
Uncovering Steady State Executions in Java Microbenchmarking
with Call Graph Analysis

Madeline Janecek

mj17th@brocku.ca

Brock University

St. Catharines, ON, Canada

Sneh Patel

wsp18oo@brocku.ca

Brock University

St. Catharines, ON, Canada

Naser Ezzati-Jivan

nezzati@brocku.ca

Brock University

St. Catharines, ON, Canada

ABSTRACT
Developers often use microbenchmarking tools to evaluate the per-

formance of a Java program. These tools run a small section of code

multiple times and measure its performance. However, this process

can be problematic as Java execution is traditionally divided into

two stages: a warmup stage where the JVM’s JIT compiler optimizes

frequently used code and a steady stage where performance is sta-

ble. Measuring performance before reaching the steady stage can

provide an inaccurate representation of the program’s efficiency.

The challenge comes from determining when a program should be

considered as in a steady state. In this paper, we propose that call

stack sampling data should be considered when conducting steady

state performance evaluations. By analyzing this data, we can gen-

erate call graphs for individual microbenchmark executions. Our

proposed method of using call stack sampling data and visualizing

call graphs intuitively empowers developers to effectively distin-

guish between warmup and steady state executions. Additionally,

by utilizing machine learning classification techniques this method

can automate the steady state detection, working towards a more

accurate and efficient performance evaluation process.

CCS CONCEPTS
• Software and its engineering→ Software performance; Just-
in-time compilers.

KEYWORDS
ICPE Data Challenge, Call Graph Analysis, Time Series Analysis,

Machine Learning, Benchmarking, Steady State, Warmup

ACM Reference Format:
Madeline Janecek, Sneh Patel, and Naser Ezzati-Jivan. 2023. Uncovering

Steady State Executions in Java Microbenchmarking with Call Graph Anal-

ysis. In Companion of the 2023 ACM/SPEC International Conference on Per-
formance Engineering (ICPE ’23 Companion), April 15–19, 2023, Coimbra, Por-
tugal. ACM, New York, NY, USA, 5 pages. https://doi.org/10.1145/3578245.

3584689

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. Copyrights for components of this work owned by others than the

author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or

republish, to post on servers or to redistribute to lists, requires prior specific permission

and/or a fee. Request permissions from permissions@acm.org.

ICPE ’23 Companion, April 15–19, 2023, Coimbra, Portugal
© 2023 Copyright held by the owner/author(s). Publication rights licensed to ACM.

ACM ISBN 979-8-4007-0072-9/23/04. . . $15.00

https://doi.org/10.1145/3578245.3584689

1 INTRODUCTION
Microbenchmarking, which is the practice of monitoring the per-

formance of a repeatedly executed small unit of code, is a common

method used in Java software performance testing [9]. However, to

obtain accurate results, one must take into account how the Java

Virtual Machine (JVM) executes code. The JVM uses Just-In-Time

(JIT) compilation to convert key parts of the Java code into more

efficient machine code [7], which can lead to initial performance

inconsistencies.

To account for this, microbenchmarking tools often require users

to define an initial warmup phase during which performance met-

rics are not collected, and only consider executions that follow this

phase as being in a steady state. However, determining when a

benchmark has reached a steady state is a difficult task. Current

practices rely almost exclusively on the user’s estimation, and some

benchmarks may never reach a steady state [2].

Consequently, there is a need for more advanced techniques to

determine if and when a benchmark reaches a steady performance

state. In this work, we propose that call stack sampling allows for

a more in depth analysis of microbenchmarking that is not seen

with existing practices. The benefits of using call stack samples are

twofold. Firstly, call stack sampling can provide a detailed picture

of internal benchmark execution with low overhead and instru-

mentation. As such, it provides more visibility than performance

metrics like execution duration. Secondly, our results indicate that

executions recorded during and after a warmup phase have clear

structural differences. As such, this data is well suited for various

analyses of steady state performance. We present how the data

may be used to visualize the differences between executions taken

from warmup and steady state phases. Furthermore, we investigate

how machine learning classification may be used to automate call

stack-based steady state detection.

2 BACKGROUND & RELATEDWORK
In this section, we provide an explanation of the JMH microbench-

marking tool that we utilized to gather the data for our graphs, as

well as methods for analyzing the flame graphs that were produced.

Additionally, we highlight other works in the field that served as

inspiration for our research.

2.1 JMH
Java Microbenchmark Harness (JMH) is a toolkit to measure the

performance of Java programs. To ensure that accurate results are

produced the executions are executed in multiple forks (default

being 5). JMH can measure the performance of Java in different

benchmark modes depending on the goal of the analysis.

71

https://doi.org/10.1145/3578245.3584689
https://doi.org/10.1145/3578245.3584689
https://doi.org/10.1145/3578245.3584689

ICPE ’23 Companion, April 15–19, 2023, Coimbra, Portugal Madeline Janecek, Sneh Patel, & Naser Ezzati-Jivan

Each mode splits the executions it measures into the warmup

and steady state. The idea is the JVMwill detect frequent executions

(such as loops), and then it will dynamically compile the code into

optimized machine code. This results in the starting executions

having unsteady execution times producing inaccurate analyses.

These unstable executions are labelled as warmup executions and

should not be used to measure the performance of the applications.

The later executions usually have more stable run times and as such

are labelled as steady state executions.

Despite the criticality of discarding warmup exeuctions, JMH

does not provide a method of detecting when a program reaches

a steady state. Users initialize the number of warmup executions

at the start of the benchmark (default being 5). For example, if

a developer states that the benchmark should have 10 warmup

executions, each execution after that would be considered a steady

state execution. This might work for some programs, however, it is

difficult to know exactly how many warmup states a Java program

requires for it to produce accurate steady state executions. If the

number of warmup executions is wrong JMH would label some

executions that should be warmup as steady state, resulting in

inaccurate data. To further complicate matters, recent research

shows that some programs never reaches a steady state [9]. At

this point, most accurate way to detect when a steady state is

reached is to apply change point algorithms upon the execution

runtimes. By conducting call graph informed steady state detection,

we automate the process while providing more visibility than other

runtime based methods.

2.2 Flame Graph
Generally, the reports that CPU profiles create are long and time-

consuming to analyze manually. An alternative to such reports are

flame graphs, which are call stack visualizations first introduced

by Brendan Gregg [4]. Using flame graphs we can understand the

performance of programs, and discover function-level bottlenecks

that it may have. In a flame graph, each function is a box stacked on

top of the function that calls it. The width of the graph determines

the time spent on that function.

2.3 Related Work
Traini et al. [9] address several questions related tomicrobenchmark

performance, including the question of whether or not microbench-

marks always reach a steady state. To answer this question, they

examine the runtime of each execution and employ a change point

algorithm to determine the steady state, as it is theorized to have

a significantly reduced time compared to the warmup state. To

determine whether or not the benchmark has reached this state,

they analyze the partition created by the change point algorithm

and evaluate whether a specific portion has similar timings. If so,

the benchmark is considered to have reached a steady state. In our

own research, we utilize this method to label graphs as exhibiting

warmup or steady state behaviour. Using these results as ground

truths allows us to see if a call graph informed classification can

produce similar results to current state-of-the-art approaches.

Change point algorithms are typically designed to operate on

low-dimensional data, and identifying change points within higher-

dimensional data remains a challenge [5]. However, He et al. present

amethod for utilizing change point algorithms on higher-dimensional

data by converting the data into vectors and training them on a clas-

sification model [6]. Zambon et al. take a similar approach where

a sequence of graphs is mapped onto vectors to perform change

point detection [10]. In our research, we convert the call graphs

into vectors and use various classification models. This allows for

the use of a broad range of change point detection techniques [1].

In their work, Bauer et al. [3] investigate the automation of the

process of identifying change points in time series analyses using

machine learning classification models. They employ various mod-

els to discover change points in the data, and then evaluate the

accuracy of these change points by using preset labels to validate

their dataset. Subsequently, they apply their model to unlabelled

data in order to compare the results. In our research, we performed

an analysis of the execution durations of multiple benchmark re-

sults to investigate the performance of the program. Through this

analysis, we were able to confirm that the executions identified as

being within a steady state displayed lower and more consistent

runtimes compared to those found in the warmup states. This was

determined by comparing the runtime values of each execution and

observing a clear distinction between the two stages of execution.

Our analysis on call graph

3 METHODOLOGY
In this section we present our approach for collecting call stack

samples from JMH microbenchmarks, their visualization and anal-

ysis, as well as a steady state classification method. These proposed

methods aim to provide an accurate and efficient way to uncover

the steady states of a Java program visually and intuitively.

3.1 Data Collection
We collect series of call stack samples using Perf throughout the

entire JMH benchmarking process. Perf is a profiling tool that can be

used to collect performance data within Linux-based systems. One

of its many features is CPU stack trace sampling, which is where

we record which functions are actively running at regular sampling

intervals. Perf’s overhead is directly correlated to the frequency

of sampling, however it is still capable of collecting hundreds of

samples every second with negligible performance impact. Perf is

well suited for our purposes as it is capable of collecting data from

multiple levels. As such, we can see kernel code execution and its

impact on performance. Additionally, perf has JIT symbol support,

making it possible to interpret the call stack samples collected from

the JVM.

For each JMH benchmark execution, we also record timestamped

logs indicating the start and end of an execution, which allows us

to break up the data to make execution-to-execution comparisons.

Each execution’s samples may then be combined to make a call

graph, which is what we use to analyze each execution separately.

3.2 Visualization
After generating a call graph for each of the executions, we turn

to flame graphs to highlight the structural differences between the

warmup and steady states phases. Flame graphs are compact visual

representations of call stack samples that can assist in software

performance analysis. Each box in the graph (known as a stack

72

Uncovering Steady State Executions in Java Microbenchmarking with Call Graph Analysis ICPE ’23 Companion, April 15–19, 2023, Coimbra, Portugal

main

func1

func2 func3

func4

func5

main

func1

func2 func3

func4

func5

Figure 1: Call graphs (left) compared to flame graphs (right).

frame) is representative of a function call, where the stack frames

below the topmost stack frame show the call path. The width of

each frame is indicative of the total time that function with that

particular call path spent consuming CPU resources. Wider boxes

may be the result of the function having long execution times,

however it might also result from a high call frequency.

Take, for example, the simple flame graph depicted in Figure 1.

Using the flame graph we can easily see the functions that make up

the application’s execution, each function’s calling function, and

comparatively how much time each function took throughout the

entire execution. This can be extremely useful for a variety of per-

formance based analyses, including bottleneck detection, anomaly

root cause identification, and so forth. For our purposes, comparing

the flame graphs of each execution shows that there is a clear visual

difference between those that are warming up and those that have

reached a steady state.

Take the example shown in Figure 2. Executions that are in steady

states (the second row) appear to have more consistent internal

behavior, as demonstrated by their flame graph, when compared to

those in the warm-up phase (the first row). By analyzing the graphs

in detail, it becomes evident that the warm-up executions exhibit a

greater number of interpret functions, indicating that the JVM is

operating in interpret mode and resulting in higher fluctuations in

performance. In contrast, the steady state shows fewer interpret

functions, likely indicating that certain parts of the code have been

compiled and optimized by the JVM, resulting in more consistent

internal runtime behavior and steady execution time.

3.3 Classification
In addition to visualizing the microbenchmark executions, we set

out to automate steady state detection using structural call graph

indicators. To do this we defined this task as a binary classification

problem where executions are either in a warmup or steady state.

3.3.1 Vectorization. Many machine learning classification algo-

rithms operate on fixed-length vectors, however, the call graphs

we collect for each execution have varying structures and num-

bers of nodes. To overcome this challenge, we must transform each

graph into a vector that effectively captures its content as well as

its topological characteristics. To accomplish this task, we employ

the graph embedding technique Graph2Vec [8]. Graph2Vec utilizes

a process of generating vectors with initially random values, which

are then refined to represent the nodes, edges and features of the

graphs over several iterations. This allows us to effectively use these

transformed vectors as input for the machine learning classification

algorithms.

Table 1: Steady state classification performance

Accuracy (%) Precision (%) Recall (%)

MLP 88.5 31.6 12.5

RF 90.4 75.0 6

DT 82.8 19.3 22.5

KNN 89.8 45 9

SVC 90 50 1

3.3.2 Data Labeling. Training and testing our classification models

requires a set of labeled data. To generate these labels we utilize the

state-of-the-art steady state detection technique described in [9].

This consisted of recording the runtimes of each execution and then

applying the PELT change point detection algorithm to identify

any shifts into a steady performance state.

3.3.3 Classifier Training. Once the data has been vectorized and la-

beled, it was used to trainmachine learning classification algorithms

to establish the relationship between the features of an execution’s

call graph and its stage. In this work, we trained and evaluated

the performance of five distinct machine learning classification

algorithms for steady state identification. The classifiers we exam-

ined include Multi-Layer Perceptron (MLP), Random Forest (RF),

Decision Tree (DT), K-nearest neighbour (KNN), and C-Support

Vector Classifier (SVC) for which the results will be provided in the

following section.

4 EXPERIMENTAL SETUP AND DISCUSSION
The data used for our experimental evaluation was collected in a

Linux Ubuntu 22.04 LTS environment with the 64-bit kernel 5.15.0-

56. Perf version 5.15.64 was used to perform the call stack sampling,

while JMH measured the performance of a simple binary search.

Apache Log4j 2.11.2 was chosen to record the start and end of

each execution as it provides high throughput while imposing

minimal overhead. 10000 executions collected across 10 forks of

the microbenchmarking were collected an processed following the

procedure discussed in Section 3.1. The experimental results and

scripts used to generate them have been make publicly available
1
.

4.1 Visualization
As discussed in Section 3.3.1, generating flame graphs for initial

executions and those identified by the PELT algorithm as having

reached a steady state of performance shows a clear visual differ-

ence (see Figure 2). The executions recorded during the warmup

stage have a much larger and less uniform stack depth. This is

primarily because the functions have yet to be compiled, and as

such they are still being executed by the JVM’s interpreter function.

Once the functions are compiled and can run natively, the flame

graphs’ structure becomes much more stable.

4.2 Classification
In order to evaluate the performance of the classification methods

discussed in Section 3.3.3, we computed several metrics such as

True Positives (TP), True Negatives (TN), False Positives (FP) and

1
https://github.com/sneh2001patel/Uncovering-Steady-State-Executions-in-Java-

Microbenchmarking-with-Callgraph-Analysis

73

ICPE ’23 Companion, April 15–19, 2023, Coimbra, Portugal Madeline Janecek, Sneh Patel, & Naser Ezzati-Jivan

Figure 2: Visual differences in processing between executions in warmup (top row) and steady (bottom row) states.

False Negatives (FN). These values were then used to calculate the

accuracy (1), precision (2), and recall (3) of each classifier algorithm.

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
(𝑇𝑃 +𝑇𝑁)

(𝑇𝑃 + 𝐹𝑃 +𝑇𝑁 + 𝐹𝑁) (1)

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃

(𝑇𝑃 + 𝐹𝑃) (2)

𝑅𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑃

(𝑇𝑃 + 𝐹𝑁) (3)

The results of classification performance analysis are displayed

in Table 1. The Random Forest (RF) method showed the best per-

formance with the highest accuracy and precision scores. Despite

the clear distinction in the visual representations of the call graphs

of warmup and steady state executions, the recall scores for all

models were relatively low. The accuracy of the model is high, but

the low recall indicates that there is room for improvement in our

classification methods. One possible reason for this low recall score

is the limited size of the dataset and therefore potential inaccuracies

in the labels of each graph.

The labels (of executions and the corresponding call graphs)

were generated using the same method as described in [9] in which

the authors applied a PELT algorithm to detect change points in the

execution durations, and then determined whether 500 consecutive

executions had similar duration. If so, the execution was labeled

as steady state, otherwise as warm-up. Our dataset, however, was

not as large as the one used in [9]. Therefore, instead of checking

for 500 consecutive executions, we checked if 5% of the executions

(50) after the change point had similar duration. This could lead

to potential inaccuracies in the labeling, as checking a smaller

number of consecutive executions may not be sufficient to ensure

the accurate labeling.

Another reason for the low recall score could be the size (number

of items) of each vector in the resulting vectors set of the Graph2Vec

method. A smaller size may not contain enough information to

accurately represent each call graph. Larger vector sizes can store

more information about the graphs, being more representative of

their strucutre and content, however, this also increases the time

required to create the model.

In this study, we used vectors of a moderate size. Nonetheless,

in our future work, we plan to investigate alternative vectorization

technique and the use of larger vector sizes in order to improve

the classification results. We also plan to use a larger dataset by

running more benchmarks and increasing the number of forks and

iterations for each benchmark. This will allow us to gather more

data and potentially improve the recall score of our models.

5 CONCLUSIONS
In this paper, we presented a technique for distinguishing between

steady state and warmup state executions using visualized exe-

cution call graphs and flame graphs. We utilized graphical rep-

resentation to demonstrate and intuitively compare the internal

executions of warmup and steady states. Our method showed a

clear distinction between the shape, content, number of internal

JVM functions (such as interpret function) and topological struc-

tures of the executions of the warmup and steady states. We then

trained the classification methods to learn the internal execution

behaviour of steady and warmup executions. Our method showed

the Random Forest (RF) method has the best performance with the

highest accuracy and precision scores.

In future research, we plan to improve the classification results by

utilizing a larger dataset and experimenting with different vectoriza-

tion methods with possibly more representative and different-size

vectors. We will also explore the use of unsupervised learning to

remove the need for labeled training data.

ACKNOWLEDGMENT
The support of the Natural Sciences and Engineering Research

Council of Canada (NSERC), MITACS, Ciena, and Bornea Dynamics

Limited is gratefully acknowledged.

74

Uncovering Steady State Executions in Java Microbenchmarking with Call Graph Analysis ICPE ’23 Companion, April 15–19, 2023, Coimbra, Portugal

REFERENCES
[1] Aminikhanghahi, S., and Cook, D. A survey of methods for time series change

point detection. Knowledge and Information Systems 51 (05 2017).
[2] Barrett, E., Bolz-Tereick, C. F., Killick, R., Mount, S., and Tratt, L. Virtual

machine warmup blows hot and cold. Proc. ACM Program. Lang. 1, OOPSLA (oct

2017).

[3] Bauer, A., Straesser, M., Beierlieb, L., Meissner, M., and Kounev, S. Au-

tomated triage of performance change points using time series analysis and

machine learning.

[4] Gregg, B. Visualizing performance with flame graphs.

[5] Grundy, T., Killick, R., and Mihaylov, G. High-dimensional changepoint

detection via a geometrically inspired mapping. Statistics and Computing 30, 4
(mar 2020), 1155–1166.

[6] He, Y., Burghardt, K. A., and Lerman, K. Leveraging change point detection

to discover natural experiments in data. EPJ Data Science 11, 1 (2022), 49.
[7] Horký, V., Libič, P., Steinhauser, A., and Tůma, P. Dos and don’ts of con-

ducting performance measurements in java. In Proceedings of the 6th ACM/SPEC
International Conference on Performance Engineering (New York, NY, USA, 2015),

ICPE ’15, Association for Computing Machinery, p. 337–340.

[8] Narayanan, A., Chandramohan, M., Venkatesan, R., Chen, L., Liu, Y., and

Jaiswal, S. graph2vec: Learning distributed representations of graphs. CoRR
abs/1707.05005 (2017).

[9] Traini, L., Cortellessa, V., Di Pompeo, D., and Tucci, M. Towards effective

assessment of steady state performance in java software: Are we there yet?

Empirical Softw. Engg. 28, 1 (jan 2023).

[10] Zambon, D., Alippi, C., and Livi, L. Change-point methods on a sequence of

graphs. IEEE Transactions on Signal Processing 67, 24 (2019), 6327–6341.

75

	Abstract
	1 Introduction
	2 Background & Related Work
	2.1 JMH
	2.2 Flame Graph
	2.3 Related Work

	3 Methodology
	3.1 Data Collection
	3.2 Visualization
	3.3 Classification

	4 Experimental Setup and Discussion
	4.1 Visualization
	4.2 Classification

	5 Conclusions
	References

