account for SAS which we con-
sider as the primary means to tackle performability requirements of
a system. This serves as basis for contributions C2 and C3. Regard-
ing contributions C2 and C3, we reuse the analysis framework of
[17] by adding a novel failure scenario simulation and by integrat-
ing existing performability metrics from literature to evaluate the
quality of adaptation strategies. The proposed approach allows the
evaluation of SAS adaptation strategies to maintain performability-
specific QAs. We prototypically implemented our approach and
demonstrated its applicability with a proof-of-concept.

2 RUNNING EXAMPLE
Our running example is the Znn.com system which is widely used
in the SAS community [5]. The system is managed by an SAS
to distribute the incoming load to keep the system responsive. It
consists of an adaptive load balancer and two individual application
server components (see Figure 1). Each component is deployed on

Web Server node

Application Server 1 node

Application Server 2 node

  Application 
  Server 1

 Application
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Application Server 1

<<ExternalCall>>
Application Server 2
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Figure 1: Znn.com-based system taken from [17]

one node. The system encounters overload scenarios with high
workloads that deteriorate system performance. Since the context
of this work is performability, we transfer the system into the
performability domain. Both application server nodes are subject
to individual node failures. Regarding performability, hardware
failures are considered as a second factor, along with increased
workload, that potentially degrades the performance of the system.

For example, consider the situation of high workloads and the
unavailability of application server 1. Thus, the adaptation problem
becomes more complex because the system must not only remain
responsive in high load scenarios but also deal with situationswhere
hardware resources are not available to distribute the incoming
load as best as possible.

3 PRELIMINARIES
This section introduces the foundations needed to understand the
concepts described in this paper.

3.1 Mathematical framework of performability
modelling

We use the mathematical framework of performability evaluation
from Haverkort et al. [9] to show the mathematical consistency of
our approach. The framework defines 𝑆 as the set of all possible
configurations in which the system can operate. The continuous-
time stochastic process 𝑋 = {𝑋 (𝑡), 𝑡 ≥ 0} describes the system
structure (including the system components that can fail) at time
𝑡 and is termed Structural State Process. The Reward Rate Function
𝑟 : 𝑆 → R on state space 𝑆 defines the steady-state performance of
the system in structure state 𝑠 ∈ 𝑆 . 𝑟𝑠 denotes the reward obtained
from state 𝑠 , i.e. 𝑟𝑠 = 𝑟 (𝑠). The reward function 𝑟 is defined by
multiple performance analyses, each of which is associated with a
performance indicator e.g. response time (RT) or throughput. The
value 𝑟𝑠 summarizes the system performance in state 𝑠 taking into
account the individual performance indicators. The value of 𝑟𝑠 is
obtained by a classic performance analysis under the assumption
that the system is failure-free where the system configuration re-
flects the components that are up and down in structure state 𝑠 . The
framework distinguishes four basic performability measures. Here
we focus only on the steady-state performability (SSP). 𝑃𝑟 (𝑠) is the
steady-state probability of residing in state 𝑠 ∈ 𝑆 at any time 𝑡 . The
SSP is calculated by 𝑆𝑆𝑃 =

∑
𝑠∈𝑆 𝑃𝑟 (𝑠) · 𝑟𝑠 . The reward function 𝑟

induces a MRM defined over process 𝑋 . As 𝑋 is a continuous-time
Markov chain, the process 𝑋𝑟 = {𝑋𝑟 (𝑡), 𝑡 ≥ 0} is denoted Markov
reward process representing an MRM [10]. 𝑋𝑟 differs from 𝑋 in
that it is not the structure of the considered system but the possible
reward one would observe w.r.t. the system structure.

3.2 The Dynamics of Self-Adaptive Systems
We consider the dynamics of an SAS as a discrete stochastic process
captured by an MDP. MDPs are accepted to describe the stochastic
nature of SASs (e.g. [13]) and the formalization of the encountered
engineering problem at SAS development [17]. An MDP is char-
acterized by 4 elements: (𝑆,𝐴, 𝑡, 𝑟 ). 𝑆 and 𝐴 refer to a set of states
and actions. Let 𝑠 and 𝑠′ be two states (i.e. 𝑠, 𝑠′ ∈ 𝑆), the transition
function 𝑡 : 𝑆 ×𝐴 × 𝑆 → [0, 1] determines the probability of tran-
sitioning from a given state 𝑠 (where action 𝑎 ∈ 𝐴 was taken) to
state 𝑠′. The reward function 𝑟 : 𝑆 × 𝐴 × 𝑆 → R assigns a value
or reward 𝑟 ∈ R to the decision of selecting action 𝑎 in state 𝑠 by
considering state 𝑠′ into which the system has transitioned. The
value 𝑟 is called reward. A policy 𝜋 : 𝑆 → 𝐴 determines the action
to be taken in any state. The primary objective is to find a policy
that maximizes the sum of the resulting rewards.
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4 APPROACH
Performability evaluation was applied for DT analyses of static
systems. This does not cover structural changes of the system con-
figuration over time resulting from actions of selected dynamic
reconfigurations due to changed environmental conditions at run-
time. With reference to Grassi et al. [8] we suggest to extend their
work to SAS as they are a more recent representative of dynamic
reconfigurable systems. We extend the traditionally used MRMs to
MDPs where adaptations form the semantically equivalent concept
of actions. This allows us to explore the effects of adaptation actions
on system QoS attributes. Extending MRMs to MDPs requires a
closer look at the following concepts: (i) formalize the extension of
MRMs to MDPs in the context of SASs (ii) identify the influencing
uncertainty factors in the performability domain and their represen-
tation in the SASs environment (iii) construct the reward function
based on classic performability metrics (iv) integrate (i)-(iii) into a
suitable MBQA analysis framework.

4.1 Extending MRMs to MDPs in the context of
SASs

Originally, a structural state 𝑠 (from section 3.1) defines a particular
system configuration. We expand this concept by defining a state
𝑠 := (𝐶, 𝐸) ∈ 𝑆 as a tuple where 𝐶 refers to the original structural
state and 𝐸 to an environmental state. 𝐸 encompasses all variables
which impact the system quality. The dynamics of an SAS can
be environmental driven (𝑠 := (𝐶, 𝐸) transitions to 𝑠′ := (𝐶, 𝐸′)),
adaptation driven (𝑠 := (𝐶, 𝐸) transitions to 𝑠′ := (𝐶′, 𝐸) based on
adaptation 𝑎 ∈ 𝐴 such that𝐶 ≠ 𝐶′) or both. Thus, the set of actions
𝐴 refer to the set of adaptations of an SAS. We consider a policy
𝜋 of an MDP as adaptation strategy which decides based on the
current environmental state and system configuration whether an
adaptation is applied or not. Opposed to Haverkort et al. [9], we
associate a triple (𝑠, 𝑎, 𝑠′) with a reward 𝑟 evaluated by a reward
function 𝑟 (𝑠, 𝑎, 𝑠′) which is determined based on the performance
indicators that can be derived from 𝑠′ := (𝐶, 𝐸).The reward function
assigns rewards to decisions made by adaptation strategy 𝜋 based
on performability measures.

4.2 Uncertainty factors in the performability
domain

Performability literature denotes changes of the system’s structure,
internal state and environment as the main impact factors on the
system’s performance indicators [9]. Here a system consists both
of the object system representing the computing system being eval-
uated and its operating environment (workload, external faults, etc)
[12]. SASs are exposed to various sources of uncertainties classi-
fied into four groups each with a set of characteristic sources of
uncertainty that relate to the: (i) system itself consisting of both the
managed and the managing system, (ii) goals of a SAS, (iii) context
of a SAS, (iv) humans involved in the functioning or operation of
a SAS [20]. The sources of uncertainties can manifest themselves
at DT or runtime. Avizienis [2] presented a common taxonomy of
failure type characterization that includes hardware, software and
network failures. This suggests that the influencing uncertainty
factors impacting the SAS and its environment in the performabil-
ity domain are the workload and the external faults that impact

the system structure. A domain-specific view of the environment
model with regard to failure representation consists of the relevant
influential factors and conditions of failure events on the system
and its QAs.

4.3 Performability-based reward function
SASs adapt themselves by selecting dedicated actions due to ob-
served environmental changes. We need to evaluate decisions about
a selected action on the system’s quality attributes. To evaluate the
effectiveness of adaptation strategies at DT in case of uncertain
situations, we extend the originally proposed reward state function
𝑟 : 𝑆 → R for static systems (see section 3.1) to 𝑟 : 𝑆×𝐴×𝑆 → R for
SASs (see section 3.2). Thus it is possible to evaluate not only the
state but also the adaptation leading to this state. We also extend
the structural system state definition of the original reward state
function according to the state definition we gave. The structural
system state 𝐶 is expanded by the current environmental state 𝐸
such that a state is defined as a tuple 𝑠 := (𝐶, 𝐸). The reward assigns
a value 𝑟𝑠 to the decision of selecting an adaptation 𝑎 in state 𝑠 by
considering the transitioned state 𝑠′. The reward value 𝑟𝑠 is mapped
to a performance indicator e.g. the system’s response time (RT) in
state 𝑠 . As before, the reward value 𝑟𝑠 reflects the steady-state per-
formance of the system w.r.t. a set of performance indicators. For a
given state 𝑠 we run a classical performance analysis analogous as
originally proposed in the performability literature. Thus, we can
still use the classic performability measure of SSP to quantify the
current performance level of the system after a transition by using
the SSP as performability measure.

4.4 Simulation of failure scenarios
SimuLizar simulates modeled SASs [3]. During the simulation it
determines QAs under load to measure performance. Errors of the
simulated system cannot be taken into account by SimuLizar. There-
fore we enhanced SimuLizar’s analysis support to make statements
about resilience of software systems at DT by injecting failures
into the modeled system at specific times of the simulation. There-
fore we developed a Failure metamodel to support the modeling of
complex faults and failure scenarios with respective DT analysis
by modeling failure types and failure scenarios explicitly [11]. The
Failure metamodel follows the basic concepts and taxonomy of de-
pendable computing as presented in [2]. It separates the FailureType
specification from the FailureScenario specification (see Figure 2
and Figure 3) to describe the occurrence and effect(s) of a failure
on the system. SimuLizar uses the Failure metamodel to generate
failure events at simulation time. The changed system behavior
after the occurrence of an error is also taken into account by the
simulation.

FailureType: A (service) failure “is defined as an event that oc-
curs when the delivered service deviates from correct service. The
different ways in which the deviation is manifested are a system’s
service failure modes.” ([2]). Avizienis et al. describe four different
viewpoints of service failure modes that characterize incorrect ser-
vices, namely (i) failure domain, (ii) detectability , (iii) consistency
and (iv) consequences of failures on the environment. Thus the Fail-
ureType metamodel describes a failure from multiple viewpoints. It
supports the explicit modeling of failures to express where, how

11



ICPE ’23 Companion, April 15–19, 2023, Coimbra, Portugal Martina Rapp, Max Scheerer, & Ralf Reussner

Figure 2: UML class diagram - Failure viewpoints[1]

Figure 3: UML class diagram - Failure scenario [1]

and when a failure can occur in the system. The Failure element
represents a failure domain and specifies the location of an error.
The metamodel distinguishes between software (SWFailure), hard-
ware (HWFailure) and network failure (LinkFailure) domains. The
Domain element represents the consequences of a failure. It defines
the failure types Timing, Content and in addition to [2] Crash. The
Timing and Content elements specify failure types that do not cause
immediate system interruption but affect the system otherwise. The
Timing element’s attributes delay and scalingFactor model time de-
lays either due to fixed disturbances or the extension of certain
execution times. The Content element specifies the circumstances
affecting system behavior by giving a corruption value. A system
failure can occur later as a result. The attribute degreeOfCorruption
specifies how the return values, related parameters or variables of
the system should deviate from correct values. The Crash element
represents a component failure that interrupts the execution with-
out any detailed description. By default, the metamodel considers
an error as permanent. A concrete FailureType can now be modelled
by creating a class which derives from both Failure and Domain.
For instance, a HWCrashFailure as applied in the context of this
work, describes a hardware failure in the form of a server failure.
For the complete list of FailureTypes see [11].

FailureScenario: A FailureScenario integrates failures into the
overall system model by a chronological sequence of the failure
occurrences. The Occurrence references a dedicated failure type via
the Failure element and specifies its temporal occurrence by the
attribute pointInTime. Thus the same failure type can occur multiple
times in the system at different point in times. The Reference element

MBQA 

Framework  A   B

Environment Model

Architecture Model      


Model Transformation


Adaptation

Strategy

Reward
Function

Figure 4: SimExp - Overview of the MBQA framework
(adopted from [18]).

determines the failure type’s manifestation, i.e. the failure’s origin
in the system.

Failure scenario simulation: A failure event represents a specific
failure type that occurs at a distinct point in time of the simulation.
The FailureScenariomodel specifies which failure type should occur
when at system simulation time. The FailureType model and the
FailureScenario model together thus form the base for SimuLizar
to create all required failure events of the simulation. SimuLizar
builds for each Occurrence in all FailureScenarios a failure event.
In SimuLizar the concept of Behavior encapsulates the impact of
an failure event to the system behavior. For each concrete Failure-
Type SimuLizar calculates the impact to the system behavior. An
interpreter in SimuLizar uses an Behavior to change the simulated
resources which has an impact on the simulation result.

A more detailed discussion about the internals of SimuLizar’s
failure scenario support is out of scope due to limited space.

4.5 Analysis framework integration
We enhanced the MBQA framework SimExp [17] (see figure 4 for
overview) to support the DT evaluation of fault-tolerant runtime
adaptation strategies in uncertain situations, integrating the con-
cepts discussed in subsections 4.1-4.4.

The SimExp framework runs a simulation of the system over
time based on the following inputs: (i) environment model, (ii)
architectural model and (iii) a set of model transformations. The
environment model captures the operating environment and can
be considered as a probability distribution to characterize the sto-
chastic nature of the environment. The architecture model based
on the PCM metamodel represents the system architecture [16].
The set of model transformations represent the adaptations to the
architecture model. Applying a model transformation evolves the
current architecture model to a new architecture model that corre-
sponds to the system after applying an adaption at runtime. The
simulation is driven by sampling environmental states from the en-
vironment model and by applying model transformations whenever
the adaptation strategy decides to adapt the system. The simula-
tion procedure implements Monte Carlo methods to simulate an
MDP expressed as Dynamic Bayesian Network (DBN, see [17] for
details). The resulting accumulated reward serves as a basis to eval-
uate design decisions within a family of strategies or to compare
two different strategies.

12



Design-time Performability Evaluation of Runtime Adaptation Strategies (Work In Progress Paper) ICPE ’23 Companion, April 15–19, 2023, Coimbra, Portugal

WL WL'

Node1'

Node2'

static  temporal dynamics

time slice 0 time slice 1 time slice 2

Node2''Node2

Node1 Node1''

WL''

Figure 5: Modeling of node failures - DBN of environment
model unrolled over 3 steps

4.5.1 Failure representation - Environment model. Following classic
performability literature [12], our approach represents the object
system as the architectural model and the operating environment
as the environment model. The environment model contains events,
that are observable in the system’s environment and have an impact
on the system’s quality attributes. In case of performability these
are the uncertainty factors discussed in 4.2. Our approach only con-
siders failure events which have an impact on the system’s structure.
We extend the environment model with a domain-specific view for
failure representation by supplying a persistent failure model. A
failure event transitions the system to a faulty state. Modeling of
failure events is done on the type level as environment variables
in the environment model. We unified different kinds of failure
types as defined by [2]. All failures are represented as failure events.
Our assumptions were: A failure may represent a failed node. A
node represents a resource container with a single CPU. A node
can be in one of two states [available, unavailable]. Failures are
stochastically independent but may depend on the workload. Each
failure is modelled as a random variable following a multinomial
distribution. By using a DBN [17] we can model the environmental
state at time 𝑡 as a tuple of random variables (𝑊𝐿, 𝑁1, . . . , 𝑁𝑛) in
which𝑊𝐿 specifies the probability of the current workload and
𝑁𝑖 the probability of a resource failure of server node 𝑖 . This is
achieved by modeling an directed acyclic graph containing a set
of nodes, i.e. the random variables (𝑊𝐿, 𝑁1, . . . , 𝑁𝑛) and a set of
edges to describe the dependencies or correlations between the
random variables. For example, there is one directed edge each
from𝑊𝐿 to 𝑁1 and 𝑁2 to indicate that an increased workload cor-
relates with observing a specific node failure. The DBN models
the temporal dynamics of node failure occurrences by inductively
specifying their probabilistic evolution from time 𝑡 to 𝑡 + 1 (i.e.
𝑃 (𝑊𝐿′

𝑡+1, 𝑁
′
1𝑡+1 , . . . , 𝑁

′
𝑛𝑡+1 |𝑊𝐿𝑡 )) which can be unrolled (by sam-

pling from the distribution) for many time steps. Figure 5 shows our
modeling scenario of hardware failures defined as DBN unrolled
over 3 steps.

4.5.2 Reward calculation - Performability metric based reward func-
tion. Performability evaluation uses various performance indica-
tors. In our context, we have chosen the RT as system performance
indicator. However, how do system failures manifest themselves in
the RT? From a theoretical perspective, the RT is infinite in case
of failures. From a practical perspective we argue that in a real
system requests can be dropped in case of failures. This yields in

an exceptional behavior that should be handled accordingly by the
system. Consequently the RT will not fully reflect the unexpected
behavior. Thus we adjusted the traditional performability metric
of summing up the weighted RTs by introducing the success rate
(SR) as additional performance indicator. The applied performance
simulation tool SimuLizar [3] predicts the system’s RT as the time
span between a measured start and endpoint of a system call. The
failure occurrence has no impact on the RT and is not reflected
in a declined measured RT. To determine the occurrence of fail-
ures during a simulation requires an additional metric to calculate
the SR of a system call. Both metrics together permit a statement
about the manifested impact of failures on the system’s RT. They
serve as our performability-based metric for reward calculation.
The performability-based reward function 𝑟 is:

𝑟 : 𝑆 ×𝐴 × 𝑆 → [0, 2], 𝑟 (𝑠, 𝑎, 𝑠′) = 𝛼 · 𝑟𝑡 (𝑠′) + 𝛽 · 𝑠𝑟 (𝑠′) (1)

𝑟𝑡 (𝑠′) and 𝑠𝑟 (𝑠′) represent the simulation procedures to predict
RT and SR. The weights 𝛼 and 𝛽 encode preferences for when one
performance indicator is preferred over the other. The rest of the
paper defines 𝛼 = 𝛽 = 1.

4.5.3 Performance simulation with failures - Model transformation.
We simulate node failures by using the SimExp framework [17]
and SimuLizar [3] together. The SimExp framework provides con-
nectivity to various analysis tools through model transformations.
In our case of performance simulation with failures we provide a
model transformation from the SimExp framework’s architectural
and environmental models to SimuLizar’s FailureScenario model.

Classic performability evaluation models the stochastic nature of
static systems as MRMs (see section 3.1) whereas a SAS is captured
by an MDP which is an extension of MRMs. The SimExp frame-
work simulates the SAS’s stochastic nature by sampling trajectories
over time from the sample space. A sampled state consists of the
environment state and the architectural configuration (see section
3.2). For each time step t, the SimExp framework performs the fol-
lowing steps: (1) vector creation consisting of the random variable
values of𝑊𝐿 and all node states 𝑁𝑜𝑑𝑒𝑖 . (2) transformation of the
sampled SAS state into an analytical model. This analytical model
is then analyzed by running a SimuLizar performance analysis with
failures. Failure models enable the support of failure simulation
in SimuLizar (see subsection 4.4). This work considers node failures
as hardware failures. Although SimuLizar supports the occurrence
of failure events at any point in time, in our case the simulation
is started with the occurred failure event. Thus we model a node
failure as a HW crash failure which shall be triggered at point in
time 𝑡 = 0 in the simulation.Model to model transformations
(M2M) are used to transform the state (or rather the models associ-
ated with a state, i.e. architecture and environment model) to the
failure model which is simulated to predict quality attributes. The
environment model’s random variable values of node states 𝑁𝑜𝑑𝑒𝑖
are mapped to hardware crash failures in the failure model. A sam-
pled failure is represented as HW crash failure type per resource
container which occurs in SimuLizar at simulation start time t=0.
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Figure 6: Total accumulated reward of strategies

5 PROOF OF CONCEPT
To demonstrate its applicability we implemented a prototype. The
main objective is to investigate whether it supports software en-
gineers in developing fault-tolerant runtime adaptation strategies.
This servers as a starting point for amore comprehensive evaluation
to determine and evaluate the effectiveness of adaptation strategies
with respect to QA fulfillment in case of runtime uncertainties.

Case Study: We used the Znn.com system based load balancer.
The architecture model is modelled with PCM [3]. In our scenario
both server nodes are subject to node failure with an assumed
probability of 0.9 (available) and 0.1 (unavailable). We created an
environment model based on [17]. The node failures of both servers
and the workload as random variables form a DBN (see figure 5).
We complemented the resulting DBN with conditional probability
distributions (CPDs) that describe the probabilistic evolution of
the node failures and workloads that an adaptation strategy must
respond to. For the proof-of-concept, we assumed the distributions
for each CPD.

Setup:We investigated three adaptation strategies: (i) 𝜋∅ without
any adaptation thus reflecting the behaviour of a static system. (ii)
scaling 𝜋𝑆 that re-distributes load by adapting the distribution
factors (iii) scaling with node recovery 𝜋𝑆𝑅 that re-distributes load
while considering two factors: detected RT threshold violations as
described by strategy 𝜋𝑆 and detected node failures. The reward
function returns a reward 𝑟 ∈ [0, 2] per sampled state based on the
measured and normalized RT and SR.

Discussion: We evaluated the strategies by sampling 50 trajec-
tories each of length 100 yielding a total of 𝑇 = 5000 sampled
states. To compare the strategies, we calculated for each strategy
the ratio of the current accumulated reward to the best possible
accumulated reward by 𝑟𝑎𝑡𝑖𝑜𝜋 (𝑡) = 1

2𝑡 ·
∑𝑡
𝑖=0 𝑟𝑖 . The results (see Fig-

ure 6) show the convergence behavior of the accumulated reward
ratios towards a fixed ratio with increasing number of samples.
Thus the reward ratios and 𝑆𝑆𝑃 induce the following ordering:
𝑟𝑎𝑡𝑖𝑜𝜋∅ (𝑇 ) < 𝑟𝑎𝑡𝑖𝑜𝜋𝑆 (𝑇 ) < 𝑟𝑎𝑡𝑖𝑜𝜋𝑆𝑅 (𝑇 ) which indicates the qual-
ity of each strategy in terms of meeting the performability-specific
quality objectives, 𝜋𝑆𝑅 performs best and 𝜋∅ worst.

6 RELATEDWORK
Meyer defines the classic performability metric as the expectation
value of performance under the condition that things may fail
[12]. Trivedi et al. calculate the performability metric by using the
weighted sum of performance per system state for static systems
[19]. Haverkoort et al. provide a framework for performability
modeling and evaluation [9]. Grassi et al. propose the usage of
MRMs for dynamically reconfigurable systems [8]. All authors
investigated performability in respect of static software systems.
Model-based techniques for DT analyses of SASs like SimuLizar
[3] simulate adaptation strategies but do not allow the evaluation
of their long-term effects. Moreno et al. [14] propose an impact
model specification supporting the impact analysis of adaptation
effects to help selecting the best corrective action. Camara et al.
[4] presents a probabilistic model checking approach for offline
synthesis of adaptation strategies applicable at DT to enable a
preliminary selection of potentially best strategy candidates. Both
approaches are not applicable in performability scenarios as they
do not consider performability-specific analysis and metrics.

7 CONCLUSION AND FUTUREWORK
We presented a model-based approach to evaluate performability-
oriented runtime adaptation strategies at DT. This work together
with the work of [17] form the basis for the presented vision of
DT performability optimization of runtime adaptation strategies
[15]. Our contribution combines established performability con-
cepts with an MBQA evaluation framework for runtime adaptation
strategies to support DT analysis of performability-oriented use
cases. This enables: (𝑖) evaluation of DT decisions of runtime arte-
facts and (𝑖𝑖) knowledge gained from DT analysis applicable at
runtime as initial system configuration. We demonstrated the ap-
plicability of our approach with a proof-of-concept. We plan to
evaluate our approach with a case study to show the accuracy of
DT results compared to runtime results.
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