Efficient Data Processing: Assessing the Performance of Different
Programming Languages

Lukas Beierlieb André Bauer Robert Leppich
University of Wiirzburg University of Chicago University of Wiirzburg
Wiirzburg, Germany Chicago, United States Wiirzburg, Germany

lukas.beierlieb@uni-wuerzburg.de

Lukas Ifflinder

University of Wiirzburg
Wiirzburg, Germany
lukas.ifflaender@uni-wuerzburg.de

ABSTRACT

This paper compares the performance of R, Python, and Rust in
the context of data processing tasks. A real-world data processing
task in the form of an aggregation of benchmark measurement
results was implemented in each language, and their execution
times were measured. The results indicate that while all languages
can perform the tasks effectively, there are significant differences
in performance. Even the same code showed significant runtime
differences depending on the interpreter used for execution. Rust
and Python were the most efficient, with R requiring much longer
execution times. Additionally, the paper discusses the potential
implications of these findings for data scientists and developers
when choosing a language for data processing projects.

CCS CONCEPTS

« General and reference — Measurement; « Software and its
engineering — Software performance; General programming
languages.

KEYWORDS

software performance, data processing, python, R, rust

ACM Reference Format:

Lukas Beierlieb, André Bauer, Robert Leppich, Lukas Ifflainder, and Samuel
Kounev. 2023. Efficient Data Processing: Assessing the Performance of
Different Programming Languages. In Companion of the 2023 ACM/SPEC
International Conference on Performance Engineering (ICPE "23 Companion),
April 15-19, 2023, Coimbra, Portugal. ACM, New York, NY, USA, 5 pages.
https://doi.org/10.1145/3578245.3584691

1 INTRODUCTION

Data handling (reading, aggregating, etc.) is crucial in any domain.
Especially, 60% time of a data science project is spent on data cleans-
ing and organizing [1]. Consequently, inefficient processing of the

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

ICPE ’23 Companion, April 15-19, 2023, Coimbra, Portugal

© 2023 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 979-8-4007-0072-9/23/04...$15.00
https://doi.org/10.1145/3578245.3584691

andrebauer@uchicago.edu

83

robert.leppich@uni-wuerzburg.de

Samuel Kounev
University of Wiirzburg
Wiirzburg, Germany
samuel kounev@uni-wuerzburg.de

data can potentially waste considerable time. This is particularly
problematic when either lots of data have to be handled, where
runtimes of hours and days can halt further analysis progress, or
when it is desired that data streams have to be processed contin-
uously. An illustrative example is given by the dataset provided
by Traini et al. [5]; the data aggregation is a relatively simple task.
However, the large file sizes slow down the process. More precisely,
the raw data is 65 GB, but the actual data published for research is
aggregated to 362 MB.

In this paper, we address the following questions: Given a similar
implementation of the aggregation task in different suitable lan-
guages, how significant are the performance differences between
them? Are there measurable differences in the runtime of the same
code that is just differently compiled or interpreted? Is it possible to
utilize parallelization in this particular scenario? How significant
is the benefit?

To answer these questions, we used public information about the
raw and processed dataset and experimentation with the actual data
to understand exactly how the data is handled. Then, we choose
two programming languages that are very present in the data sci-
ence domain: Python and R. To contrast their interpreted nature,
we also assess Rust - a low-level, compiled language mainly known
for its speed and memory safety but also offers many libraries for
data processing. The aspect of different interpreters is explored by
using different versions of the default Python interpreter and an
alternative one called PyPy. The Rust implementation is also modi-
fied to support parallel processing to reach as high performance as
possible.

The rest of the paper is organized as follows: In Section 2, we
describe the dataset and the utilized programming languages. In Sec-
tion 3, we elaborate on our methodology. In Section 4, we describe
measurement environment and discuss the results. In Section 5, we
highlight related work before summarizing the paper in Section 6.

2 BACKGROUND

This section introduces the dataset’s structure followed by the
considered languages and the Python interpreter PyPy.

https://doi.org/10.1145/3578245.3584691
https://doi.org/10.1145/3578245.3584691

ICPE *23 Companion, April 15-19, 2023, Coimbra, Portugal

2.1 Dataset

The dataset utilized in this paper was recorded and provided by
Traini et al. [5]. In their work, the authors investigated Java bench-
marks. In the public available Zenodo repository!, there are 600
raw files with a size of 65 GB. Fourteen files are empty or corrupt,
leading to 586 files between 9 MB and 1.9 GB corresponding to the
586 investigated benchmarks. Each file was exported by the Java
Microbenchmark Harness (JMH) in a JSON format, containing an
array of ten measurement runs at the core. Each run includes 3000
measurement batches, while each batch has multiple measurements.
Each measurement consists of a time stamp and a quantity. The
processed files, which are available on GitHub?, contain the ten
runs with 3000 data points, each being the averaged value of a raw
batch.

2.2 Programming Languages

Python is a high-level, general-purpose programming language that
has gained widespread popularity recently, particularly for data
processing. Python has a large and active community, which has led
to the development of a wide range of libraries for data processing,
including Pandas, NumPy, and scikit-learn, which provide a wide
range of tools for data manipulation, cleaning, and analysis.

Furthermore, Python’s popularity in data science has led to the
development of specialized libraries and frameworks for machine
learning, such as TensorFlow and PyTorch. In addition to its pow-
erful libraries and frameworks, Python offers a wide range of visu-
alization tools, such as Matplotlib and Seaborn.

PyPy is an alternative implementation of the standard Python
interpreter (CPython), designed to be a faster and more efficient
drop-in replacement. It is built using a Just-In-Time (JIT) compila-
tion technique, which dynamically compiles Python bytecode into
machine code at runtime, resulting in a significant performance
boost compared to CPython while being compatible with the ma-
jority of Python code and libraries.

PyPy is particularly useful for computationally intensive appli-
cations (e.g., scientific computing, data processing, and machine
learning). The PyPy JIT compiler can produce machine code faster
than the equivalent code written in C or C++ and improve multi-
threaded code’s performance. PyPy can also handle large memory
footprints more efficiently than CPython, making it suitable for
memory-intensive tasks.

R is a programming language and environment specifically de-
signed for statistical computing and graphics. It is widely used
among statisticians, data analysts, and data scientists for data ma-
nipulation, cleaning, and analysis. R has a rich ecosystem of libraries
for data processing, including dplyr, tidyr, and ggplot2. One of the
key strengths of R is its focus on data visualization. The ggplot2
library is a powerful tool for creating informative and aesthetically
pleasing visualizations. Additionally, R’s strong support for statisti-
cal modeling and inference makes it an excellent choice for data
analysis tasks.

R has a large and active community, resulting in various pack-
ages and libraries for various data processing tasks. CRAN is a vast
repository of R packages that provide additional functionalities,

1Zenodo: https://zenodo.org/record/5961018
2GitHub: https://github.com/SEALABQualityGroup/icpe- data-challenge-jmh

84

Lukas Beierlieb, André Bauer, Robert Leppich, Lukas Ifflinder, & Samuel Kounev

making it easy to perform complex data processing tasks. R’s pop-
ularity in data science is also driven by its integration with other
software, such as Hadoop and Spark, which efficiently process large
datasets. R is also integrated with many popular data visualization
software, such as Tableau and Power BI, allowing easy creation of
interactive visualizations and dashboards.

Rust is a systems programming language designed for safety,
speed, and concurrency. It has gained popularity in recent years,
particularly in data processing, due to its emphasis on memory
safety and low-level control. Rust’s low-level capabilities make
it well-suited for tasks that require fine-grained control over sys-
tem resources, such as high-performance computing, embedded
systems, and network programming.

Rust’s standard library provides a wide range of features that
are useful for data processing tasks, such as built-in support for
parallelism and concurrency and the ability to work with raw mem-
ory. Additionally, Rust has a growing ecosystem of libraries and
frameworks, such as the Rayon library, which provides data par-
allelism, and the Serde library, which supports serialization and
deserialization of data. Rust’s emphasis on safety and speed has
made it an attractive option for building high-performance systems
and tools for data processing, such as databases, data pipelines,
and data analytics tools. Its unique combination of low-level con-
trol and memory safety makes it well-suited for tasks requiring
performance and reliability.

3 APPROACH

To prevent that measurement results are biased towards one of the
competing languages, two approaches can be considered. One op-
tion would be to optimize each language’s implementation as much
as possible. This would highlight the maximum potential of each lan-
guage. However, the programmers responsible for implementation
have to be experts to know how to achieve optimal performance,
otherwise, there is a bias toward the better-understood languages.

Therefore, we chose the second approach: Keeping the code
comparable between languages. Listing 1 shows our algorithm.

For every raw JSON file, we call process_file() to process
the file and store the result in another JSON file in a designated
folder. File processing starts with loading its content into memory,
followed by letting a library parse it into a JSON data structure. The
field "scoreUnit", can hold the values "s/op", "ms/op", "us/op",
"us/op". "get_scale()" returns the respective scaling factor to
translate the units to seconds, i.e., 1, 1e-3, 1e-6, 1e-9. The mea-
surement data under "rawDataHistogram" is then transformed
such that all measurement batches are replaced with their average
execution time, scaled to seconds. The minimal JSON representa-
tion (with no spaces and newlines) of the aggregated data is finally
generated and written to disk.

Each implementation closely follows the pseudocode in a way
that is idiomatic for the particular language. As an example, in
Python, list comprehensions are used to iterate over the measure-
ment data, R uses the lapply function, and Rust utilizes basic for
loops. Python utilized its builtin json module, R the rjson library
(as well as purrr to aggregate the batches), and Rust the serde
framework for JSON. To parallelize the Rust code, rayon’s parallel
iterator replaces the sequential loop that iterates over all files.

https://zenodo.org/record/5961018
https://github.com/SEALABQualityGroup/icpe-data-challenge-jmh

Assessing the Performance of Different Programming Languages

fn get_scale(unit) {...}

fn process_batch(batch) {
return sum_of_measurements(batch) /
count_of_measurements(batch)

fn process_file(raw_file, processed_file) {
raw_text = read_file(raw_file)
raw_json = parse_json(raw_text)
raw_data = raw_json[Q]["primaryMetric"] !
["rawDataHistogram"]
scale =
processed_json = map(raw_data, run -> {
map(run, batch -> {
scale * process_batch(batch)
D)
»

processed_text = json_to_string(processed_json)
write_file(processed_file, processed_text)

}
fn main() {
for file : raw_folder {
process_file(raw_folder "/" file,
target_folder "/" file)
}
}

Listing 1: Pseudo code of processing code

We implemented scripts to build a docker image for each variant,
as well as scripts to run containers of these images, and measure
and store their execution times. The code is published on GitHub?.
The performed measurements are presented in the next section.

4 EVALUATION

Executing multiple iterations for each variant for the whole 65 GB,
586 file dataset is very time-consuming, so we chose to split the
evaluation into two parts. In the first part, the single-file measure-
ments, we executed all 13 variants in succession on just the largest
file (1.9 GB) of the raw dataset. Without breaks in between, this
is repeated for 10 iterations. In the second part, we measure the
runtime for each variant for the whole dataset, but only once, in
order to get an estimate for the average runtime without requiring
tens of hours of measurements.

Section 4.1 gives details about the test environment before the
single-file results are presented in 4.2 and the dataset results in 4.3.

4.1 Hard- and Software

The relevant details about the hardware used to run the measure-
ments are listed in Table 1.

The utilized software and corresponding version numbers are
listed in Table 2.

3GitHub: https://github.com/Ibeierlieb/icpe23data_challenge

get_scale([0]["primaryMetric"]["scoreUnit"])

85

ICPE ’23 Companion, April 15-19, 2023, Coimbra, Portugal

Table 1: Hardware specifications used for all measurements

Category Specification

Device Lenovo ThinkPad P1 (2. Gen)
Processor Intel Core 17-9850H

RAM 32GB DDR4 2666MHz
Storage Samsung 970 EVO NVMe SSD
SSD max seq. read 3500 MB/s

SSD max seq. write 3300 MB/s

Table 2: Software used for all measurements

Software Version
Arch Linux -
Kernel 6.1.6-arch1-3
Docker 20.10.22
Python 3.7,3.8, 3.9, 3.10, 3.11
PyPy 3.7,3.8,3.9
R 4.22
rjson 0.2.21
Rust 1.66
serde 1.0.152
rayon 1.6.1
o

35 -
= ¢ ! .
oé 30 :
£ as) .
Q:é []

20 |- [} $ —

! ! | ! ! ! ! !
PP7 PP8 PP9 P7 P8 P9 P10 P11

Figure 1: Python variants’ runtimes for a 1.9 GB file

4.2 Single-File Measurements

Figure 1 shows the runtimes (y-axis) of the same Python code for a
single 1.9 GB JSON file for 8 different Python interpreters, which are
listed on the x-axis. PP stands for PyPy, P for default Python, and the
number for the minor version, e.g., PP7 is PyPy 3.7. The thick dot
represents the average of the 10 measured runtimes, and the bars
above and below indicate the minimum and maximum execution
time. The results show that PyPy significantly outperforms Python,
with PyPy 3.9 at 19.20s and Python 3.11 at 28.45s. PyPy received
slight performance boosts with newer versions, while Python 3.10
and 3.11 are great improvements over their previous versions.

Figure 2 presents a comparison between single-threaded Rust,
the fastest version of PyPy and Python, and R. R is dramatically
slower, requiring on average 280.73s, which is ten times longer than
what Python 3.11 needs. Due to the scale, the difference between
Rust and Pypy/Python is not well visible. Though, as to be expected,
Rust is faster with a mean runtime of 8.40s.

https://github.com/lbeierlieb/icpe23data_challenge

ICPE *23 Companion, April 15-19, 2023, Coimbra, Portugal

[T]
300 .
o
— 200 .
£
g 100| i
o~
° []
(s ’ | | | 7
Rust PP9 P11 R

Figure 2: Different variants’ runtimes for a 1.9 GB file

4.3 Dataset Measurements

The single measured execution times for processing the whole
dataset are listed in Table 3. The durations correspond generally
well with the single-file runtimes. However, the real-world impact
is probably better recognizable. Waiting up to 20mins before being
able to analyze 65 GB worth of data seems more reasonable than the
3-hour stall with R. In the multi-file dataset measurement, there are
also results for parallelized Rust variants. The captured runtimes
show that speed-up is significant but not linear with thread count,
probably due to IO limitations.

4.4 Threats to Validity and Discussion

As our results were only produced on one dataset and only on
one hardware setting, the results are surely not representative of
every scenario. With more time available, more iterations could be
executed to improve confidence in the consistency of the results.
However, the 10 performed repetitions on the single file showed
sufficient repeatability to recognize significant differences between
variants. Thus, we also believe the single dataset measurements
give a fairly representative runtime. The code and scripts from the
GitHub repository can be used to replicate the results on similar
hardware or assess the situation on different machines.

We want to note the following aspects we discovered during
working on this paper. There can be huge differences between se-
mantically identical implementations—we have seen 1:45 min to

Table 3: Runtimes for the whole dataset

Variant Runtime [HH:mm:ss.SS]
pypy3_7 00:11:55.14
Pypy3_8 00:11:13.73
pypy3_9 00:10:32.92
python3_7 00:18:55.79
python3_8 00:19:10.60
python3_9 00:19:54.83
python3_10 00:17:02.74
python3_11 00:16:00.72
r_rjson 03:00:56.25
rust_serde 00:04:30.78
rust_serde_rayon_2thread 00:02:48.65
rust_serde_rayon_3thread 00:02:04.94
rust_serde_rayon_4thread 00:01:45.59

86

Lukas Beierlieb, André Bauer, Robert Leppich, Lukas Ifflinder, & Samuel Kounev

3 h between parallel Rust and R. It is advisable to consider such
aspects when choosing a technology stack for larger amounts of
data. Writing Rust code requires more effort due to aspects like
type declarations and data ownership, but in return, proper error
handling comes more naturally with well integrated Result and
Option types. Python and R make it simple to quickly get to a work-
ing program, and in such cases as transforming one dataset into
another form, this might be preferable. Python users are advised
to try to run their code with PyPy as there can be a significant
performance boost with zero changes to the codebase.

Regarding parallelization, we noticed that libraries like rayon
make it simple to gain performance when data parallelism is pos-
sible. In the dataset aggregation scenario considered in this paper,
caution is required, though. Reading and parsing large JSON files
needs a considerable amount of memory, and multiple threads si-
multaneously working on large files can overload the system. We
had to limit the thread count to four because 32 GB of system mem-
ory did not suffice for more when working on the whole dataset.

5 RELATED WORK

Performance engineering is a wide field with lots of research. One
of the domains within this field is the assessment of the perfor-
mance impact of different programming languages. For instance, in
their work [2], the authors compare the influence of the program-
ming language on CPU performance. To this end, the authors wrote
a database application in the languages C#, PHP, JAVA, JSP, and
ASP.Net and compared their performance. In a similar work [3],
the authors investigated ten programming problems while using 27
programming languages. To measure the performance, the monitor
the memory usage, runtime, and energy consumption. In another
paper [4], the authors compared different sorting algorithms in
Python and C regarding their energy efficiency. To access the per-
formance and state guidelines when which algorithm in which
language should be used, the authors varied the input size and the
underlying hardware. In contrast to our work, these works focus
only on different programming languages and not also on the im-
pact of different versions of a programming language, as we do
with Python.

6 CONCLUSION

Data handling is a crucial task in any domain. However, the large
file sizes can slow down the process, especially for continuous data
streams that need to be processed in a timely manner. This study
investigates the effect of using different programming languages
(Python, R, and Rust) and versions on data aggregation utilizing
the dataset from Traini et al.[5]. The results show that there are
significant differences among them, with a quick Rust, followed by
Python and a significantly slower R.

Assessing the Performance of Different Programming Languages

REFERENCES

[1] 2016. Data Science Report 2016. Technical Report. CrowdFlower.

[2] Md Ahsan Arif, Mohammad Shahazzat Hossain, Nazmun Nahar, and Mst Dilruba
Khatun. 2014. An Empirical Analysis of C#, PHP, JAVA, JSP and ASP. Net regarding
performance analysis based on CPU utilization. Banglavision Research Journal 14,
1(2014), 173-187.

Rui Pereira, Marco Couto, Francisco Ribeiro, Rui Rua, Jaicome Cunha, Jodo Paulo
Fernandes, and Jodo de Sousa Saraiva. 2017. Energy efficiency across programming
languages: how do energy, time, and memory relate? Proceedings of the 10th ACM

&

87

ICPE ’23 Companion, April 15-19, 2023, Coimbra, Portugal

SIGPLAN International Conference on Software Language Engineering (2017).
Norbert Schmitt, Supriya Kamthania, Nishant Rawtani, Luis Mendoza, Klaus-
Dieter Lange, and Samuel Kounev. 2021. Energy-Efficiency Comparison of Com-
mon Sorting Algorithms. 2021 29th International Symposium on Modeling, Analysis,
and Simulation of Computer and Telecommunication Systems (MASCOTS) (2021),
1-8.

Luca Traini, Vittorio Cortellessa, Daniele Di Pompeo, and Michele Tucci. 2023.
Towards effective assessment of steady state performance in Java software: are
we there yet? Empirical Software Engineering 28, 1 (2023), 1-57.

	Abstract
	1 Introduction
	2 Background
	2.1 Dataset
	2.2 Programming Languages

	3 Approach
	4 Evaluation
	4.1 Hard- and Software
	4.2 Single-File Measurements
	4.3 Dataset Measurements
	4.4 Threats to Validity and Discussion

	5 Related Work
	6 Conclusion
	References

