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ABSTRACT
As Java microbenchmarks are great at profiling the performance of
essential code elements, they are widely adopted for Java perfor-
mance testing. Performance testing using Java microbenchmarks is
composed of two phases: the warmup phase and the steady phase.
Usually, testing results from the warmup phase are discarded be-
cause of the highly fluctuating performance caused by the optimiza-
tion of Java Virtual Machine. The performance results collected
during the steady phase are used for performance evaluation as
they are assumed to be more stable. However, according to our
study, severe performance fluctuations also occur during the steady
phase, which leads to long tail latencies. Long tail latencies constitute
a big problem in modern Java systems (of course, other systems
and applications) as they hurt the user experience by prolonging
the overall execution time.

In this paper, we extensively evaluated the long tail performance
of 586 Java microbenchmarks from 30 Java systems. The evaluation
results show that, for 38% of the benchmarks in steady phase, their
99%tile execution times are over 30% higher than their median
execution times. In the worst-case scenario, the 99%ile performance
is 659 times higher than the median performance. Furthermore,
the 95%ile execution times are above 30% higher than the median
execution times for 11% of the steady phase benchmarks.

CCS CONCEPTS
• General and reference → Measurement; Performance; • Soft-
ware and its engineering → Software performance.
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1 INTRODUCTION
A common practice to determine the performance of any applica-
tion is performance testing [2, 18]. Typically, performance testing
is carried out by repeatedly running the application-under-test
until enough performance data points are collected [8, 9]. Appli-
cations used for performance testing can be macrobenchmarks
or microbenchmarks. Macrobenchmarks are comprehensive tests
that measure the overall performance of a system by simulating
real-world workloads and are designed to provide a broad mea-
sure of system performance. Microbenchmarks, on the other hand,
are small, isolated test cases used to evaluate the performance of
a specific piece of code or function. [5] Microbenchmarks are in-
creasingly popular and widely adopted mainly due to their short
runtimes and testing durations [10, 12].

Specifically, microbenchmarks are broadly used to test the per-
formance of Java applications [14]. Java microbenchmarking is
divided into two phases: the warmup phase and the steady phase.
In the warmup phase, the testing results and performance of Java
benchmarks often show high variability due to the Java Virtual Ma-
chine (JVM) optimizations [1, 17]. Thus, the testing results collected
during the warmup phase tend to be discarded. After entering the
steady phase, ideally, the performance should be more stable, and
the testing results from the steady phase can be used for tests and
analyses to understand the performance of Java applications [1, 17].

However, our study reveals that even during the steady phase,
severe performance fluctuations also occur so that such fluctuations
lead to long tail latencies. Tail latencies are important because they
measure the performance of a small percentage of requests that
take considerably longer to complete than the other requests. Long
tail latencies can greatly affect the user experience and the overall
performance of a system [3, 7, 15]. In addition, tail latencies can in-
dicate the performance bottlenecks that need to be addressed [4, 16].
In this paper, we extensively evaluated the long tail performance of
586 Java microbenchmarks from 30 Java systems [17]. For those 521
Java microbenchmarks that can reach the steady state, we found
that 38% of them have long tail latencies. i.e., 99%ile execution times
are over 30% higher than their median execution times.

The contributions of this paper are as follows: First, we exten-
sively evaluated the tail performance on a large dataset of Java
microbenchmarks, and we found that the performance still severely
fluctuated during the steady stage. Second, we found that when
studying tail latencies for Java microbenchmarks, including the
performance data from both the warmup and steady phases will
not change the tail performance significantly. Finally, we showed
that using median to assist tail latency analysis is better than using
mean performance, because the median performance is less affected
by extreme performance values like the tail performance.
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Table 1: Benchmark suites used in the evaluation, includ-
ing the GitHub organization (GitHub Org.), the name of the
benchmark suite (Bench. Name), and the number of bench-
marks inside each suite (Num.)

GitHub Org. Bench. Name Num.

apache arrow 46
raphw byte-buddy 39
apache camel 35
cantaloupe-project cantaloupe 103
prometheus client_java 33
crate crate 39
eclipse eclipse-collections 2415
h2oai h2o-3 73
hazelcast hazelcast 144
HdrHistogram HdrHistogram 75
apache hive 1402
imglib imglib2 25
JCTools JCTools 172
jdbi jdbi 76
eclipse jetty.project 212
jgrapht jgrapht 91
apache kafka 3578
zalando logbook 20
apache logging-log4j2 572
netty netty 1746
prestodb presto 1534
protostuff protostuff 31
r2dbc r2dbc-h2 20
eclipse rdf4j 132
RoaringBitmap RoaringBitmap 1620
ReactiveX RxJava 1302
yellowstonegames SquidLib 334
apache tinkerpop 57
eclipse-vertx vert.x 41
openzipkin zipkin 63

2 TAIL LATENCY TESTING METRICS
Long tail latencies from code snippets can significantly worsen a
system’s overall performance, ultimately leading to poor user expe-
riences. To evaluate the tail performance, we use the percentage
difference𝑑𝑖 𝑓 𝑓 to quantify the performance impacts caused by long
tail latencies. For each microbenchmark, the percentage difference
𝑑𝑖 𝑓 𝑓 is calculated by comparing the tail performance 𝑃𝑒𝑟 𝑓𝑡𝑎𝑖𝑙 with
the median performance, 𝑃𝑒𝑟 𝑓𝑚𝑒𝑑𝑖𝑎𝑛 , using the following equation,

𝑑𝑖 𝑓 𝑓 = | 𝑃𝑒𝑟 𝑓𝑡𝑎𝑖𝑙 − 𝑃𝑒𝑟 𝑓𝑚𝑒𝑑𝑖𝑎𝑛

𝑃𝑒𝑟 𝑓𝑚𝑒𝑑𝑖𝑎𝑛

| × 100%. (1)

As described in Section 1, tail latencies are measured as the per-
formance of a small percentage of requests that take considerably
longer to complete than the other requests. Ideally, the percentage
difference 𝑑𝑖 𝑓 𝑓 should be calculated by comparing 𝑃𝑒𝑟 𝑓𝑡𝑎𝑖𝑙 with
the mean performance 𝑃𝑒𝑟 𝑓𝑚𝑒𝑎𝑛 . However, we selected the median
performance over the mean performance because the median is a
more robust statistic, indicating that it is less affected by changes
and outliers in the given dataset. In particular, the median per-
formance is chosen over the mean performance because it is less
affected by extreme performance values like the tail performance.

3 EVALUATION
3.1 Evaluation Setup.
This section describes the dataset and experimental evaluations we
adopted for this study.

Benchmarks andEnvironments.Weused the benchmark datasets
collected by Traini et al. [17] for the evaluation. The datasets pro-
vide the performance results of 586 microbenchmarks from 30 Java
benchmark suites. Those 30 Java benchmark suites (shown in Ta-
ble 1) were selected based on their popularity on GitHub. From these
benchmark suites, 586 benchmarks were randomly picked for evalu-
ation. For each benchmark, 10 JHM (JavaMicrobenchmark Harness)
forks were executed, and each fork contained 3000 benchmark in-
vocations for at least 300 seconds of execution time [17]. All the
benchmarks were tested on a bare-metal server with 40 cores (dual
2.3GHz Intel Xeon E5-2650v3 CPU) and 80 GiB of RAM running
Ubuntu Linux 18.04.2 LTS. To reduce the potential performance-
affecting factors, Traini et al. disabled Intel Turbo Boost, Address
Space Layout Randomization, unnecessary Linux processes and
daemons, and SSH login. They also fixed the available JVM heap
memory to 8GB and reduced context switching [17].
Evaluation Methodologies. The relative performance deviation
for non-steady forks can be significantly reduced by continuously
warming each fork up for 300 iterations [17]. For both steady and
non-steady forks, it’s safe to assume that the data points collected
after 1500 iterations have relatively low performance fluctuations
caused by JVM optimizations. Thus, we can use the data points
collected after 1500 iterations for evaluation. To split the forks
that never entered the steady phase, we adopted the approach of
Kalibera et al. [11], and the parameters from Traini et al. [17].

For the first set of evaluations, we tested the tail latencies using
all the data points collected after 1500 iterations; that is, we used
1500 data points from iteration-1500 to iteration-3000 to test each
steady-phase fork. In the second set of evaluations, we reduced the
sample size to 500 (from iteration-2500 to iteration-3000) for each
steady-phase fork to see how the tail latency analysis would be
affected by different sample sizes. In the last set of evaluations, to
check if including data points from the warmup phase impacts the
tail latency analysis, we adopted all data points from both steady
and non-steady phases.
Parameters. In this evaluation, we chose 95%ile performance (P95)
and 99%ile performance (P99) to represent the tail latencies. Then,
we can calculate the percentage difference 𝑑𝑖 𝑓 𝑓 using the equation
in Section 2. After the 𝑑𝑖 𝑓 𝑓 were calculated, we compared to see
the percentages of 𝑑𝑖 𝑓 𝑓 that are greater than 5%, 30%, and 50%.

3.2 Experiment Results and Discussion
In this subsection, we present and discuss the long tail performance
observed from the benchmark executions. This evaluation seeks
to answer the following research questions: 1) How severe are
tail latencies in Java microbenchmarks? 2) Will data points from
warmup phases affect tail latency analysis?

Due to space limitations, we only show the graph of four bench-
marks, including jdbi1, hdr2, bytebuddy3, and apache4.
P99 Performance. Figure 1 presents the percentage difference
𝑑𝑖 𝑓 𝑓99%𝑖𝑙𝑒 between P99 execution time and median execution time
for four benchmarks. Specifically, each benchmark contains 10 forks,

1org.jdbi.v3.benchmark.QualifiersBenchmark.mapUnqualifiedBean
2bench.HdrHistogramEncodingBench.skinnyEncodeIntoCompressedByteBuffer
3net.bytebuddy.benchmark.TrivialClassCreationBenchmark.benchmarkJdkProxy
4org.apache.kafka.jmh.record.RecordBatchIterationBenchmark

78



A Study of Java Microbenchmark Tail Latencies ICPE ’23 Companion, April 15–19, 2023, Coimbra, Portugal

and the 𝑑𝑖 𝑓 𝑓99%𝑖𝑙𝑒 for each fork is calculated from 1500 data points.
As the figure shows, all four benchmarks have long tail latencies.
For example, in Figure 3a, the sixth fork (Fork6) of jdbi benchmark
holds a 𝑑𝑖 𝑓 𝑓99%𝑖𝑙𝑒 value of 658.7, which means the P99 execution
time is 65870% higher than the median execution time. Similarly,
the 𝑑𝑖 𝑓 𝑓99%𝑖𝑙𝑒 for hdr, bytebuddy, and apache in the worst-case
scenario are 4670%, 1860%, and 1340%, respectively. Those results
demonstrated that tail latencies could negatively affect the overall
performance and user experiences.

Additionally, from the figure, we conclude that the tail latencies
fluctuate severely. For instance, the 𝑑𝑖 𝑓 𝑓99%𝑖𝑙𝑒 for the 10 forks of
jdbi ranges from 290% to 65870%. For hdr, bytebuddy, and apache,
the 𝑑𝑖 𝑓 𝑓99%𝑖𝑙𝑒 varies from 3140% to 4670%, 330% to 1860%, and
890% to 1340%, separately. The highly fluctuating testing results
suggested that to accurately obtain the tail performance, more
forks are required for each Java microbenchmark. A new testing
methodology is demanded to determine the number of forks to get
highly accurate tail performance.

Figure 2 shows the percentage difference for the same four bench-
marks when each of the𝑑𝑖 𝑓 𝑓99%𝑖𝑙𝑒 is calculated from 500 data points.
The figure delivers very similar information as Figure 1 that: a).
Long tail latencies exist and could severely affect the overall per-
formance. b). The tail performance highly fluctuates. Specifically,
when comparing the results from Figures 1 and 2, the fluctuation
range and trend of 𝑑𝑖 𝑓 𝑓99%𝑖𝑙𝑒 appear to have similar patterns. This
result indicates that extra test runs for each fork will not benefit tail
latency analysis when the number of test runs for each fork is over
a certain threshold. A new testing methodology is required to decide
the threshold for each Java microbenchmark to reduce undue test runs
while maintaining the accuracy of the tail performance results. It is
worth noting that the worst-case scenario in Figure 2a (315020%
difference in Fork1) is caused by the low median results of Fork1,
and it simply implies that more forks are required to be tested.

The evaluation reveals that tail latencies exist in most of the
benchmarks. For all the benchmark forks (tested with 1500 data
points) that can enter the steady phase, 77.1% of them have a
𝑑𝑖 𝑓 𝑓99%𝑖𝑙𝑒 value greater than 5%, 38.4% of them have a 𝑑𝑖 𝑓 𝑓99%𝑖𝑙𝑒
value greater than 30%, and 21% of them have a 𝑑𝑖 𝑓 𝑓99%𝑖𝑙𝑒 value
greater than 50%. Also, for all the steady-phase benchmark forks
(tested with 500 data points), 74.3% of them have a 𝑑𝑖 𝑓 𝑓99%𝑖𝑙𝑒 value
greater than 5%, 36.6% of them have a 𝑑𝑖 𝑓 𝑓99%𝑖𝑙𝑒 value greater than
30%, and 20% of them have a 𝑑𝑖 𝑓 𝑓99%𝑖𝑙𝑒 value greater than 50%.
P95 Performance. Figures 3 and 4 show the percentage difference
𝑑𝑖 𝑓 𝑓95%𝑖𝑙𝑒 between P95 and median performance. Each percentage
difference in Figure 3 is calculated from evaluation set1 (1500 data
points), while each 𝑑𝑖 𝑓 𝑓95%𝑖𝑙𝑒 in Figure 4 is computed from evalu-
ation set2 (500 data points). Comparing to Figure 1 and Figure 2,
𝑑𝑖 𝑓 𝑓95%𝑖𝑙𝑒 have smaller fluctuation range than 𝑑𝑖 𝑓 𝑓99%𝑖𝑙𝑒 . However,
the P95 performance is still high. For all the benchmark forks in
the steady phase (evaluation set1), 62.1% of them have a 𝑑𝑖 𝑓 𝑓95%𝑖𝑙𝑒
value greater than 5%, 21.3% of them have a 𝑑𝑖 𝑓 𝑓95%𝑖𝑙𝑒 value greater
than 30%, and 7.6% of them have a 𝑑𝑖 𝑓 𝑓95%𝑖𝑙𝑒 value greater than
50%. For all the steady-phase benchmark forks (evaluation set2),
55.8% of them have a 𝑑𝑖 𝑓 𝑓95%𝑖𝑙𝑒 value greater than 5%, 19.2% of
them have a 𝑑𝑖 𝑓 𝑓95%𝑖𝑙𝑒 value greater than 30%, and 7.4% of them
have a 𝑑𝑖 𝑓 𝑓95%𝑖𝑙𝑒 value greater than 50%.
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Figure 1: The percentage difference between P99 and median
performance, tested with 1500 data points for each fork.
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Figure 2: The percentage difference between P99 and median
performance, tested with 500 data points for each fork.

Tail Latency Analysis Using Data from Both Warmup and
Steady Phases. As discussed in Section 1, Java performance test-
ing data collected during the warmup phase (non-steady phase) is
usually discarded [1, 6, 11]. However, in Figure 5, for all four bench-
marks, the fluctuation scopes of P99 performance computed from
500 data points, 1500 data points, and 3000 data points (all data) are
very close to each other. On the other hand, the fluctuation scopes
of P99 performance calculated by 50 data points are signifcantly
different, especially for jdbi, hdr, and apache.

Furthermore, using data points from both the warmup and the
steady phases (evaluation set3, 3000 data points), we calculated the
𝑑𝑖 𝑓 𝑓99%𝑖𝑙𝑒 for all benchmark forks that can eventually enter the
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Figure 3: The percentage difference between P95 and median
performance, tested with 1500 data points for each fork.
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Figure 4: The percentage difference between P95 and median
performance, tested with 500 data points for each fork.

steady stage. For P99, 80.4% of them have a 𝑑𝑖 𝑓 𝑓99%𝑖𝑙𝑒 value greater
than 5%, 42.6% of them have a 𝑑𝑖 𝑓 𝑓99%𝑖𝑙𝑒 value greater than 30%,
and 24.9% of them have a 𝑑𝑖 𝑓 𝑓99%𝑖𝑙𝑒 value greater than 50%. The
results are very similar to those from the evaluation set1, which
illustrate that: including the performance data from both the warmup
and steady phases will not change the tail performance significantly
if the overall testing length is sufficient.
Using Mean Performance vs. Median Performance. Mean per-
formance can be a useful metric for determining how well a Java
microbenchmark performs. However, when evaluating the tail la-
tencies, using mean performance may introduce unnecessary fluc-
tuations to the results. For example, in Figure 1d and Figure 2d, the
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Figure 5: The percentage difference between P99 and median
performance, using data from both the warmup (non-steady)
phase and the steady phase, tested with 50, 500, 1500, and all
data points, respectively.

mean performance differences (𝐶𝑜𝑚𝑝𝑚𝑒𝑎𝑛 = |𝑀𝑒𝑎𝑛𝑒𝑣𝑎𝑙𝑠𝑒𝑡1−𝑀𝑒𝑎𝑛𝑒𝑣𝑎𝑙𝑠𝑒𝑡2
𝑀𝑒𝑎𝑛𝑒𝑣𝑎𝑙𝑠𝑒𝑡1

|)
between evaluation set1 and evaluation set 2 for the 10 forks ranges
from 0.1% to 11.0%. On the other hand, the median performance dif-
ferences (𝐶𝑜𝑚𝑝𝑚𝑒𝑎𝑛 = |𝑀𝑒𝑑𝑖𝑎𝑛𝑒𝑣𝑎𝑙𝑠𝑒𝑡1−𝑀𝑒𝑑𝑖𝑎𝑛𝑒𝑣𝑎𝑙𝑠𝑒𝑡2

𝑀𝑒𝑑𝑖𝑎𝑛𝑒𝑣𝑎𝑙𝑠𝑒𝑡1
|) only ranges

from 0.1% to 0.7%. Less performance fluctuation in the median
is because of its robustness to outliers and/or abnormal results,
meaning that the median is also less affected by the tail latency.
Therefore, when analyzing the tail performances, choosing median
performance over mean performance is more desirable and can
minimize the impact of data uncertainties.

4 CONCLUSION AND FUTUREWORK
In this study, we extensively evaluated the tail latencies on a large
dataset of Java microbenchmarks from Traini et. al [17], which
contains 586 Java microbenchmarks from 30 popular Java systems.
We observed that, during the steady phase, the performance still
severely fluctuates, and the tail performance is considerably higher
than the median performance. Specifically, our analysis showed
that over 38% of the steady-phase benchmark forks, their 99%ile
latencies are above 30% higher than their median latencies. Per-
formance fluctuations over 30% can negatively affect the overall
system performance and user experiences. Based on the analysis,
we conclude that using the data from both the warmup and steady
phases to test the tail performance will not change the testing
results significantly if the overall testing period is long enough.

To accurately obtain the tail performance of Java microbench-
marks, more testing forks are required. This leaves us with the first
future work: “To develop a new testing methodology which can
assist user determining the number of forks to get highly accu-
rate tail performance.” Additionally, to reduce the testing time and
cost while maintaining high accuracy, our second future work is to
improve existing dynamic reconfiguration techniques [13].
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