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ABSTRACT
The performance of distributed applications implemented using
microservice architecture depends heavily on the configuration of
various parameters, which are hard to tune due to large configura-
tion search space and inter-dependence of parameters. While the
information in product manuals and technical documents guides the
tuning process, manual collection of meta-data for all application
parameters is laborious and not scalable. Prior works have largely
overlooked the automated use of product manuals, technical docu-
ments and source code for extracting such meta-data. In the current
work, we propose using large language models for automated meta-
data extraction and enhancing the configuration tuning pipeline.
We further ideate on building an in-house knowledge system using
experimental data to learn important parameters in configuration
tuning using historical data on parameter dependence, workload
statistics, performance metrics and resource utilization. We expect
productionizing the proposed system will reduce the total time
and experimental iterations required for configuration tuning in
new applications, saving an organization both developer time and
money.
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1 INTRODUCTION
Optimizing the performance and efficiency of systems via config-
uration tuning is a classical problem [22, 34, 35]. Recently, config-
uration tuning of modern distributed applications has garnered
significant interest [23, 36, 37]. These modern distributed applica-
tions usually leverage the microservice architectural style, where
an application or a service is decomposed into independent, fine-
grained services that communicate via well-defined APIs agnostic
to the implementation [17, 27].

The microservice architecture is rapidly gaining traction in the
industry as it offers many advantages, including scalability, fault-
isolation, and ease of deployment [17]. It is particularly well-suited
for building online, customer-facing cloud applications where the
revenue is contingent upon the performance and efficiency of the ap-
plications [13, 24, 27]. Nevertheless, the performance and efficiency
of these applications are heavily dependent on the configuration of
their various parameters, which must be carefully tuned to ensure
optimal results.

Configuration tuning of such large and complex applications
is challenging. An online application can consist of a frontend
(e.g., Nginx), database (e.g., MongoDB) and caching microservices
(e.g., Redis) along with services that implement the business logic
where each component has its own set of tunable parameters. Since
modern cloud services contain hundreds and thousands of such
microservices [27], the configuration search space is extremely large.
Moreover, to obtain optimal results, tuning parameters across the
software stack (e.g., orchestration layer, Operating System, etc.) is
essential [11, 23], which exponentially increases the configuration
search space. Dimensionality reduction, a common technique to
tackle large search spaces, is complicated due to the interdepen-
dence between parameters of the same and different microservices
and between parameters across the software stack. The interference
among colocated microservices and the non-linear relationship be-
tween the parameters and the performance metric exacerbate the
problem. Additionally, the optimal configuration for an online appli-
cation varies depending on the workload characteristics (requests
per second, workload composition, payload size, etc.). Importantly,
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the exploration of optimal configuration has to happen without
disrupting the performance or availability of the application.

The information in product manuals, technical documents1, and
feedback (e.g., performance metrics) from the experiments are es-
sential tools to address these challenges. However, manually col-
lecting the necessary meta-data for all application parameters from
different microservices’ product manuals is a laborious and often
overlooked step in configuration tuning [39]. Moreover, the list of
parameters and their meta-data has to be continuously updated
as a) change in the architecture of the application, i.e., addition
(removal) of a microservice can increase (decrease) the application
parameters, b) newer versions of the individual microservice (e.g.,
MongoDB) can update the meta-data of parameters or add new and
deprecate existing parameters.

Typically, a practitioner “understands” crucial information in
the product manuals and, guided by empirical observations and
telemetry, tunes the application to obtain optimal results. For a
single sub-system like a database with so many parameters, this
is time-consuming and inefficient [39]. Naturally, this approach is
laborious and almost impractical for applications with numerous
such sub-systems. Prior works on configuration tuning have of-
ten overlooked exploiting these important sources of information,
namely product manuals, technical documents, source code, and
experimental data, together [6–8, 11, 23, 36, 37, 47]. Some prior
works that consider these sources of information have either uti-
lized a limited amount of information from manuals [38, 39] or
completely disregarded the information provided in the manuals
and technical documents by solely relying on source code to extract
meta-data [45]. This is surprising given that product manuals, and
technical documents provide a plethora of information regarding
parameters. This information plays a vital role in comprehending
the correlation between performance and parameters, ultimately
identifying the most suitable configuration settings for a specific
workload and application architecture.

This work proposes how recent advances in Natural Language
Processing (NLP), specifically Large Language Models (LLMs) [9,
14, 25, 32], can enhance the configuration tuning pipeline. Firstly,
we believe that LLMs can learn from expert knowledge readily
available in product manuals, developer forums and other textual
data corpus, along with leveraging information available in the
source code to extract valuable meta-data required for runtime
configuration tuning of large-scale cloud applications. Secondly, a
language model that is adapted to a specific domain and fine-tuned
gradually with feedback from experiments can learn associative
and causal representations among parameters across a suite of
cloud applications. Specifically, we want to leverage the fact that
different enterprise applications implemented using microservice
architecture not only have microservices of the same type (e.g., a
different instance of MongoDB as a backend for each application),
but they also have shared services. For illustration, if applications
are represented as graphs with microservices as nodes and a pos-
sible interaction between microservices as edges, then common
sub-graphs will correspond to the shared services. The existence of
common sub-graphs implies that what is learned for configuration
1Technical documents refer to any natural language text related to the parameters,
including articles written by product developers, source code documentation, public
blogs and posts from third-party sources.

Meta-data Comments

Name Name of the parameter
Type Categorical/numeric/binary
Default Default value
Range Valid range or list of allowed values
Online Feasibility of runtime configuration

Online Cost Performance cost of runtime configuration
Dependencies List of other parameters it depends on

Units The unit of measurement
Set/Update Parameter Steps to set/update the parameter

Table 1: Meta-data necessary for effective online tuning of
large-scale cloud services.

tuning for a given application may be applied to another due to
shared services. To the best of our knowledge, this commonality
has not been exploited in any previous work. The specific ideas
that the current work aims to explore to enhance the configuration
tuning pipeline are:

• Meta-data extraction using targeted language model: Given
a collection of documents (product manuals, technical documents,
source code), we aim to learn a targeted language model to ex-
tract meta-data listed in Table 1 for all the microservices of the
application.

• Enhance the configuration tuning pipeline using the learned
language model: Using the collected meta-data, workload fore-
casting [28, 29] and application characterization, we aim to trans-
late different tasks in the configuration tuning pipeline as text
completion tasks facilitated via a language model operating on
engineered input prompts (e.g., finding the most impactful pa-
rameters of an application for the current workload).

• Building An In-house Knowledge System: As an ambitious
goal, we aim to demonstrate that service providers can use such
models to learn tasks across different applications considering
the similarities among such applications [27]. For each applica-
tion and associated configuration tuning, we propose logging
experimental data for fine-tuning the language model to enable
associative and causal relationship learning over time.

The rest of this paper is structured as follows: in Section 2, we
provide an overview of the background information on the config-
uration tuning pipeline, parameter meta-data, and LLMs, as well
as discuss related works. The proposed approach, including details
on the model, it’s training, and use case is discussed in Section 3.
In Section 4, we briefly touch on our planned evaluation strategy.
Finally, we conclude the paper in Section 5.

2 BACKGROUND AND RELATEDWORK
In this section, we first briefly mention the different stages of a
typical configuration tuning pipeline, followed by a detailed de-
scription of the meta-data useful during configuration tuning. We
also provide a brief introduction to LLMs and end the section with
a brief discussion of closely related works.
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Figure 1: The envisioned configuration tuning pipeline.
"Prompt Generator" and "Domain Adapted LLM" are pro-
posed additional components that we believe will enhance
the configuration tuning pipeline.

2.1 Configuration Tuning Pipeline
In this section, we discuss critical stages or components of a con-
figuration tuning pipeline, followed by optional stages. We briefly
mention the stages we plan on adding to enhance the configuration
tuning pipeline.

A typical configuration tuning pipeline consists of the following
critical stages: 1) Parameter meta-data collection, 2) An algorithm
that suggests the next configuration coupled with an optional train-
ing phase, and 3) An application deployed using the suggested
configuration that provides feedback (e.g., performance metrics like
latency) on the chosen configuration. In Figure 1, these different
stages correspond to 1 , 2 , 4 , respectively. The optional train-
ing stage ( 3 ), as the name suggests, trains the tuning algorithm
on offline data before deployment. The workload component in
the figure ( 5 ) corresponds to either synthetic workload or real-
world traffic. In order to enhance the configuration tuning pipeline,
we propose adding a Prompt Generator and a Domain-adapted
LLM ( 7 ) which use meta-data from the experiments stored in 6 .
These stages are discussed in detail in Section 3.

2.2 Parameter Meta-data
Product manuals contain a wealth of information about the param-
eters. Product manuals, coupled with technical documents (along
with source code when manuals are incomplete or outdated [31]),
can provide the meta-data listed in Table 1 that are essential for run-
time configuration tuning. While the role of most of this meta-data
is straightforward, we briefly mention here for completion:
• Type, which can be categorical, numeric or binary, is required for
downstream optimization algorithms.

• Default, the default value of the parameter is usually a good
starting point for exploration.

• Range, the range (allowed values) of the numeric (categorical)
parameter is required for the exploration of the search space and
to avoid passing invalid values to the parameters.

• Online, a binary variable that indicates whether a runtime con-
figuration of the parameter is possible without affecting the ap-
plication availability.

• Online Cost, a measure of performance impact (without any ap-
plication unavailability) on runtime update of the parameter.

• Dependencies, a list of other parameters it depends on.
• Units, the unit of measurement useful when resolving dependen-
cies in different units.

• Set/Update Parameter, the set of commands or steps to set the
parameter or update the runtime value of the parameter.

While most of these are essential for configuration tuning, de-
pendencies, which are not usually considered by prior works [10,
23, 30, 36], are necessary for reducing the dimension, a critical
task considering the size of the configuration space. We define a
dependency between two parameters, P1 and P2, as a directional
edge from P1 to P2, indicating that P2’s knowledge is necessary to
configure P1 accurately. We further classify dependencies into:

• Absolute: Parameter P2 has to be set/unset for parameter P1 to
have any effect. For example, Redis’ maxmemory parameter has
to be set for Redis’ maxmmeory-policy to have any effect [3].

• Partial: Parameter P2 affects the valid range or possible values
of parameter P1. The valid range of Memcached’s max-memory
(-m) depends on the value of the container’s memory-limit pa-
rameter [2].

• Performance: Parameters P1 and P2 have no explicit relationship,
but tuning them jointly is necessary to obtain the best configura-
tion. For example, the number of concurrent read transactions in
MongoDB can hit the limit and affect the performance if the size
of the cache is low [1].

The manuals and technical documents also contain information
on the relationship between parameters and workload or appli-
cation characteristics. For instance, tuning Nginx’ threads and
max_queue parameters when the workload does not involve any
file system access is unnecessary as offloading of tasks to thread
pools is only supported when the workload results in file system
access [40]. The manuals also contain information that relates work-
load characteristics with the parameters and the tradeoffs of tuning
the parameter, which is valuable when tuning different metrics (e.g.,
performance vs. resource savings).

2.3 Large Language Models
Large language models (LLMs) [9, 14, 25, 32] are trained on mas-
sive and heterogenous corpora, with texts ranging from Wikipedia,
books to web content. Representations learned by these models
are thus effective across a multitude of natural language tasks.
While these models perform well on generalized language text,
they may exhibit poor task performance on smaller target domain
specific tasks (like scientific literature, code repositories etc.) due
to differences in underlying distribution of the training and the
test data (domain shift) [33]. Domain adaptation can help mit-
igate the domain shift by exposing the model to unsupervised
secondary pretraining [20, 33], wherein the usual model pretrain-
ing is followed by domain/task-specific pretraining. LLMs have
found rapid adoption in solving various software engineering prob-
lems [4, 5, 16, 18, 19, 39, 43, 44]. In the current proposal, our goal is
to ideate domain adaptation of a pretrained large language model
for integrating its use in configuration tuning pipeline for cloud
services.
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Figure 2: (left) Transformer architecture and training objec-
tive for autoregressive languagemodeling (GPT) [32]; (center)
Domain adaptation of the pretrained GPT model using prod-
uct manuals and other domain-relevant text (section 3.2);
(right) Periodic finetuning of the language model using ex-
perimental logs (section 3.4).

2.4 Related Work
Optimization of systems through configuration tuning is a well-
studied problem [11, 15, 23, 26, 28, 36–39, 41, 42, 45, 47]. Prior
works [23, 30, 36, 37] that target large-scale cloud applications fail
to utilize the information present in natural language and source
code. The techniques to reduce the dimensions of the configuration
space using system characteristics don’t consider the dependencies
of the parameters [30, 36].

Among the closely related works, SPEX [45] extracts most of the
parameters’ meta-data in Table 1 with the help of developer anno-
tations and source code analysis. The authors acknowledge that
the product manuals consist of all these meta-data but are limited
by the NLP technology of the period. Recent works [21, 38, 39] use
NLP in their configuration tuning pipeline. Trummer [38] trains the
Transformer model to extract parameters and the suggested values
from the product manuals. DB-BERT [39] is a database tuning tool
that uses a pre-trained BERT [14] model to extract information from
product manuals and other relevant documents to get suggestions
on the best value for different parameter values. Both these works
use NLP to get the parameter and value pair from text documents.
He et al. [21] process technical documents using NLP to warn users
about side-effects on non-performance intentions (e.g., reliability,
security). However, these methods fail to fully utilize the poten-
tial of natural language understanding as i) they are not able to
perform automated and exhaustive mining of text, and ii) they do
not utilize the language models for learning new associations and
dependencies based on experimental feedback i.e., no knowledge
update occurs.

3 PROPOSED APPROACH
The configuration tuning pipeline we envision is shown in Figure 1.
We add a Prompt Generator and a Domain-adapted LLM ( 7 in
Figure 1) in addition to the typical stages ( 1 to 5 in Figure 1)
to enhance the configuration tuning pipeline. In this section, we
discuss the motivation behind the choice of our model, followed

by a discussion of how we plan to perform domain adaptation and
prompt engineering. We end the section with a discussion of our
goal to use the model as an in-house knowledge system for tuning
different applications in an enterprise.

3.1 Large Language Model Selection
LLMs can be classified into two primary categories based on their
training objective, namely – the masked language modeling (MLM)
and autoregressive language modeling. In a typical MLM, some
tokens are replaced by a special token ‘[MASK]’, with an objec-
tive to predict the original token using the context around the
‘[MASK]’ (for example, BERT [14]). On the other hand, autoregres-
sive modeling works by predicting the next token in a sentence
given the previous tokens i.e., these models do not have access to
the future/upcoming tokens when generating the current token
in a sentence. As autoregressive models learn a sequential gener-
ative process for text data, these models naturally perform better
for natural language generation (for example, GPT-3 [9, 32] and
Transformer-XL [12]). We propose to use autoregressive models of
the GPT-x family. This choice is based on the fact that text comple-
tion requires learning the generative process. Additionally, GPT-x
have code compatible models like Codex and Code-davinci-002,
which is advantageous when learning text representation of user
manuals that have unnatural tokens (from natural language per-
spective) like commands along with sample code snippets and for
extracting metadata from source code when product manuals are
incomplete or have errors. Codex and Code-davinci-002 are trained
on both natural language and billions of lines of public code from
GitHub.

3.2 Domain Adaptation
Once a pretrained LLM has been selected, we will perform domain
adaptation using a collection of documents containing informa-
tion on microservices. Domain adaptation will allow the language
model to mitigate against domain shift and also learn targeted rep-
resentations, which may not have been learnt by the pretrained
LLM (for example, ChatGPT [openAI’s chat bot based on GPT-3.5
model] incorrectly finds no relationship between the MongoDB’s
wiredTigerConcurrentReadTransactions and cache_size pa-
rameters [1]). We will start by preprocessing the data (remove
URLs, special tokens and symbols, concatenate the whole corpus
and divide into equal-sized chunks to prevent truncation for long
text samples, and tokenization), setting hyperparameters, loading
and compiling the pretrained model, followed by Domain Adaptive
Pretraining (DAPT) [20, 33]. For evaluating quality of language
modeling during domain adaptation, we will use metrics such as
perplexity, BLEU score or ROUGE score. Additional evaluation will
be performed via human evaluation ratings of the generated text.

3.3 Prompt Engineering
Once we have a domain-adapted model, we can use it to obtain
metadata and complex inter-parameter relationships for experimen-
tal tuning via text completion of developer-generated prompts. We
will obtain a parameter list by using simple prompts such as: “the
exhaustive list of parameters in MongoDB (without description)
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are as follows:.” Once we have extracted parameters, we can ob-
tain their values and attributes (Table 1) with prompts similar to:
“The default value of ldapUserCacheStalenessInterval is.” The
prompts will be more complex for capturing parameter dependen-
cies within and across different sub-components of the distributed
application. They would require engineering prompts using devel-
oper knowledge and the required use case.

3.4 Building An In-house Knowledge System
For every configuration tuning experiment performed for various
enterprise applications across an organization, we propose log-
ging experimental data like performance metrics, CPU, memory
and other resource utilization numbers, and workload statistics
(requests per second, request composition, etc.). We also assume
the existence of design documents describing the application’s
architecture. We will convert these experimental logs and the de-
sign documents to paired prompts of the form {"prompt": "<verbal
description of the workload for the application>", "completion":
"<optimal subset of parameters>"} and will use them for fine-tuning
the domain adapted LLM (as obtained in section 3.2). GPT-x family
language models require pairs of prompt and completion in the
form {"prompt":<>, "completion":<>} for fine-tuning (gradual task
adaptation in figure 2). Fine-tuning will allow the language model
to learn about dependencies between different components, such
as frontend, backend, etc., which are usually not captured in formal
documentation and require experimentation. We envision collect-
ing logs for every experiment followed by periodic fine-tuning of
the domain-adapted LLM for a knowledge update.

4 PLANNED EVALUATION
We plan to evaluate our approach on small-scale, on-premises de-
ployments and large-scale cloud deployments of the widely used
DeathStarBench benchmarking suite [17] and the train ticket appli-
cation [46]. We will specifically evaluate the following aspects:
• Compare the quality of meta-data generated using our model
with that generated by program synthesis.

• A study on developer hours saved by automating parameter meta-
data extraction.

• Compare the list of impactful parameters generated by our model
with other techniques to find impactful parameters [30, 36].

• Measure the generalization of the fine-tuned language model to
new applications versus manual tuning without the language
model, using the number of trials required to reach the optimal
configuration as the metric.

5 CONCLUSION
We discussed and presented a case for using LLMs to enhance the
configuration tuning of large cloud services implemented using the
microservice architecture. Additionally, we ideated on how to use
experimental feedback for learning language models that may be
able to generalize across applications for configuration tuning.
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