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ABSTRACT
Serverless platforms have exploded in popularity in recent years,
but, today, these platforms are still unsuitable for large classes of
applications. They perform well for batch-oriented workloads that
perform coarse transformations over data asynchronously, but their
lack of clear service level agreements (SLAs), high per-invocation
overheads, and interference make deploying online applications
with stringent response time demands impractical.

Our assertion is that beyond the glaring issues like cold start
costs, a more fundamental shift is needed in how serverless function
invocations are provisioned and scheduled in order to support these
more demanding applications. Specifically, we propose a platform
that leverages the observability and predictability of serverless
functions to enforce multi-resource fairness. We explain why we
believe interference across a spectrum of resources (CPU, network,
and storage) contributes to lower resource utilization and poor
response times for latency-sensitive and high-fanout serverless
application patterns. Finally, we propose a new distributed and
hierarchical function scheduling architecture that combines lessons
from multi-resource fair scheduling, hierarchical scheduling, batch-
analytics resource scheduling, and statistics to create an approach
that we believe will enable tighter SLAs on serverless platforms
than has been possible in the past.
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1 INTRODUCTION
In the past few years, serverless computing [22, 26, 31] has exploded.
All major cloud providers offer serverless platforms that automat-
ically deploy and scale stateless serverless functions in response
incoming workload requests. It is popular, in large part, because it
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frees application developers from having to handle scaling, fault-
tolerance, and resource provisioning problems. However, serverless
hasn’t been a panacea; these platforms are a step backward for ap-
plications that need strong performance guarantees, leaving many
applications unable to use the serverless paradigm. Serverless plat-
forms deploy tenants’ applications on spare resources co-located
with existing workloads and virtual machines, which leaves server-
less functions to suffer performance interference and unfairness.
Hence, serverless platforms must evolve before they can be used for
applications with hard deadlines [1, 2], where job completion time
is a priority, or which must generate real user-facing responses.

We make the case that the first step in doing that requires re-
architecting the scheduling at the heart of serverless platforms to
make fairness, resource allocation and interference, and resource-
aware placement central. Our view is that fair and resource-aware

Figure 1: An overview of serverless workflow.

scheduling need not come at the expense of efficiency and utiliza-
tion. Instead, we speculate that cloud providers ignore key infor-
mation that serverless applications expose that could lead to better
placement decisions, strong and tighter service level agreements
(SLAs) for serverless functions, and improved resource utilization.
To that end, we describe a new platform for serverless workflows
(Figure 1) that rethinks the flow of information between worker
containers and the scheduler and the data that the scheduler uses
in decision-making. Our design combines three key ideas.
Observability. Serverless applications are inherently more ob-
servable than conventional cloud applications. Cloud providers can
profile individual functions to understand their invocation patterns,
execution times, and resource needs.
Predictability. Functions are short and mainly focus on a single
task; combined with observability this means functions are pre-
dictable, often in their execution time, but also in their resource
demands. By monitoring functions and placing them intelligently,
a serverless scheduler can reduce interference, improve utilization
and SLAs. Beyond that, in our design, the scheduler can use this
predictability to determine whether a function’s recent placements
have led to new SLA violations and correct for mistakes.
Multi-resource Fairness. Finally, with these pieces, we believe
it is time for serverless functions to guarantee their fair share of
resources. Serverless applications should be ensured their share of
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Resource Type AWS Google Azure Alibaba

CPU Bound Worst Average Average Best
Memory Bound Average Average Worst Best
I/O Bound Worst Average Average Best
Network Bound Worst Best Average Worst

Table 1: Performance of serverless functions with differing
types of resource demands on cloud [27].

CPU and network resources, both locally on a machine and globally
as a tenant. Hence, we describe how we enforce fairness with a
multi-level fair queuing approach that enforces dominant resource
fairness (DRF) among tenants; we also describe how the scheduler
optimizes utilization subject to fairness while meeting SLAs.

In summary, this paper makes the following contributions:
1) First, we demonstrate that variation in requirements for mul-

tiple resources leads to unfairness, SLA violations, and overall
unsuitability for serverless applications.

2) Second, we outline the important challenges formulti-resource
scheduler that is practically implementable and reduces SLA
violations.

3) Finally, we outline a design for multi-resource scheduler for
serverless workloads.

2 MOTIVATION
Many recent works have shown that the performance interference
that is prevalent in cloud platforms [15, 21] impacts serverless
workloads as well [12, 14]. Work that optimizes function placement
across different cloud providers [7, 16] or across serverless instance
types or regions [26] further reinforces that performance isolation
and unfairness affect serverless workloads. For example, one recent
work characterized serverless function performance on several
cloud providers’ serverless platforms and showed that performance
and cost-effectiveness varies highly depending on which resources
functions use most aggressively (CPU, memory capacity, storage
I/O, and network I/O) [27]. Table 1 gives a high-level summary of
their findings. Their results showed that no single cloud provider
works best for all classes of functions. Depending on whether a
function is compute, memory, I/O, or network bound, different
platforms could give the best performance.

On some of these platforms, performance of one resource is
correlated with provisioning decisions for another: for example, on
Google and AWS platforms allocating more memory to a function
also improves its CPU performance. Similar relationships hold for
I/O; Google’s I/O performance is better than Alibaba’s, but only if
functions are provisioned with at least 1,024 MB of memory.

We suspected that this variation combined with a lack of a multi-
resource scheduling approach in serverless leads to unfairness,
violations, and serverless’s overall unsuitability for many types
of applications. To show this for ourselves, we designed a set of
simulations that highlight how variation leads to unfairness and
SLA violations. In these simulations, we simulate a scheduler that
schedules serverless functions invocations at a worker. The worker
runs its assigned invocations in turn. Our simulations assume each
function that is invoked is warm, so the simulations include no cold

start costs; all slow downs that an invocation experiences are due
to queueing and contention for (CPU) resources.
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Figure 2: Analysis of SLA violations and latency.

Figures 2(a) and 2(b) show SLA violations for functions invoca-
tions as load scheduled to the worker increases (from 0% CPU uti-
lization to 100%). As expected, violations increase as load increases,
but the distribution of the runtime of the scheduled functions also
plays a role. The red line in Figure 2(a) shows a case where the in-
voked functions vary between 5 to 10 ms CPU run time and the blue
line shows when runtime is fixed to 8 ms for all functions. Variation
in invocation CPU use increases the number of violations.
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Figure 3: Analysis of SLA violations and fairness.

However, are those violations distributed fairly among tenants?
As one would suspect they are not. Figure 3(a) shows the fraction
of SLA violations for two different functions, which use different
amounts of CPU time per invocation: 𝑓 uses more per invocation
than 𝑔. Scheduled naively this leads to 𝑓 consuming more than
its fair CPU share resulting in increased SLA violations for 𝑔. In
general, there is CPU unfairness among all of the functions that
result in additional violations even when some functions aren’t
able to use their fair share. Figure 3(b) shows mix-max fairness [4]
among all of the functions, which is low even as load increases.
Using a fair CPU scheduler (e.g. proportional share) helps. The red
line shows that when a function-aware fair scheduler is used, CPU
unfairness due to function run time variation is reduced, resulting
in less SLA violations for functions that consume less resources
than others (like 𝑔).

Crucially, here we are showing this trend just for CPU resources;
however, this same trend in Figure 3(a) bears out in all resources:
CPU time, network transmit/receive, and storage I/O. Heavy-hitters
for each of these types of resources are likely to interfere with
functions that use these resources less. Worse, this interference is
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additive with respect to tail latency: a stall to 𝑔 due to ℎ’s network
use compounds with a stall to 𝑔 due to 𝑓 ’s CPU use for some invo-
cations. This leaves short, low-resource, latency-sensitive functions
at a disadvantage, especially since their SLA is likely to be tight
and defined in terms of a tail percentile (e.g. 99th-percentile).

Our assertion is that for serverless platforms to be more efficient,
more fair, and viable for new classes of applications, schedulers
for these platforms must be function- and invocation-aware, and
they must enforce multi-resource fair policies that ensure that
applications with sensitive SLAs are well isolated from resource-
intensive functions.

3 KEY GOALS AND POSSIBLE APPROACHES

Our goal is to design a new serverless scheduler architecture that
enables a wider variety of applications with more complex SLAs
than are possible on today’s serverless platforms. It should support
strict latency bounds, including on tail percentiles, and high elastic-
ity. It should be efficient both in terms of resources to the provider
and in terms of cost to tenants, and it should centrally feature strong
resource isolation via fair scheduling. However, building a scalable
platform that provides multi-resource fair scheduling while sup-
porting diverse sets of serverless applications is challenging, since
applications have diverse SLA needs and metrics, programming
models [32], inter-invocation strategies, task dependencies, and
placement constraints.

Our design centers around three key principles:
1) Improved SLAs via ScalableMulti-resource Fair Scheduling.
Different functions have different CPU, network, and I/O resource
needs, and functions that have stringent SLAs must receive their
fair share. Serverless schedulers must apply multi-resource fair
principles like Dominant Resource Fairness [9] to avoid violations
due to unfairness. This is challenging because functions can have
rapid fan-out, scale-out, and scale-in, making tracking precise ag-
gregate resource consumption at scale difficult. This is especially
true of online workloads, which are inherently unpredictable and
which crucially depend on tight tail response times to meet SLAs.
Despite this, tenants should not have to significantly over-provision
resources, and costs should be consistent regardless of the workload
volume (tenants should be charged based on the work done).
Approach: To facilitate multi-resource scheduling, our plan is to
use a multi-level approach to scheduling [23]. A centralized sched-
uler must make good global placement decisions among worker
nodes, ensuring that the different resources of each worker are well-
utilized and that the potential for interference between scheduled
invocations is low. Internally, workers must also enforce fairness
locally preventing short-term unfairness, and they must eventually
report aggregate resource use back to the global scheduler. The
key tension is that for scalability neither the global nor the local
schedulers can afford to have perfect knowledge.
2) Function-resource-demand-aware Placement. Serverless
applications are inherently decomposed into small units that can
be observed and profiled independently. This extra visibility can be
exploited to improve global placement if invocation resource needs
can be reliably predicted. A key challenge is that not all functions
behave predictably.

Approach. Serverless workers can observe and aggregate invoca-
tion resource usage, propagating that into a fuller picture of function
behavior at a global function scheduler. Even treating functions as
a black box, collecting empirical cumulative distribution functions
(CDFs) of the resource consumption of different functions can help
in scheduling by giving expected resource needs along with vari-
ance measures. Similarly, statistical tools (e.g. Kruskal–Wallis [17])
can help the scheduler determine if a function’s resource needs
are stationary or if, for example, recent interference has changed
the runtime distribution of a function. Similar to Monotasks [20]
but at a much shorter timescale, we expect it may make sense to
break functions into “phases” where we model each invocation’s
resource uses as being one resource at-a-time and broken into dis-
crete phases with individual CDFs. Using this information at the
global scheduler, resource contention can be avoided at workers.
This information also helps at the local worker level since invoca-
tions with long, heavy-hitter phases for specific resources can be
isolated from invocations with short, bursty resource phases.
3) Optimized Latency. Many functions are small and executed
in seconds or even milliseconds, so environment startup latency
can dominate. We mainly focus on the startup latency when cold
start happens. Reducing cold start time is a key challenge in server-
less computing [6, 13, 18]. Also, the platform specific languages,
workloads, package size, and memory affect the cold start time of
function instance, which increases the latency.
Approach: The serverless workloads need stable average and
tail latency, regardless of workload volume. Infrequent or sporadic
workloads should not suffer from high cold-start latency, as the
stateless services require stringent latency to meets SLAs. Further,
by matching CDFs of different resource response times at workers
to the CDFs of resource needs of the different phases of a function,
scheduling can place invocations where they are likely to hit their
SLA without resorting to minimizing queueing for all invocations,
which can lead to later regret in scheduling decisions. Hence, we
expect our approach will be able to meet SLAs than approaches that
blindly minimize queuing or which only consider CPU resources
when trying to meet deadlines.

Figure 4: High level vision of resource framework.

4 A MULTI-RESOURCE FAIR ARCHITECTURE
Next, we describe our multi-resource fair serverless architecture
(Figure 4). As multiple serverless functions can reside on a worker
machines, hence the functions will contend for fair amount of
resources. To enforce fairness, the platform enforces fair queuing
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to schedule the functions according to each functions local weight.
When a function is invoked, the invoker adds the function to a
queue specific to a particular tenant. After the admission to a queue,
each tenant gets its local and global weight to determine the fair
share across multiple resources domains (i.e., CPU, memory, I/O
and network). In each round, the tenants can get their weighted
fair share of total available resources. By restricting the available
resources per round, the scheduler can provide fairness within a
timeframe. The weights should be determined based on the SLA
of tenants. To enable SLA guarantees, the platform can translate a
stated rate to a resource chunk, considering the total capacity of the
system. According to the requirement of tenants, the platform can
also reset the resource requirements of functions. To achieve the
above goals, the system should (1) place a barrier between multiple
resources to provide fair allocation, (2) enforce local weights to
maintain global fairness, (3) optimize for good resource utilization,
and (4) queue requests to enforce fairness.

4.1 Enabling Max-Min Fairness

To enable multi-resource fairness at each local worker, we should
first compute the appropriate Dominant Resource Fair (DRF) [8, 9]
shares, the scheduler (i.e., resource estimator) estimates the resource
requirements of each tenant per worker machine. The estimator
updates resource requirements periodically to provide good perfor-
mance over time. It also tracks the per-function dominant resource
to normalize the resource utilization and estimates the restricting
DRF shares while computing the minimum value by taking the
inverse of weighted sums. Our main aim is to provide DRF on a
per-worker-machine level; however, we must also provide global
max-min fair shares to tenants. The lower bound of a resource is
set by the platform to ensure the fair share of a tenant’s dominant
resource. Hence, if there is variation in dominant resources across
different workers, the accumulated share would provide equal or
higher max-min fair share of the system’s total resource capacity.
The framework would allow us to consider a sole weighting fac-
tor to determine the global and local resource shares of tenants,
alternately relying on complex weighted factors.

Hence, using the global max-min fairness, we would get better
resource utilization while improving the predictability with near-
optimal and effective resource sharing. Following the max-min
fairness, none of the serverless function would gain any unfair
advantage over other serverless services in the presence of higher
system load, i.e., each serverless function would get its weighted
fair share from the available resource pool. However, given the
work-conserving nature, if some serverless functions utilize less
resources than their allocated share, then underutilized resources
should be divided across other functions to increase the utilization.

4.2 Resource Management

The resource management framework is comprised of three main
pieces: a resource estimator, a near-optimal scheduler, and an adap-
tive function placer. First, the framework uses the resource esti-
mator to get the characteristics of different serverless functions
including their resource requirements. The main work of the sched-
uler is to manage which function to be scheduled next and to place
it on a worker machine. Lastly, the placer should execute the func-
tions scheduled in the system adaptively.

Resource Estimator. Our resource estimator design works in an
online fashion where it knows the number of times a function has
been invoked. The resource estimator estimates each function’s
resource demand and its execution times. The completion time on
each resource is approximated by taking an average over all the
samples collected for different functions. The completion times of
functions are comparatively similar for same kinds of serverless
applications. The estimator also estimates the memory demands
of functions while observing the memory usage of their correlated
samples. Current serverless platforms do not have any fine-grained
resource allocation scheme for multiple serverless functions. Hence,
we consider a fine-grained resource allocation process for serverless
functions. The estimator considers the maximum number of cores
in a CPU to maximize the resource utilization.
Scheduler. Current resource allocation schemes [10, 24, 25] and
OpenWhisk [19] do not support fair resource allocation; hence, we
cannot use them directly. Instead, we plan to implement a sched-
uler from scratch. As invocation requests arrive at the scheduler,
they are routed through multiple queues for different resources.
Among the queued invocations, the scheduler decides which invo-
cation should be scheduled on which worker. The scheduler also
aggregates resource usage statistics (including per-function per-
resource resource use histograms) from the workers and execution
time on CPU from the estimator. The scheduler tracks per-resource
max-min fairness, and it considers the progress of all tenants over
time. The scheduler applies admission control in case there are
insufficient resources for some of the invocations, holding these
invocations in a waiting queue awaiting notification of newly avail-
able resources (either due to a change in the worker pool or due to
invocation completions at workers). We also cache the execution
location of different functions to help meet SLA guarantees for
frequently invoked functions. When a function is admitted, the
scheduler checks the recent location cache for that function, and it
returns the location if it is cached and the existing worker is not
oversubscribed.

Finally, on completion the scheduler checks if a function gets its
fair resource and finishes in time or not. If a function receives its
allocated resources, the progress of that tenant is increased subse-
quently. However, if a function is executing with unsuitable config-
uration (with longer execution time), its position is discounted in
the queue. If a function finishes in time, it skips this queue.
Function Placement. The resource management architecture has
a central controller (CC) and several service placement units placed
in worker nodes. Meta-operations are handled by CC, which pro-
vides detailed information about functions’ run time and resource
use. Execution of serverless functions are handled by containers
spread across many worker machines. The service placement unit
deals with both allocating resources (e.g. CPUs) to individual func-
tions (function placement) and scheduling multiple functions over
time. The function placer invokes theses functions in appropriate
containers within workers and executes them following the sched-
uling strategy. In OpenWhisk, the containers are configured before
invoking the functions to run on CPU; therefore, they do not re-
quire any kind of placer. However, we need an adaptive placer to
maximize resource utilization. For optimal placement of serverless
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functions, we might need to change some application-level con-
figurations. A configuration function in their runtime must also
monitor the available resources using our scheduler.

Finally, the placer will also implement preemption. Preemptive
scheduling will be necessary to satisfy tight SLAs in many cases,
since it allows the scheduler and placer to correct decisions as invo-
cations arrive and to prevent starvation and unfairness. However,
most textbook preemptive scheduling policies are merely designed
for fair sharing, not minimizing SLA violations. Similarly, most
schedulers aren’t designed to have knowledge of resource needs,
since, in general, it is difficult to predict the actual resource require-
ment of programs. A key goal is to design an SLA and resource-
need-aware policy that combines ideas from fair scheduling with
deadline-based and omniscient approaches like earliest deadline
first and shortest remaining time first.
Flow and Objectives. The lifecycle from a tenant’s perspective is
to (1) upload a function to the system, then (2) send execution re-
quests. The system performs function execution when requests are
received, and transparently scales based on the workload demand.
It distributes functions to one or more workers. It has three primary
objectives (one tenant-centric and the other two provider-centric):
1)Minimize SLA violations: SLAs should bemet in aggregate for each
function. 2) High resource utilization: All the available resources
should be utilized. 3) Fairness and Starvation freedom: Functions
should not starve or interfere with other functions beyond what
their fair share allows.

Aside from those core objectives, the scheduler will also ad-
dress these secondary concerns: (i) Optimized Completion Time:
The execution time of serverless function is known to the sched-
uler; therefore, it can decrease the average completion time with
good placement. (ii) Efficient function consolidation: Serverless func-
tions should always be consolidated. While it is true that consol-
idated placement of a function may minimize its communication
time, some serverless functions are insensitive to placement. (iii)
Overhead: The current scheduling framework does not preempt
functions because of large time overhead. Hence, it is important to
design the scheduling policy in a way by which we can minimize
the preemption overhead.

5 RELATEDWORK

Among all the scheduling framework for serverless platforms, Caerus
[30] is a task-scheduling framework for serverless analytics work-
loads which minimizes the execution cost and job execution time.
Gsight [33] is an incremental learning predictor, which provides
high precision by harnessing the spatial-temporal overlap codes
and profiles the serverless functions for the scheduling algorithm.
Similarly, FaasRank [28] provides a learning algorithm to schedule
functions in serverless platforms. PASch [3] is a novel package-
aware scheduling algorithm which tries to find package affinity so
that worker nodes can re-use the execution environments. Skedulix
[5] is a hybrid cloud scheduling framework for cost-efficient execu-
tion of serverless applications. Fifer [11] is an adaptive framework
which is responsible for tackling the resource underutilization on
serverless platforms. However, Fifer assumes only one resource
type, while serverless functions require multiple resource types to
be executed. Zhou et al. [34] proposed QoS-and-uncertainty-aware

resource management framework for serverless workflows. Yu et al.
[29] proposed a framework to accelerate serverless computing for
harvesting idle resources. Unlike prior works, our system considers
SLA-awareness and resource-aware placement, which are crucial
for meeting serverless workloads objectives.

However, there is no prior work (as per our knowledge) that
explores the potential of multi-resource scheduling for serverless
workflows. Further, there is no existing serverless platform that sup-
ports multi-resource management for serverless workflows. Thus,
there is a scope for designing multi-resource scheduler for server-
less workflows which improves resource efficiency and reduces
SLA violations.

6 FINAL THOUGHTS

Our initial simulator and prototype using OpenWhisk shows that
the promise of muti-resource framework to enable high perfor-
mance for challenging serverless applications and workloads. Fol-
lowing the prototype, we conducted some basic measurements to
identify the variability and predictability in terms of execution time,
resource usage and end-to-end latency for different functions. In
the future, we aim to improve the prototype and implement our
policies to answer the open research questions.

The main goal of this paper is to start dialogue on the importance
of multi-resource fair resource allocation, and the unique prob-
lems serverless presents for fairness. We believe multi-resource fair
scheduling is an important step forward to provide scalable perfor-
mance for serverless platforms. We propose a hierarchical approach
built around the observability and predictability of serverless func-
tions that we believe can scale while providing more stringent
SLAs than today’s platforms, and we believe building such a system
would open up new avenues for research.
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