
A Reference Architecture for Datacenter Scheduler Programming
Abstractions: Design and Experiments (Work In Progress Paper)

Aratz Manterola Lasa
Vrije Universiteit Amsterdam

The Netherlands

A.M.Lasa@atlarge-research.com

Sacheendra Talluri
Vrije Universiteit Amsterdam

The Netherlands

s.talluri@vu.nl

Alexandru Iosup
Vrije Universiteit Amsterdam

The Netherlands

a.iosup@vu.nl

ABSTRACT

Datacenters are the backbone of our digital society, used by the

industry, academic researchers, public institutions, etc. To manage

resources, data centers make use of sophisticated schedulers. Each

scheduler o�ers a di�erent set of capabilities and users make use of

them through the APIs they o�er. However, there is not a clear un-

derstanding of what programming abstractions they o�er, nor why

they o�er some and not others. Consequently, it is di�cult to under-

stand the di�erences between them and the performance costs that

are imposed by their APIs. In this work, we study the programming

abstractions o�ered by industrial schedulers, their shortcomings,

and the performance costs of the shortcomings. We propose a gen-

eral reference architecture for scheduler programming abstractions.

Speci�cally, we analyze the programming abstractions of �ve pop-

ular industrial schedulers, we analyze the di�erences in their APIs,

we identify the missing abstractions, and �nally, we carry out an

exemplary experiment to demonstrate that schedulers sacri�ce per-

formance by under-implementing programming abstractions. In the

experiments, we demonstrate that an API extension can improve

task runtime by up to 23%. This work allows schedulers to identify

their shortcomings and points of improvement in their APIs, but

most importantly, provides a reference architecture for existing and

future schedulers.

CCS CONCEPTS

• Computer systems organization→ Cloud computing; •Gen-

eral and reference → Design.

KEYWORDS

scheduler, API, design, performance

ACM Reference Format:

Aratz Manterola Lasa, Sacheendra Talluri, and Alexandru Iosup. 2023. A

Reference Architecture for Datacenter Scheduler Programming Abstrac-

tions: Design and Experiments (Work In Progress Paper). In Companion of

the 2023 ACM/SPEC International Conference on Performance Engineering

(ICPE ’23 Companion), April 15–19, 2023, Coimbra, Portugal. ACM, New York,

NY, USA, 7 pages. https://doi.org/10.1145/3578245.3585035

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for pro�t or commercial advantage and that copies bear this notice and the full citation
on the �rst page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior speci�c permission
and/or a fee. Request permissions from permissions@acm.org.

ICPE ’23 Companion, April 15–19, 2023, Coimbra, Portugal

© 2023 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 979-8-4007-0072-9/23/04. . . $15.00
https://doi.org/10.1145/3578245.3585035

1 INTRODUCTION

Datacenters are used by industry, academic researchers, public in-

stitutions, etc. to deploy their services and products. They have be-

come the main infrastructure of our digital society [13, 27]. To man-

age resources, data centers make use of sophisticated schedulers. In

order to improve the scheduling, the community has designed many

di�erent schedulers over the years, such as Omega [29], Mesos [37],

Condor [33], Protean [16], etc. All these schedulers share a com-

mon reference architecture of the scheduling process [2]. However,

regarding the interface they provide to the users, that is to say,

their Application Programming Interfaces (APIs), there has been

little work. A conceptual model that aims to capture the program-

ming abstractions across di�erent types of schedulers (data analysis,

datacenter resource management, containers orchestration, etc.)

has never been designed. Such a conceptual model would be ben-

e�cial to generate a base knowledge on how to design and build

the systems, as well as ease the understanding of how schedulers

work and what functionalities they provide [7, 12, 23]. It would

also allow us to identify shortcomings in existing schedulers and

provide a framework for comparing di�erent designs. On the other

hand, the lack of a conceptual model for scheduling programming

abstractions can be costly. Ill-de�ned abstractions make it hard to

port scheduling innovations to established schedulers. Hence, estab-

lished schedulers get stuck with old designs. Often, they require a

signi�cant redesign to accommodate new innovations, as has been

the case with Condor [33] and Borg [6].

There is not a clear understanding of why a scheduler does

or does not o�er a certain API to the user. Instead, the concept

has always been reduced to (1) the richer the API, the higher the

performance of the user applications is [29] and (2) the more limited

the API, the higher the simplicity, security, and provider control is [37].

This is probably why schedulers limit the APIs, in exchange for

greater control and simplicity. However, it is not clear to existing

schedulers what performance bene�ts are sacri�ced, due to simple

API designs [1, 28, 35]. Therefore, it is necessary to study the costs

imposed by the existing programming interfaces. This will allow

vendors to realize the importance of the programming abstractions,

and quite possibly update them to increase performance for their

customers.

How can we model scheduler programming abstractions?, Are there

shortcomings in the programming abstractions of industrial sched-

ulers? and What are the costs imposed by the shortcomings? are

the main research questions we address in this work. For build-

ing schedulers, it is necessary to have a clear understanding of

what programming abstractions the scheduler could expose to their

users. In other words, what is the potential functionality of a sched-

uler is. For that, we design a reference architecture for scheduling

57

https://doi.org/10.1145/3578245.3585035
https://doi.org/10.1145/3578245.3585035

ICPE ’23 Companion, April 15–19, 2023, Coimbra, Portugal Aratz Manterola Lasa, Sacheendra Talluri, and Alexandru Iosup

programming abstractions. Once the reference architecture is de-

signed, we use it to analyze the industrial schedulers and identify

shortcomings of their current APIs. Lastly, we hypothesize that ex-

isting schedulers sacri�ce performance in exchange for simplicity,

by limiting their programming interfaces. Therefore, we carry out

experiments to prove that by extending current scheduler APIs,

performance is gained. For that, we take an existing programming

interface, identify missing features based on the reference architec-

ture, and we experiment by implementing the missing abstraction

and comparing it to the original design.

The contribution of this work is three-fold:

(1) We design a reference architecture for scheduling program-

ming abstractions (Section 3).

(2) We analyze existing industrial scheduler APIs by mapping

them to the reference architecture (Section 4).

(3) We evaluate, using simulation, the performance cost of miss-

ing programming abstractions in industrial schedulers (Sec-

tion 5).

2 BACKGROUND

For encapsulating the context and explaining the central concepts

of this work, we present a set of scheduling system models that we

explain below.

The workload is what is executed using the resources that the

scheduler assigns to the user. In this work, we assume they �t the

morphology of a work�ow: a stream of jobs that are made up of

one or several tasks, and there are dependencies in the precedence

between the tasks.

The scheduling resources are the resources the scheduler

manages and what workloads are executed on top of. Resources

are physical machines, in a data center with several hosts each, and

each host virtualizes its resources in VMs or containers, and they

are a combination of CPU, memory RAM, and storage.

The scheduler is the central component users submit the work-

load, in order to make use of the resources. It takes care of several

tasks: �nding resources to assign to the user workload, transferring

the workload to the resources, starting the execution of the work-

load, managing the workload through its lifecycle, and notifying to

the user about lifecycle events.

The programming abstractions are the API o�ered by sched-

ulers and is the language by which the user submits workloads

and modi�es the workload’s requirements during the workload’s

life-cycle.

3 REFERENCE ARCHITECTURE DESIGN

In this section, we design the reference architecture. Below we

specify the methodology we follow.

(1) Analysis of requirements and design principles. First,

we identify the requirements of the reference architecture

and the design principles by which we guide and evaluate

the design.

(2) Model real-world schedulers. Next, we model the pro-

gramming abstractions of �ve real-world schedulers. For

that, we identify �ve popular schedulers in the industry, and

we analyze their APIs. Consulting experts in the �eld we

select the following schedulers: Kubernetes [24], SLURM

[22], Spark [36], Condor [33], and Apache Air�ow [31].

(3) Model emerging concepts from academia. Then, we

model scheduler designs from emerging �elds, such as IoT/Edge,

energy e�ciency, etc. For that, we carry out a literature sur-

vey. The schedulers we identify in the literature survey are:

[5, 8–11, 14, 19, 21, 25, 26, 30, 32, 34, 35, 38].

(4) Unify real-world and emerging concepts fromacademia.

After modeling real-world and emerging scheduler designs,

we extract, �lter, generalize, and unify them into a reference

architecture.

In this work, we omit the intermediate steps and the speci�cation

of the methodology for selecting the academic schedulers, and we

only present the requirements analysis and the �nal result of the

reference architecture.

3.1 Requirements

To design a reference architecture it is necessary to identify which

are the requirements that must be met. We list all the requirements

below.

R1 Comprehensibility. The reader should not make a great

e�ort to understand the di�erent components that make up

the reference architecture, how they relate to each other, or

what their high-level meaning is.

R2 Actionable. The main driver of the reference architecture

is to be used in the real world. Therefore, the design must

take into account whether the resulting work is actionable.

3.2 Design principles

For the design of the scheduling programming abstractions refer-

ence architecture, we identify the following design principles.

P1 Separation of Objects from Actions.We distinguish be-

tween the actions that can be performed and the objects that

are used as input to the actions. This separation facilitates

comprehension.

P2 Grouping of related actions. There may be several ac-

tions that are related to each other. Therefore, to facilitate

comprehension, related actions are grouped together.

P3 Avoidance of concrete technologies in objects. For avoid-

ing to commit or couple to a speci�c technology, we keep

the objects as high-level as possible.

P4 Naming relationships between actions and objects. The

reference architecture must relate the objects to the actions,

through named relationships.

3.3 Reference architecture

The reference architecture is found in Figure 1. The high-level

approach of the model is based on listing the actions and objects

that the APIs are composed of, and how objects relate to actions.

The objects are the input that the actions receive. Each action must

have three types of relationships: WHAT, WHEN, and WHERE,

and for each relationship there can be one or more objects. This

way, programming abstractions can be understood through the

following syntactic structure: <action> <object> IN <object>

58

A Reference Architecture for Datacenter Scheduler Programming Abstractions (WiP) ICPE ’23 Companion, April 15–19, 2023, Coimbra, Portugal

Configure
schedulerScheduler

WHAT /
WHEREProvision

lease/release
scale

migrate
preempt
recover

Event

User
resource

Scheduler
resource

WHEN

WHEREWHAT

Communicate

Event User
resource

Scheduler
resource

Communication
process

WHEN

Scheduler

WHAT

WHERE

Event

WHEN

Manage data
access input

data
access

intermediate data
access metadata

replicate
partition
recover

Event

User
resource Scheduler

resource

WHEN

WHAT

Legend

Action
Subaction

Object

Relation

User
resource

WHERE

Figure 1: Reference architecture for scheduling programming

abstractions.

WHEN <object>, where the objects and actions are �lled using the

reference architecture. For example:

• Provision:Lease UserResource<type:job, runtime:5

days> IN SchedulerResource<type:vm, cpu:2.4Ghz,

memory:16Gb> WHEN Event<day:31, month:12, year:2022>.

• Provision:Scale UserResource<type: application> IN

SchedulerResource<type:vm, cpu:2.4Ghz, memory:16Gb>

WHEN Event<cpu-utilization:> 80%>

Next we de�ne each of the objects and actions of the reference

architecture.

The objects are the following:

• Event: objects in time or instantiations of properties in ob-

jects. Such as concrete date-times (00:00 of 31st of December

2022) or an instantiation of a property like a metric reaching

a numeric value (CPU utilization is greater than 80%).

• User resource: representation of any kind of input from the

user. This includes execution units like a job, task, etc. but

also data as a �le, environment variable, etc.

• Scheduler resource: Representation of resources owned

and managed by the scheduler. Resources can be virtual

machines, containers, storage systems, databases, etc.

• Communication process: Representation of the process

of communication, such as a signal, message, callback, etc.

The actions can be main actions or sub-actions, this allows the

grouping of actions by theme and facilitates understanding. The

actions are the following:

• Provision: Provisioning of resources.

– Lease / release: Activation and assignment of a user re-

source to a scheduler resource.

– Scale: Addition or reduction of already provisioned user

resources.

– Migrate: Migration of a user resource to a di�erent sched-

uler resource.

– Preempt: Abortion of execution or assignment of a user

resource, putting it back in the scheduler queue.

– Recover: Recovery of a user resource after a failure, restart-

ing the execution, or putting it back into the scheduler

queue.

Table 1: Full overview of programming abstraction actions

of schedulers mapped to the reference architecture.

Action Subaction
Schedulers

Kubernetes SLURM Spark Condor Air�ow

Provision

lease / release ✓ ✓ ✓ ✓ ✓

scale ✓ ∼

migrate

preempt ∼ ✓ ✓

recover ✓ ∼ ✓ ∼ ∼

Con�gure scheduler ✓ ∼ ✓ ✓ ✓

Manage data

access input

data
✓ ∼ ✓ ✓ ✓

access intermediate

data
∼

access metadata

replicate

partition ✓

recover ∼ ✓ ✓

Communicate ∼ ✓ ∼ ∼ ∼

Legend: ✓/∼ /() = 5 D;;/?0AC80;/=><0C2ℎ.

Table 2: Full overview of programming abstraction objects

of schedulers mapped to the reference architecture.

Action Object
Schedulers

Kubernetes SLURM Spark Condor Air�ow

Provision

user resource ✓ ∼ ∼ ✓ ✓

event ✓ ∼ ∼ ∼ ∼

scheduler resource ✓ ✓ ∼ ✓ ✓

Con�gure scheduler
scheduler ✓ ∼ ✓ ✓ ✓

event ✓ ∼ ∼ ∼ ∼

Manage data

user resource ∼ ∼ ✓ ∼ ✓

event ∼ ∼ ∼

scheduler resource ∼ ∼ ∼ ∼ ∼

Communicate

communication process ✓ ∼ ∼ ∼ ✓

event ✓ ∼ ✓ ✓

user resource ✓ ∼ ✓ ∼ ✓

scheduler resource ∼ ∼ ✓ ∼

scheduler ∼ ∼ ∼ ∼

Legend: ✓/∼ /() = 5 D;;/?0AC80;/=><0C2ℎ.

• Con�gure scheduler: Con�guration of the behavior of the

scheduler.

• Manage data: Management of the user data.

– Access input data: Access to data that user jobs take as

input.

– Access intermediate data: Access to data that user jobs

generate during their runtime.

– Access metadata: Access to the information about the

user data.

– Replicate: Replication of the user data.

– Partition: Partitioning of the user data, so that subset of

the data is placed in di�erent scheduler resources.

– Recover: Recovery of the user data after the failure of

execution or the storage system.

• Communicate: Communication with the user resources,

scheduler resources, or even the scheduler, such as setting a

callback for getting noti�ed about scheduling events.

4 ANALYSIS OF INDUSTRIAL SCHEDULERS

Using the reference architecture we analyze the shortcomings of

the selected group of �ve industrial schedulers. Currently, it is not

known when nor why you should use some schedulers and not

59

ICPE ’23 Companion, April 15–19, 2023, Coimbra, Portugal Aratz Manterola Lasa, Sacheendra Talluri, and Alexandru Iosup

others. It is also not clear if any scheduler has a clear missing gap,

nor how to �ll those gaps. For that, it is necessary to analyze the

scheduling APIs. We map their APIs into the reference architecture

and we aggregate the results in two tables. In Table 1 we map the

actions and in Table 2 the objects. For each action and object we

specify if it is a full, partial, or no match. We label it as full match

if we can �nd the component and the API is �exible enough to

accept any input the user comes up with. We label it as partial

match if we can �nd the component but the inputs are limited to

a speci�c subset. The remaining components we label them as no

match. Lastly, from here on out, words with bounding boxes are

components of the reference architecture

The results indicate that industrial schedulers have several short-

comings. There are several actions that are under-implemented.

There is a very clear pattern, where most schedulers fully imple-

ment four actions: lease / release , con�gure scheduler ,

access input data and communicate . All others, in most cases,

are either partially implemented or not implemented at all. The

biggest shortcoming is found in manage data action and its ob-

jects, where most of the sub-actions and objects are not imple-

mented. That is, industrial schedulers are not designed to manage

and schedule data. This means that users have less control over the

data, and consequently less chance to optimize performance. For

example, if the user has several unordered data items to process,

consulting the metadata and obtaining information about the place-

ment and requests load of the storage systems where the data is

stored, could optimize how and when the data is processed. Sec-

ondly, the communicate action, except in SLURM, in all other

cases is partially implemented. Similarly, most communication ob-

jects are partial matches. This implies a lower performance since

it does not allow the user to inform the scheduler during runtime

about application-level insights, nor vice versa, the scheduler to

inform the user about scheduling-level insights. Moreover, partial

matches imply that actions and objects are limited to a particular

subset, and therefore do not allow the user to specify arbitrary

inputs. For example, the Condor API provides communication ac-

tions, but only with user jobs, not with the scheduler. Therefore,

the user can dynamically inform about application-level insights to

their jobs, but not to the scheduler, reducing the scope of potential

performance improvements.

In conclusion, there are several shortcomings in the program-

ming abstractions of industrial schedulers. Many objects have par-

tial or no matches, meaning their APIs are under-implemented,

and consequently, they reduce the ability and scope of the user to

optimize the performance of their jobs. The main shortcomings are

found in manage data action and its objects. But also to a lesser

extent in communicate actions and their objects.

5 EVALUATING THE PERFORMANCE COSTS

OF SIMPLE SCHEDULING ABSTRACTIONS

We state that schedulers prioritize simplicity in their programming

models, and thus, they limit the APIs. We hypothesize this simplic-

ity has costs that mainly translate into the lower performance of

user applications. We aim to prove that it is necessary for sched-

ulers to revise their APIs, in order to improve user-applications

performance.

To support the hypothesis, we choose a scheduling API short-

coming that we found in the previous section, and we identify a

concrete use case in which the under-implemented programming

abstractions are required. Then, we carry out experiments, by ex-

tending the programmability of the scheduler to include the missing

abstractions.

5.1 Selection of an API shortcoming

In this section, we choose an under-implemented programming

abstraction in the scheduler APIs that we will use to perform the

experiments. The shortcomings are obtained from the mapping

carried out in the previous section.

Experiment name: Reducing VM total times using user-level

migrations.

Use-case: When there are interferences in a VM, the scheduler

requests the user to migrate or reduce part of the workload to

another VM through a callback.

Ideal scheduler: User performs a communicate action spec-

ifying a communication process which is a callback, an event

which identi�es when there is interference, and a scheduler iden-

tifying the scheduler that uses the callback. This way, when there

are interferences, the scheduler activates the callback, and the user

migrates the workload.

Industrial scheduler shortcomings: Condor cannot perform

this operation since the communicate action does not support

communication process objects of callback type, nor does it im-

plement event objects.

Extension based in the reference architecture: Condor needs

to extend its communicate action to accept any type of

communication process object to receiving callbacks, and also

accept event objects so that the communication can be done at a

speci�c scheduling event.

5.2 System model

In a data center, there are multiple tenants that lease and release

virtual machines, through a scheduler that has equivalent API short-

comings to Condor’s. Each tenant deploys an arbitrarily sized Ku-

bernetes cluster on top of the leased virtual machines, and on each

VM, one or more batch tasks called pods are executed.

Kubernetes clusters lead to under-utilization of resources at

times, and consequently, the provider oversubscribes resources. So,

on high load spikes, tenants sharing physical machines may su�er

interferences between them.When that happens, the scheduler tries

to migrate VMs to other physical machines to reduce interferences.

The API o�ered by the data center to users can be simpli�ed as:

• lease(requirements): vm: the user passes a list of re-

source requirements, the provider boots up a virtual ma-

chine with those requirements, and returns the machine to

the user.

60

A Reference Architecture for Datacenter Scheduler Programming Abstractions (WiP) ICPE ’23 Companion, April 15–19, 2023, Coimbra, Portugal

5.3 Model extension

We extend the model to include the ability to be callbacked by

the Condor equivalent data center scheduler when a machine is

oversubscribed. For submitting callbacks, the scheduler provides a

communicate action that accepts: 1) a communication process

by which the users submit callbacks, 2) a scheduler that speci�es

the scheduler that uses the callback, and 3) an event by which

users specify when the VM is oversubscribed. The callback that

users submit is named requestMigration. When calling it, Kuber-

netes is requested to migrate pods to another node. This way, we

expect to increase the performance of the tasks that are executed,

by reducing the size of migrations, since pods are smaller than

VMs. Thus, we expect machines to get better packing and conse-

quently less interference and greater performance. The extended

programming model o�ered by the scheduler is the following:

• communicate(communicationProcess, scheduler, event):

the user speci�es a communicationProcess that contains

the callback, a scheduler that will use the callback, and the

event at which the callback is activated.

• requestMigration(vm, cpuCapacity): cpuCapacity: the

scheduler speci�es the oversubscribed VM and the CPU ca-

pacity on Gigahertz (GHz).to be migrated. The user returns

the CPU capacity. that will migrate.

In Figure 2 we show the diagram of the system and the extension.

Datacenter Condor
scheduler

Kubernetes
scheduler

1

Kubernetes
scheduler

2

Kubernetes
scheduler

N

pod
1

pod
1

requestUserMigration

lease

pod
1

pod
2

pod
3

pod
1

pod
migration

vm
migration

Kubernetes
scheduler

Datacenter
scheduler

Physical
Machine

Virtual
Machine

task

Datacenter
API

User-level
migration API

Legend

pod
2

pod
1

pod
2

D1

D2

D3

U1

U2

U3
Un

Dn

U0 communicate
callback

Figure 2: User-level migrations experiment system model.

The number beside the API action denotes the order of API

calls.

5.4 Execution, Con�guration, and design of the

experiment

We run the experiments on a personal laptop with an Apple M1

Max chip, 1TB SSD storage, and 32 GB memory. The experiment

con�gurations are composed of a combination of three dimensions:

trace, user-level migrations, and oversubscription ratio. We exper-

iment with three oversubscription ratios: 3, 4, and 5. Regarding

user-level migrations, we experiment if it is used or not through the

callback API extension. Lastly, we use three real-world anonymized

trace workloads from private and public cloud environments. The

chosen traces are Bitbrains Azure and Google. While Bitbrains and

Azure traces are VM requests, Google traces are task requests. In

Azure, we sample 1829 VMs from the original trace and in Google,

we sample 79820 requests from the original trace in 2.5 days. Lastly,

Bitbrains is a 1250 VMs trace of a dutch private cloud provider

The artifacts used in the experiment are available in https://

github.com/aratz-lasa/opendc.

5.5 Results

0 1 2
Timestamp ×1015

0.74

0.76

0.78

0.80

0.82

N
o
rm

a
li
ze
d
cp
u
u
ti
li
za
ti
o
n

4% util.

1% util.

0.5% util.

Bitbrains Packing

101 103

Hours

0.0

0.2

0.4

0.6

0.8

1.0

P
ro
p
o
rt
io
n

Bitbrains total time ECDF

Ratio-Migration

3.0-user

3.0-provider

4.0-user

4.0-provider

5.0-user

5.0-provider

Figure 3: Tasks packing and total times ECDF of Bitbrains

trace.

0 1 2
Timestamp ×1015

0.7

0.8

0.9

N
o
rm

a
li
ze
d
cp
u
u
ti
li
za
ti
o
n

5%
util.

12%
util.

-5%
util.

Azure Packing

100 102

Hours

0.0

0.2

0.4

0.6

0.8

1.0

P
ro
p
o
rt
io
n

5% prop.

8%
prop.

Azure total time ECDF

Ratio-Migration

3.0-user

3.0-provider

4.0-user

4.0-provider

5.0-user

5.0-provider

Figure 4: Tasks packing and total times ECDF of azure trace.

In Figures 3, 4, 5 we show the results of the Bitbrains, Azure and

Google traces, for each combination of oversubscription ratio and

the activation (or not) of the callback API for user-level migrations.

On the left, we present the aggregated utilization along the data

center’s physical machines. This represents the packing that is

obtained in each con�guration of the experiment. On the right, we

show the ECDF of the total time of each con�guration. The total

time is the sum of the waiting time and the execution time. That is

because the user requests the provisioning until it �nishes running

the task.

In the packing graphs, it is clearly seen that in Bitbrains and

Azure the con�gurations that use the API obtain better packing,

around 3% and 10% higher utilization, respectively. However, while

in Azure this translates into shorter times, in Bitbrains, all con�g-

urations get a similar result. This is because Bitbrain’s 3% higher

utilization doesn’t make much of a di�erence, while the 10 % of

Azure does.

61

https://github.com/aratz-lasa/opendc
https://github.com/aratz-lasa/opendc

ICPE ’23 Companion, April 15–19, 2023, Coimbra, Portugal Aratz Manterola Lasa, Sacheendra Talluri, and Alexandru Iosup

0 1 2
Timestamp ×1014

0.6

0.8

N
o
rm

a
li
ze
d
cp
u
u
ti
li
za
ti
o
n

Google Packing

Ratio-Migration

3.0-user

3.0-provider

4.0-user

4.0-provider

5.0-user

5.0-provider

10−1 101

Hours

0.0

0.2

0.4

0.6

0.8

1.0

P
ro
p
o
rt
io
n

7% prop.

10%
prop.

25%
prop.

Google total time ECDF

Figure 5: Tasks packing and total times ECDF of google trace.

The Google trace, unlike the other traces, has almost no di�er-

ences found in the packing of di�erent con�gurations. However,

when using the API, shorter times are obtained. This is because

the Google trace tasks are small and they use a single CPU core.

This means that the di�erences in the packing cannot be perceived,

because the tasks last so little that the space is rapidly freed up.

Nonetheless, there is a signi�cant performance improvement in

times, where the 5.0 ratio has 23% more tasks at lower times.

5.6 Discussion

The main �ndings from this experiment are:

MF1 In all traces except for Bitbrains the performance is improved

by using the extended callback API.

MF2 The highest oversubscription ratio of 5.0 obtains the highest

performance improvement using user-level migrations.

MF3 The main bene�t of migrations is greater packing, that is,

greater utilization of resources.

MF4 It is complex to explain performance improvements through

migration metrics, and it is necessary for deeper analysis to

build a complete picture.

The objective of this experiment is to demonstrate that sched-

ulers may be sacri�cing performance in exchange for simplicity if

they do not o�er callbacks to their users. The most important take-

away from the results of this experiment is that in all con�gurations,

except for Bitbrains, performance is increased using the extended

API. Depending on the workload and oversubscription ratio, the

performance improvement is di�erent. The highest oversubscrip-

tion ratio of 5.0 obtains the highest performance improvements.

In addition, in Bitbrains no improvements are found. So user-level

migrations should not be always used.

In the experiment, we not only demonstrate that making use

of user-level migrations improves performance, but also that it is

necessary to o�er it as a programming abstraction. This is because

the user does not always have a second layer of scheduling such as

a Kubernetes cluster, nor do the schedulers have the business logic

knowledge to decide what tasks to migrate and where. Therefore,

the scheduler cannot internally implement the user-level migration

logic, without exposing programmability to the user.

6 CRITICAL DISCUSSION

The work, in its current form, has 3 main weaknesses. First, we only

evaluate a concrete case, and it is not enough to fully validate the

hypothesis that the existing scheduling APIs sacri�ce performance

for being under-implemented. Second, we have not yet validated

the reference architecture, by mapping to it real-world, well-known,

and state-of-the-art schedulers. Third, a reference architecture is

always limited in that it is kept at a su�ciently high abstraction

layer to map and represent all kinds of schedulers, consequently,

it is not capable of representing all the low-level details that allow

di�erentiating one scheduling API from another.

The main limitations of the design are found in the objects. In the

reference architecture, there are only 5 distinct objects, and for each

of them, we do not specify any sub-objects. For example, one of the

objects is the Scheduler Resource , which does not di�erentiate

between an API that o�ers VMs or Edge mobile devices. This is

a limitation, but it is made on purpose to be future-proof, since if

there is one thing certain it is that the type of resource is constantly

changing. That is why instead of di�erentiating objects by their

content, we di�erentiate them by what they represent in the highest

level of abstraction.

7 RELATEDWORK

We are not aware of any other work designing a reference architec-

ture for scheduling programming abstractions. On the one hand,

there are several models that focus on modeling the scheduling pro-

cess instead of the APIs. Among these works is Schopf’s multi-stage

model of the grid scheduling process [18], the consequent work

in Global Grid Forum [15], and the datacenter scheduler reference

architecture [3]. However, these works are not replacements but

rather complementary to our model, since they model the inter-

nal process of a scheduler, while we model the external interface

o�ered to users.

There are also conceptual models of APIs but of specialized sys-

tems. Among the most relevant is the reference architecture of grid

computing such as the work of Foster et al. [12]. Similarly, models

for cloud computing have also been proposed by the National Insti-

tute of Standards and Technology (NIST) [23]. However, all these

works are specialized in speci�c environments and therefore are not

applicable to a large part of schedulers like Spark and Kubernetes.

Lastly, several works focus on developing systems trying to

combine various scheduling abstractions into a single scheduler,

which they generalize the APIs so that their system models can

be compared to our work [4, 17, 20]. For example, Ghost o�ers

a model for delegating kernel scheduling decisions to the users

[17], and ESCHER presents a model for letting users express arbi-

trary scheduling constraints as resource requirements [4]. However,

these schedulers are too general like Ghost and they cannot map

schedulers, or else, they only focus on a�ecting a subset of the

scheduling functionalities, like ESCHER, which only focuses on

o�ering provisioning constraints. None of them aims to identify

and unify all the programming abstractions that a scheduler can

potentially provide.

62

A Reference Architecture for Datacenter Scheduler Programming Abstractions (WiP) ICPE ’23 Companion, April 15–19, 2023, Coimbra, Portugal

8 CONCLUSION

With the increasing digitization of society, e�cient management

of compute resources is important, and consequently an e�cient

design of the schedulers. Currently, it is di�cult to understand and

compare the API features o�ered by schedulers. To address this

problem we design a reference architecture for scheduling program-

ming abstractions. In addition, with this reference architecture, we

identify that the existing industrial schedulers have several short-

comings, among others, to manage and schedule data, as well as

communicating between the components that interact in schedul-

ing. Lastly, through experimentation, we demonstrate that these

shortcomings can suppose a relevant cost in the performance of

the users.

REFERENCES
[1] Isam Mashhour Al Jawarneh, Paolo Bellavista, Filippo Bosi, Luca Foschini,

Giuseppe Martuscelli, Rebecca Montanari, and Amedeo Palopoli. 2019. Container
orchestration engines: A thorough functional and performance comparison. In
ICC 2019-2019 IEEE International Conference on Communications (ICC). IEEE, 1–6.

[2] Georgios Andreadis, Laurens Versluis, Fabian Mastenbroek, and Alexandru Iosup.
2018. A reference architecture for datacenter scheduling: design, validation, and
experiments. In Proceedings of the International Conference for High Performance
Computing, Networking, Storage, and Analysis, SC 2018, Dallas, TX, USA, November
11-16, 2018. IEEE / ACM, 37:1–37:15. http://dl.acm.org/citation.cfm?id=3291706

[3] Georgios Andreadis, Laurens Versluis, Fabian Mastenbroek, and Alexandru Iosup.
2018. A reference architecture for datacenter scheduling: design, validation, and
experiments. In SC18: International Conference for High Performance Computing,
Networking, Storage and Analysis. IEEE, 478–492.

[4] Romil Bhardwaj, Alexey Tumanov, StephanieWang, Richard Liaw, PhilippMoritz,
Robert Nishihara, and Ion Stoica. 2022. ESCHER: expressive scheduling with
ephemeral resources. In Proceedings of the 13th Symposium on Cloud Computing.
47–62.

[5] Luiz F Bittencourt, Javier Diaz-Montes, Rajkumar Buyya, Omer F Rana, and
Manish Parashar. 2017. Mobility-aware application scheduling in fog computing.
IEEE Cloud Computing 4, 2 (2017), 26–35.

[6] Brendan Burns, Brian Grant, David Oppenheimer, Eric Brewer, and John Wilkes.
2016. Borg, omega, and kubernetes. Commun. ACM 59, 5 (2016), 50–57.

[7] Wo L Chang, David Boyd, Orit Levin, et al. 2019. NIST Big Data Interoperability
Framework: Volume 6, Reference Architecture. (2019).

[8] Ann Chervenak, Ian Foster, Carl Kesselman, Charles Salisbury, and Steven Tuecke.
2000. The data grid: Towards an architecture for the distributed management and
analysis of large scienti�c datasets. Journal of network and computer applications
23, 3 (2000), 187–200.

[9] Carlo Curino, Djellel E Difallah, Chris Douglas, Subru Krishnan, Raghu Ramakr-
ishnan, and Sriram Rao. 2014. Reservation-based scheduling: If you’re late don’t
blame us!. In Proceedings of the ACM Symposium on Cloud Computing. 1–14.

[10] Christina Delimitrou and Christos Kozyrakis. 2013. Paragon: QoS-aware sched-
uling for heterogeneous datacenters. ACM SIGPLAN Notices 48, 4 (2013), 77–88.

[11] Christina Delimitrou and Christos Kozyrakis. 2014. Quasar: Resource-e�cient
and qos-aware cluster management. ACM SIGPLAN Notices 49, 4 (2014), 127–144.

[12] Ian Foster, Carl Kesselman, and Steven Tuecke. 2001. The anatomy of the grid:
Enabling scalable virtual organizations. The International Journal of High Perfor-
mance Computing Applications 15, 3 (2001), 200–222.

[13] F Gens. 2014. Worldwide and Regional Public IT Cloud Services.
[14] Robert Grandl, Arjun Singhvi, Raajay Viswanathan, and Aditya Akella. 2021.

Whiz:{Data-Driven} Analytics Execution. In 18th USENIX Symposium on Net-
worked Systems Design and Implementation (NSDI 21). 407–423.

[15] Christian Grimme, Joachim Lepping, Alexander Papaspyrou, Philipp Wieder,
Ramin Yahyapour, Ariel Oleksiak, Oliver Wäldrich, and Wolfgang Ziegler. 2008.
Towards a standards-based grid scheduling architecture. In Grid Computing.
Springer, 147–158.

[16] Ori Hadary, Luke Marshall, Ishai Menache, Abhisek Pan, Esaias E. Gree�, David
Dion, Star Dorminey, Shailesh Joshi, Yang Chen, Mark Russinovich, and Thomas
Moscibroda. 2020. Protean: VM Allocation Service at Scale. In 14th USENIX
Symposium on Operating Systems Design and Implementation, OSDI 2020, Virtual

Event, November 4-6, 2020. USENIX Association, 845–861. https://www.usenix.
org/conference/osdi20/presentation/hadary

[17] Jack Tigar Humphries, Neel Natu, Ashwin Chaugule, O�r Weisse, Barret Rhoden,
Josh Don, Luigi Rizzo, Oleg Rombakh, Paul Turner, and Christos Kozyrakis. 2021.
ghost: Fast & �exible user-space delegation of linux scheduling. In Proceedings of
the ACM SIGOPS 28th Symposium on Operating Systems Principles. 588–604.

[18] M Schopf Jennifer. 2004. Ten Actions When Grid Scheduling: The User as a Grid
Scheduler. Grid Resource Management: State of the Art and Future Trends, Norwell,
MA, USA, Kluwer Academic Publishers (2004), 15–24.

[19] Fredy Juarez, Jorge Ejarque, and Rosa M Badia. 2018. Dynamic energy-aware
scheduling for parallel task-based application in cloud computing. Future Gener-
ation Computer Systems 78 (2018), 257–271.

[20] Kostis Ka�es, Jack Tigar Humphries, David Mazières, and Christos Kozyrakis.
2021. Syrup: User-de�ned scheduling across the stack. In Proceedings of the ACM
SIGOPS 28th Symposium on Operating Systems Principles. 605–620.

[21] Nakku Kim, Jungwook Cho, and Euiseong Seo. 2014. Energy-credit scheduler:
an energy-aware virtual machine scheduler for cloud systems. Future Generation
Computer Systems 32 (2014), 128–137.

[22] Don Lipari. 2012. The slurm scheduler design. SLURM User Group. http://slurm.
schedmd. com/slurm_ug_2012/SUG-2012-Scheduling. pdf (2012).

[23] Fang Liu, Jin Tong, Jian Mao, Robert Bohn, John Messina, Lee Badger, Dawn Leaf,
et al. 2011. NIST cloud computing reference architecture. NIST special publication
500, 2011 (2011), 1–28.

[24] Marko Luksa. 2017. Kubernetes in action. Simon and Schuster.
[25] Maciej Malawski, Gideon Juve, Ewa Deelman, and Jarek Nabrzyski. 2015. Algo-

rithms for cost-and deadline-constrained provisioning for scienti�c work�ow
ensembles in IaaS clouds. Future Generation Computer Systems 48 (2015), 1–18.

[26] Kavitha Ranganathan and Ian Foster. 2002. Decoupling computation and data
scheduling in distributed data-intensive applications. In Proceedings 11th IEEE
International Symposium on High Performance Distributed Computing. IEEE, 352–
358.

[27] Tech. Rep. 2022. 2022 Leadership Vision for Infrastructure Operations. Gartner.
[28] Albert Reuther, Chansup Byun, William Arcand, David Bestor, Bill Bergeron,

Matthew Hubbell, Michael Jones, Peter Michaleas, Andrew Prout, Antonio Rosa,
et al. 2016. Scheduler technologies in support of high performance data analysis.
In 2016 IEEE High Performance Extreme Computing Conference (HPEC). IEEE, 1–6.

[29] Malte Schwarzkopf, Andy Konwinski, Michael Abd-El-Malek, and John Wilkes.
2013. Omega: �exible, scalable schedulers for large compute clusters. In Eighth
Eurosys Conference 2013, EuroSys ’13, Prague, Czech Republic, April 14-17, 2013,
Zdenek Hanzálek, Hermann Härtig, Miguel Castro, and M. Frans Kaashoek (Eds.).
ACM, 351–364. https://doi.org/10.1145/2465351.2465386

[30] Siqi Shen, Alexandru Iosup, Assaf Israel, Walfredo Cirne, Danny Raz, and Dick
Epema. 2015. An availability-on-demand mechanism for datacenters. In 2015
15th IEEE/ACM International Symposium on Cluster, Cloud and Grid Computing.
IEEE, 495–504.

[31] Pramod Singh. 2019. Air�ow. In Learn PySpark. Springer, 67–84.
[32] Karnam Sreenu and M Sreelatha. 2019. W-Scheduler: whale optimization for task

scheduling in cloud computing. Cluster Computing 22, 1 (2019), 1087–1098.
[33] Douglas Thain, Todd Tannenbaum, andMiron Livny. 2005. Distributed computing

in practice: the Condor experience. Concurr. Pract. Exp. 17, 2-4 (2005), 323–356.
https://doi.org/10.1002/cpe.938

[34] Alexey Tumanov, James Cipar, Gregory R Ganger, and Michael A Kozuch. 2012.
alsched: Algebraic scheduling of mixed workloads in heterogeneous clouds. In
Proceedings of the third ACM Symposium on Cloud Computing. 1–7.

[35] Alexey Tumanov, Timothy Zhu, Jun Woo Park, Michael A Kozuch, Mor Harchol-
Balter, and Gregory R Ganger. 2016. TetriSched: global rescheduling with adaptive
plan-ahead in dynamic heterogeneous clusters. In Proceedings of the Eleventh
European Conference on Computer Systems. 1–16.

[36] Matei Zaharia, Mosharaf Chowdhury, Michael J Franklin, Scott Shenker, and
Ion Stoica. 2010. Spark: Cluster computing with working sets. In 2nd USENIX
Workshop on Hot Topics in Cloud Computing (HotCloud 10).

[37] Chao Zheng, Ben Tovar, and Douglas Thain. 2017. Deploying High Throughput
Scienti�c Work�ows on Container Schedulers with Make�ow and Mesos. In
Proceedings of the 17th IEEE/ACM International Symposium on Cluster, Cloud and
Grid Computing, CCGRID 2017, Madrid, Spain, May 14-17, 2017. IEEE Computer
Society / ACM, 130–139. https://doi.org/10.1109/CCGRID.2017.9

[38] Qiang Zheng, Kan Zheng, Haijun Zhang, and Victor CM Leung. 2016. Delay-
optimal virtualized radio resource scheduling in software-de�ned vehicular net-
works via stochastic learning. IEEE Transactions on Vehicular Technology 65, 10
(2016), 7857–7867.

63

http://dl.acm.org/citation.cfm?id=3291706
https://www.usenix.org/conference/osdi20/presentation/hadary
https://www.usenix.org/conference/osdi20/presentation/hadary
https://doi.org/10.1145/2465351.2465386
https://doi.org/10.1002/cpe.938
https://doi.org/10.1109/CCGRID.2017.9

	Abstract
	1 Introduction
	2 Background
	3 Reference Architecture Design
	3.1 Requirements
	3.2 Design principles
	3.3 Reference architecture

	4 Analysis of Industrial Schedulers
	5 Evaluating the performance costs of simple scheduling abstractions
	5.1 Selection of an API shortcoming
	5.2 System model
	5.3 Model extension
	5.4 Execution, Configuration, and design of the experiment
	5.5 Results
	5.6 Discussion

	6 Critical discussion
	7 Related work
	8 Conclusion
	References

