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ABSTRACT

Systematic testing of software performance during development is
a persistent challenge, made increasingly important by the magnify-
ing effect of mass software deployment on any savings. In practice,
such systematic performance evaluation requires a combination
of an efficient and reliable measurement procedure integrated into
the development environment, coupled with an automated evalua-
tion of the measurement results and compact reporting of detected
performance anomalies.

A realistic evaluation of research contributions to systematic
software performance testing can benefit from the availability of
measurement data that comes from long term development ac-
tivities in a well documented context. This paper presents a data
artifact that aggregates more than 70 machine time years of perfor-
mance measurements over 7 years of development of the GraalVM
Compiler Project, aiming to reduce the costs of evaluating research
contributions in this and similar contexts.
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1 MOTIVATION

Recent research activities in systematic testing of software per-
formance during development [7, 8, 10, 11, 13, 14, 16—-18] tackle
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challenges ranging from the efficiency of the measurement proce-
dure to the reliability of the measurement evaluation. Validation
efforts in such research activities are often significant, requiring
the researchers to collect performance measurements across a sig-
nificant history of software versions. With current software stacks
requiring relatively long measurement durations [21] it may take
years of machine time to collect sufficient measurements, and the
validation may end up being restricted for pragmatic reasons such
as cost or publication deadlines.

To help improve the validation efforts and support research
into software performance testing, we present a data artifact that
aggregates more than 70 machine time years of performance mea-
surements over 7 years of development of the GraalVM Compiler
Project [4]. The measurements are collected using standard bench-
marks executing on the Java Virtual Machine (JVM), with a mea-
surement procedure that avoids major sources of measurement
disruptions and provides sufficient information for robust per-
formance evaluation (for example compiler activity tracking for
warmup filtering, or multiple workload executions for capturing
non-deterministic compilation behavior). The data artifact has been
used in [5], and should be suitable for research into performance
change detection methods, efficient measurement planning tech-
niques, and related problems.

2 MEASUREMENT EXPERIMENT

The main goal of the measurement experiment is to collect sufficient
measurements to identify performance anomalies (both regressions
and improvements in software performance) occurring due to de-
velopment activities (commits) in the GraalVM Compiler Project.

The GraalVM Compiler was originally conceived as a just-in-
time compiler that compiles Java bytecode into optimized machine
code. It is integrated into the tiered compilation framework [12]
of the Java Virtual Machine. When configured to do so, the Java
Virtual Machine invokes the GraalVM Compiler to perform profile
guided compilation of hot methods, identified and profiled while
executing in the interpreter or as native methods compiled by lower
compilation tiers.

With just-in-time compilation, the compiler and the application
compete for the same execution resources (processor, memory).
The performance of the compiler (how long it takes to compile the
given bytecode) therefore becomes tied to the performance of the
application (how long it takes to run the compiled native code).
In general, compiling methods early or fast can imply reaching
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peak performance in shorter time, however, much more complex
relationship may exist because the application timing feeds back
into the hot method selection and the profile guided compilation.

More recent versions of the GraalVM Compiler also support
static (ahead-of-time) compilation of Java applications into native
binaries. Depending on the configuration, the compilation may still
be profile guided, but the code to be compiled is identified and
profiled during a short execution of the application prior to the
compilation.

Workloads. We use well-known benchmark workloads as appli-
cations whose execution characterizes the compiler performance.
These include the DaCapo [6] and ScalaBench [20] suites, a non-
compliant modification of the SPECjvm2008 suite [1], and the Re-
naissance suite [19]. This choice seeks to avoid relatively small
workloads (such as microbenchmarks sometimes available with
specific applications [15]), which may stray far from typical com-
piler workloads, and relatively large workloads (such as applications
that require starting multiple Java Virtual Machines), which tend to
complicate automated execution and consume significant resources.

We have modified the workload harnesses of the benchmark
suites to support an execution scenario where the benchmark work-
load is repeated as many times as needed to reach a preset to-
tal execution duration, and where the time of each repetition is
recorded and reported as the primary benchmark metric. Where
multiple workload sizes were available, we have picked the one
which yielded a repetition time in the 1 to 10 s range if possible.
As is common with benchmark suites whose lifetime spans multiple
years, we have had to exclude workloads that were not compatible
with the Java Virtual Machine environment used by the compiler.

Planning. Lacking a priori information on the performance of
the compiler and the application leads us to a conservative mea-
surement experiment design, where the benchmark applications
are executed repeatedly (to address non-deterministic compiler be-
havior) and available performance information is recorded in its
entirety for subsequent processing. For each execution with just-
in-time compilation, we pick a random total execution duration of
5min to 10 min, which should typically suffice to get past major
warmup artifacts while providing some variability in each execu-
tion (we do not require that stable performance is reached, just that
enough compilation takes place so that final repetitions tend to
execute code produced by the compiler). For executions with static
compilation, where warmup artifacts are mostly confined to the
first repetition, we simply set the total execution duration to 1 min.

We require a preset minimum of 33 executions for a particular
benchmark application on a particular compiler version before com-
puting confidence intervals for the performance metrics (ideally,
the minimum number of executions would be tailored to each work-
load, however, arbitrary performance changes are possible from
one compiler version to the next, and lacking a reliable procedure
to calibrate the number as the compiler develops, we have started
with a pragmatic constant instead). More executions are performed
when the confidence intervals for mean performance are too wide
to decide on potential performance anomalies, until a preset maxi-
mum (to prevent measuring the same benchmark application with
the same compiler version for too long when the measurements
fluctuate excessively).
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With multiple compiler versions (commits) appearing daily, mea-
suring each version with all benchmarks in all configurations of
interest would consume resources excessively. Instead, we always
measure the most current version of the compiler with each bench-
mark, and bisect towards older versions when a performance anom-
aly is detected. We consider only the merge commits in the main
development branch of the compiler.

Metrics. Although any and all performance metrics are considered
potentially interesting (so far as they can inform the development
process), our focus is on the peak performance of the code pro-
duced by the GraalVM Compiler. To characterize the workload
execution performance, we record the wall clock time and the
aggregate thread execution time of each benchmark workload rep-
etition. Additionally, we record selected hardware performance
counters and selected events in JVM related to garbage collection
and compilation; again for each workload repetition.

2.1 Platform Configuration

We collect measurements on two dedicated clusters of blade servers,
where multiple machines with identical hardware and software con-
figuration help increase the measurement capacity while preserving
measurement comparability. The two hardware configurations are:

— Intel Xeon E5-2620 V4 (2100 MHz, 8 cores, 20 MB cache)
with 64 GB RAM (2133 MT/s), and

— Intel Xeon E3-1230 V6 (3500 MHz, 4 cores, 8 MB cache)
with 32 GB RAM (2400 MT/s).

We take common precautions to reduce measurement variance,
including disabling hardware multithreading and power manage-
ment (while these settings can influence application performance,
we believe most compiler performance anomalies are not likely to
depend on these features being active). To detect possible hardware
issues, we log the processor and chipset temperature sensors on
the measurement machines.

On the software side, we use the standard Fedora Linux distri-
bution, with updates performed only when compatibility issues
prevent running the benchmarks or the compiler. Currently, the
measurement machines run Fedora Linux 35 with kernel 5.16 and
glibc 2.34. We note that the exact software configuration is not crit-
ical, as long as the configuration changes are rare enough so that
measurements of consecutive compiler versions remain mostly com-
parable. A hash of the complete software configuration is recorded
with each measurement to permit detecting configuration changes
between measurements.

2.2 Measurement Procedure

The benchmark applications and compiler versions to execute are
assigned to the measurement machines one execution at a time
on a first come first serve basis. Together with the random choice
of the total execution duration, this effectively results in random
assignment of executions to measurement machines.

To avoid influencing one execution with a profile from another,
we launch a new Java Virtual Machine instance with each just-
in-time compilation measurement. Analogously, we compile the
benchmark application into a new native binary with each static
compilation measurement.
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ResultFile BenchmarkWorkload BenchmarkType
name, type : string name : string name, label, description : string
’ MachineHost MachineType
’ PlatformInstallation name, label, description : string
\
Version PlatformType
tag, hash : string, time : datetime name, label, description : string

Measurement

Configuration

Repository

create_time, status_time : datetime

name, label, description : string

name : string

Figure 1: Metadata types used in the result archive.

measurement
T-- 81
T-- 27
T-- 28
T-- 9282781

|-- config-hash. txt
|-- default.csv
|-- metadata
|-- platform-command. txt
|-- platform-stderr.txt

Figure 2: Directory structure storing a single measurement.

Each execution starts with optionally unpacking the required
artifacts (compiler, benchmark). To prevent file system activity from
interfering with measurements, all pending writes are flushed and
the file system cache is populated with the benchmark and com-
piler files prior to measurement. Because some of the benchmark
workloads are sensitive to regular patterns in physical memory
allocation, we also shuffle the state of the kernel page allocator by
requesting and returning physical memory in random order [22].
Finally, we make sure the system is idle (all processors together are
reported idle at least 99 % of the time for at least 1 s by the kernel).

Depending on actual measurement configuration, final precau-
tions taken during benchmark execution may include disabling
dynamic heap sizing and forcing garbage collection between indi-
vidual benchmark workload repetitions.

2.3 Result Format

We publish the measurement results as a collection of result files an-
notated with metadata describing the compiler version, benchmark
workload, and experiment configuration used with each measure-
ment. A diagram of the metadata types and their relationships is
shown in Figure 1.

The individual result files are stored in a directory structure
under measurement, with each Measurement occupying a single
directory with a unique numerical name that stores the individual
ResultFile entries. To avoid storing too many Measurement di-
rectory entries in the top level measurement directory, a three-level
structure is created as shown in Figure 2.
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The exact composition of each Measurement directory depends
on the benchmark workload and experiment configuration. To facil-
itate unified result processing, a selected subset of the results is also
stored (redundantly) in a default.csv file. The file contains one
row for each benchmark workload repetition, the typical columns
of this file are described in Table 1. Other typical result files are de-
scribed in Table 2. In addition to the individual ResultFile entries,
each Measurement directory also contains a metadata file - this is
a JSON file that references the remaining metadata from Figure 1
using unique numerical identifiers, each identifier can be looked up
in the corresponding metadata file that is a dictionary associating
the identifier with the attributes from Figure 1.

3 DATASET USAGE GUIDELINES

The measurement results, together with example processing scripts,
are made available under the CC BY 4.0 license at [2]. The mea-
surement data can also be viewed online [3] with focus on current
measurements and performance anomalies.

The measurement procedure was designed to preserve measure-
ment comparability as much as is technically reasonable, and the
measurement results should be fit for any use where a history of
benchmark results is needed. Still, caution should be taken when
drawing conclusions, subject to the limitations outlined below.

Development. The measurements were collected using devel-
opment versions of the experiment framework, the compiler, and
(sometimes) the benchmarks. Measurements for some combina-
tions of platforms, benchmarks, and metrics were not collected at
some periods — if experiment continuity is needed, it should always
be tested explicitly using measurement timestamps. The results
reflect the development status of the components involved and are
therefore not indicative of product performance.

Warmup. The measurements collect a preset number of bench-
mark workload repetitions, with no regard for whether the values
were stable enough at the final repetition. Benchmarks may take
a very long time to stabilize or not stabilize at all [21], care must
be taken to identify warmup artifacts where needed. In our own
evaluation, waiting for a window of reduced compilation activity,
as indicated by the reported compiler thread execution duration,
provided reasonably reliable results.

Profiles. Profile driven compilation is non-deterministic in princi-
ple. As a result, a single execution is not necessarily representative
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Table 1: Typical columns present in the default.csv result files.

Column Unit Content
total_ms ms The duration from the JVM start to the end of the current repetition.
iteration_time_ns ns The duration of the current repetition measured using wall clock time.
process_cpu_time_ns ns The aggregate thread execution duration of the current repetition.
ref_cycles cycles The ref_cycles hardware event count of the current repetition. Also for the
instructions, branch_instructions, branch_misses, cache_references,
cache_misses, and RAPL package energy events.
JVM_COMPILATIONS events The count of just-in-time compilation events reported by the JVM.
compilation_time_ms ms The aggregate execution duration of the compiler threads in this repetition.
compilation_total_ms ms The aggregate execution duration of the compiler threads from the JVM start.
jmx_memory_used_size bytes  The size of the used heap at the end of the current repetition.
jmx_memory_used_delta bytes  The change of the value above during the current repetition.
jmx_memory_old_collection_count events The number of old collections at the end of the current repetition. Analogously
for the value change during the current repetition, and for the young collections.
jmx_memory_old_collection_total_ms ms The aggregate duration of old collections since the JVM start. Analogously for

the value change during the current repetition, and for the young collections.

Table 2: Typical result files present in a Measurement directory.

Name Type Content

default Csv Subset of results extracted in unified format.

default text or JSON  Complete results as text or JSON if produced by the particular benchmark.
platform-stdout  text Standard output produced when running the benchmark.

platform-stderr  text Error output produced when running the benchmark.

platform-command text Command line used to run the benchmark.

compiler-stats JSON Compilation statistics from static compilation configurations.

config-hash text An SHAZ256 hash of a sorted list of all installed software packages.

sensors-before text A dump of the available hardware sensor readings (mostly temperature) before the JVM start.
sensors-after text A dump of the available hardware sensor readings (mostly temperature) after the JVM exit.
sensors-log Csv Readings of the processor temperature sensors extracted from above.

of the average performance observable with the same benchmark
workload and compiler version across multiple executions. Where
applicable, results from multiple executions should be used when
evaluating performance. In our own evaluation, using results from
consecutive compiler versions to estimate performance variabil-
ity between executions was a reasonable remedy when enough
executions of a particular compiler version were not available.

Timeline. Because our measurements are planned, the measure-
ment history does not necessarily cover all existing versions (com-
mits), and different versions may have been measured using differ-
ent subsets of benchmarks and configurations. Because planning fo-
cuses on locating performance anomalies, measurements are more
frequent around versions that have exhibited such anomalies. For
the community edition of the GraalVM Compiler, a complete ver-
sion history is available in the project repository [4]. Recent results
provide the repository commit hashes, older results may contain
build identifiers instead of commit hashes, in that case the commit
timestamp may be used to identify the nearest preceding merge
commit with reasonable accuracy. For the enterprise edition of the
GraalVM Compiler, a complete version history is not available.

Snapshots. The measurements were collected over multiple years
and, due to measurement planning, not necessarily in the same
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order as the compiler versions. Should a snapshot of the experiment
results at certain point in history be needed, each measurement
is annotated with start (create_time) and finish (status_time)
timestamps. These timestamps can be filtered appropriately.

4 RELATED ARTIFACTS

Research artifacts that describe the performance history of a soft-
ware project across multiple years are still rare. Most recently, the
ICPE 2022 Data Challenge has published the data from the Mon-
goDB performance testing system [9]. In the non-legacy dataset,
the artifact focuses on database specific metrics (query throughput,
peak query latencies, I/O operation counts and volumes, and so
on) collected for 4100 task-test pairs. Each time series included in
the artifact contains one measurement per version (commit), the
average length of the time series is a bit below 28 with the commit
dates ranging across 2 years. Apart from size, major differences
compared to our artifact include use of cloud vs dedicated machines,
single vs multiple values per workload execution, single vs multiple
workload executions for the same version (commit), and the choice
of metrics.
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