
Enhancing the Configuration Tuning Pipeline of Large-Scale
Distributed Applications

Using Large Language Models (Idea Paper)
Gagan Somashekar∗

gsomashekar@cs.stonybrook.edu
PACE lab, Stony Brook University

Stony Brook, NY, USA

Rajat Kumar∗
rajat.kumar@alumni.stonybrook.edu

Department of Biomedical Engineering, Stony Brook
University

Stony Brook, NY, USA

ABSTRACT
The performance of distributed applications implemented using
microservice architecture depends heavily on the configuration of
various parameters, which are hard to tune due to large configura-
tion search space and inter-dependence of parameters. While the
information in product manuals and technical documents guides the
tuning process, manual collection of meta-data for all application
parameters is laborious and not scalable. Prior works have largely
overlooked the automated use of product manuals, technical docu-
ments and source code for extracting such meta-data. In the current
work, we propose using large language models for automated meta-
data extraction and enhancing the configuration tuning pipeline.
We further ideate on building an in-house knowledge system using
experimental data to learn important parameters in configuration
tuning using historical data on parameter dependence, workload
statistics, performance metrics and resource utilization. We expect
productionizing the proposed system will reduce the total time
and experimental iterations required for configuration tuning in
new applications, saving an organization both developer time and
money.

CCS CONCEPTS
• Software and its engineering→Maintaining software; Soft-
ware configurationmanagement and version control systems;
• Computing methodologies→ Information extraction; In-
formation extraction.

KEYWORDS
Microservice Architecture, Parameter Tuning, Large LanguageMod-
els, Information Retrieval

∗Both authors contributed equally to this research.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
ICPE ’23 Companion, April 15–19, 2023, Coimbra, Portugal
© 2023 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 979-8-4007-0072-9/23/04. . . $15.00
https://doi.org/10.1145/3578245.3585032

ACM Reference Format:
Gagan Somashekar and Rajat Kumar. 2023. Enhancing the Configuration
Tuning Pipeline of Large-Scale Distributed Applications Using Large Lan-
guage Models (Idea Paper). In Companion of the 2023 ACM/SPEC Interna-
tional Conference on Performance Engineering (ICPE ’23 Companion), April
15–19, 2023, Coimbra, Portugal. ACM, New York, NY, USA, 6 pages. https:
//doi.org/10.1145/3578245.3585032

1 INTRODUCTION
Optimizing the performance and efficiency of systems via config-
uration tuning is a classical problem [22, 34, 35]. Recently, config-
uration tuning of modern distributed applications has garnered
significant interest [23, 36, 37]. These modern distributed applica-
tions usually leverage the microservice architectural style, where
an application or a service is decomposed into independent, fine-
grained services that communicate via well-defined APIs agnostic
to the implementation [17, 27].

The microservice architecture is rapidly gaining traction in the
industry as it offers many advantages, including scalability, fault-
isolation, and ease of deployment [17]. It is particularly well-suited
for building online, customer-facing cloud applications where the
revenue is contingent upon the performance and efficiency of the ap-
plications [13, 24, 27]. Nevertheless, the performance and efficiency
of these applications are heavily dependent on the configuration of
their various parameters, which must be carefully tuned to ensure
optimal results.

Configuration tuning of such large and complex applications
is challenging. An online application can consist of a frontend
(e.g., Nginx), database (e.g., MongoDB) and caching microservices
(e.g., Redis) along with services that implement the business logic
where each component has its own set of tunable parameters. Since
modern cloud services contain hundreds and thousands of such
microservices [27], the configuration search space is extremely large.
Moreover, to obtain optimal results, tuning parameters across the
software stack (e.g., orchestration layer, Operating System, etc.) is
essential [11, 23], which exponentially increases the configuration
search space. Dimensionality reduction, a common technique to
tackle large search spaces, is complicated due to the interdepen-
dence between parameters of the same and different microservices
and between parameters across the software stack. The interference
among colocated microservices and the non-linear relationship be-
tween the parameters and the performance metric exacerbate the
problem. Additionally, the optimal configuration for an online appli-
cation varies depending on the workload characteristics (requests
per second, workload composition, payload size, etc.). Importantly,

39

https://orcid.org/0000-0001-6949-8685
https://orcid.org/0009-0003-8741-2728
https://doi.org/10.1145/3578245.3585032
https://doi.org/10.1145/3578245.3585032
https://doi.org/10.1145/3578245.3585032

ICPE ’23 Companion, April 15–19, 2023, Coimbra, Portugal Gagan Somashekar & Rajat Kumar

the exploration of optimal configuration has to happen without
disrupting the performance or availability of the application.

The information in product manuals, technical documents1, and
feedback (e.g., performance metrics) from the experiments are es-
sential tools to address these challenges. However, manually col-
lecting the necessary meta-data for all application parameters from
different microservices’ product manuals is a laborious and often
overlooked step in configuration tuning [39]. Moreover, the list of
parameters and their meta-data has to be continuously updated
as a) change in the architecture of the application, i.e., addition
(removal) of a microservice can increase (decrease) the application
parameters, b) newer versions of the individual microservice (e.g.,
MongoDB) can update the meta-data of parameters or add new and
deprecate existing parameters.

Typically, a practitioner “understands” crucial information in
the product manuals and, guided by empirical observations and
telemetry, tunes the application to obtain optimal results. For a
single sub-system like a database with so many parameters, this
is time-consuming and inefficient [39]. Naturally, this approach is
laborious and almost impractical for applications with numerous
such sub-systems. Prior works on configuration tuning have of-
ten overlooked exploiting these important sources of information,
namely product manuals, technical documents, source code, and
experimental data, together [6–8, 11, 23, 36, 37, 47]. Some prior
works that consider these sources of information have either uti-
lized a limited amount of information from manuals [38, 39] or
completely disregarded the information provided in the manuals
and technical documents by solely relying on source code to extract
meta-data [45]. This is surprising given that product manuals, and
technical documents provide a plethora of information regarding
parameters. This information plays a vital role in comprehending
the correlation between performance and parameters, ultimately
identifying the most suitable configuration settings for a specific
workload and application architecture.

This work proposes how recent advances in Natural Language
Processing (NLP), specifically Large Language Models (LLMs) [9,
14, 25, 32], can enhance the configuration tuning pipeline. Firstly,
we believe that LLMs can learn from expert knowledge readily
available in product manuals, developer forums and other textual
data corpus, along with leveraging information available in the
source code to extract valuable meta-data required for runtime
configuration tuning of large-scale cloud applications. Secondly, a
language model that is adapted to a specific domain and fine-tuned
gradually with feedback from experiments can learn associative
and causal representations among parameters across a suite of
cloud applications. Specifically, we want to leverage the fact that
different enterprise applications implemented using microservice
architecture not only have microservices of the same type (e.g., a
different instance of MongoDB as a backend for each application),
but they also have shared services. For illustration, if applications
are represented as graphs with microservices as nodes and a pos-
sible interaction between microservices as edges, then common
sub-graphs will correspond to the shared services. The existence of
common sub-graphs implies that what is learned for configuration
1Technical documents refer to any natural language text related to the parameters,
including articles written by product developers, source code documentation, public
blogs and posts from third-party sources.

Meta-data Comments

Name Name of the parameter
Type Categorical/numeric/binary
Default Default value
Range Valid range or list of allowed values
Online Feasibility of runtime configuration

Online Cost Performance cost of runtime configuration
Dependencies List of other parameters it depends on

Units The unit of measurement
Set/Update Parameter Steps to set/update the parameter

Table 1: Meta-data necessary for effective online tuning of
large-scale cloud services.

tuning for a given application may be applied to another due to
shared services. To the best of our knowledge, this commonality
has not been exploited in any previous work. The specific ideas
that the current work aims to explore to enhance the configuration
tuning pipeline are:

• Meta-data extraction using targeted language model: Given
a collection of documents (product manuals, technical documents,
source code), we aim to learn a targeted language model to ex-
tract meta-data listed in Table 1 for all the microservices of the
application.

• Enhance the configuration tuning pipeline using the learned
language model: Using the collected meta-data, workload fore-
casting [28, 29] and application characterization, we aim to trans-
late different tasks in the configuration tuning pipeline as text
completion tasks facilitated via a language model operating on
engineered input prompts (e.g., finding the most impactful pa-
rameters of an application for the current workload).

• Building An In-house Knowledge System: As an ambitious
goal, we aim to demonstrate that service providers can use such
models to learn tasks across different applications considering
the similarities among such applications [27]. For each applica-
tion and associated configuration tuning, we propose logging
experimental data for fine-tuning the language model to enable
associative and causal relationship learning over time.

The rest of this paper is structured as follows: in Section 2, we
provide an overview of the background information on the config-
uration tuning pipeline, parameter meta-data, and LLMs, as well
as discuss related works. The proposed approach, including details
on the model, it’s training, and use case is discussed in Section 3.
In Section 4, we briefly touch on our planned evaluation strategy.
Finally, we conclude the paper in Section 5.

2 BACKGROUND AND RELATEDWORK
In this section, we first briefly mention the different stages of a
typical configuration tuning pipeline, followed by a detailed de-
scription of the meta-data useful during configuration tuning. We
also provide a brief introduction to LLMs and end the section with
a brief discussion of closely related works.

40

Enhancing the Configuration Tuning Pipeline of Large-Scale Distributed Applications Using Large Language Models ICPE ’23 Companion, April 15–19, 2023, Coimbra, Portugal

Config

Product Manuals, etc.

Experimental Data and
workload characteristics

Prompt Generator

Domain
Adapted LLM

Parameter Meta-data

Optional Training

Tuning Algorithm
Application N

Application 2Application 1

1 2

3

4

Workload
5

6
7

Figure 1: The envisioned configuration tuning pipeline.
"Prompt Generator" and "Domain Adapted LLM" are pro-
posed additional components that we believe will enhance
the configuration tuning pipeline.

2.1 Configuration Tuning Pipeline
In this section, we discuss critical stages or components of a con-
figuration tuning pipeline, followed by optional stages. We briefly
mention the stages we plan on adding to enhance the configuration
tuning pipeline.

A typical configuration tuning pipeline consists of the following
critical stages: 1) Parameter meta-data collection, 2) An algorithm
that suggests the next configuration coupled with an optional train-
ing phase, and 3) An application deployed using the suggested
configuration that provides feedback (e.g., performance metrics like
latency) on the chosen configuration. In Figure 1, these different
stages correspond to 1 , 2 , 4 , respectively. The optional train-
ing stage (3), as the name suggests, trains the tuning algorithm
on offline data before deployment. The workload component in
the figure (5) corresponds to either synthetic workload or real-
world traffic. In order to enhance the configuration tuning pipeline,
we propose adding a Prompt Generator and a Domain-adapted
LLM (7) which use meta-data from the experiments stored in 6 .
These stages are discussed in detail in Section 3.

2.2 Parameter Meta-data
Product manuals contain a wealth of information about the param-
eters. Product manuals, coupled with technical documents (along
with source code when manuals are incomplete or outdated [31]),
can provide the meta-data listed in Table 1 that are essential for run-
time configuration tuning. While the role of most of this meta-data
is straightforward, we briefly mention here for completion:
• Type, which can be categorical, numeric or binary, is required for
downstream optimization algorithms.

• Default, the default value of the parameter is usually a good
starting point for exploration.

• Range, the range (allowed values) of the numeric (categorical)
parameter is required for the exploration of the search space and
to avoid passing invalid values to the parameters.

• Online, a binary variable that indicates whether a runtime con-
figuration of the parameter is possible without affecting the ap-
plication availability.

• Online Cost, a measure of performance impact (without any ap-
plication unavailability) on runtime update of the parameter.

• Dependencies, a list of other parameters it depends on.
• Units, the unit of measurement useful when resolving dependen-
cies in different units.

• Set/Update Parameter, the set of commands or steps to set the
parameter or update the runtime value of the parameter.

While most of these are essential for configuration tuning, de-
pendencies, which are not usually considered by prior works [10,
23, 30, 36], are necessary for reducing the dimension, a critical
task considering the size of the configuration space. We define a
dependency between two parameters, P1 and P2, as a directional
edge from P1 to P2, indicating that P2’s knowledge is necessary to
configure P1 accurately. We further classify dependencies into:

• Absolute: Parameter P2 has to be set/unset for parameter P1 to
have any effect. For example, Redis’ maxmemory parameter has
to be set for Redis’ maxmmeory-policy to have any effect [3].

• Partial: Parameter P2 affects the valid range or possible values
of parameter P1. The valid range of Memcached’s max-memory
(-m) depends on the value of the container’s memory-limit pa-
rameter [2].

• Performance: Parameters P1 and P2 have no explicit relationship,
but tuning them jointly is necessary to obtain the best configura-
tion. For example, the number of concurrent read transactions in
MongoDB can hit the limit and affect the performance if the size
of the cache is low [1].

The manuals and technical documents also contain information
on the relationship between parameters and workload or appli-
cation characteristics. For instance, tuning Nginx’ threads and
max_queue parameters when the workload does not involve any
file system access is unnecessary as offloading of tasks to thread
pools is only supported when the workload results in file system
access [40]. The manuals also contain information that relates work-
load characteristics with the parameters and the tradeoffs of tuning
the parameter, which is valuable when tuning different metrics (e.g.,
performance vs. resource savings).

2.3 Large Language Models
Large language models (LLMs) [9, 14, 25, 32] are trained on mas-
sive and heterogenous corpora, with texts ranging from Wikipedia,
books to web content. Representations learned by these models
are thus effective across a multitude of natural language tasks.
While these models perform well on generalized language text,
they may exhibit poor task performance on smaller target domain
specific tasks (like scientific literature, code repositories etc.) due
to differences in underlying distribution of the training and the
test data (domain shift) [33]. Domain adaptation can help mit-
igate the domain shift by exposing the model to unsupervised
secondary pretraining [20, 33], wherein the usual model pretrain-
ing is followed by domain/task-specific pretraining. LLMs have
found rapid adoption in solving various software engineering prob-
lems [4, 5, 16, 18, 19, 39, 43, 44]. In the current proposal, our goal is
to ideate domain adaptation of a pretrained large language model
for integrating its use in configuration tuning pipeline for cloud
services.

41

ICPE ’23 Companion, April 15–19, 2023, Coimbra, Portugal Gagan Somashekar & Rajat Kumar

… a car is … … …

Masked Multi Self Attention

Layer Norm

Feed Forward

Layer Norm

+

a car is … … … EOS

Text & Position Embed

+

N x

Pretrained
Language

Model

Domain Adaptation

Gradual Task Adaptation

Domain
Adapted

Language Model

Product Manuals, Developer articles, etc. Experimental Data

Figure 2: (left) Transformer architecture and training objec-
tive for autoregressive languagemodeling (GPT) [32]; (center)
Domain adaptation of the pretrained GPT model using prod-
uct manuals and other domain-relevant text (section 3.2);
(right) Periodic finetuning of the language model using ex-
perimental logs (section 3.4).

2.4 Related Work
Optimization of systems through configuration tuning is a well-
studied problem [11, 15, 23, 26, 28, 36–39, 41, 42, 45, 47]. Prior
works [23, 30, 36, 37] that target large-scale cloud applications fail
to utilize the information present in natural language and source
code. The techniques to reduce the dimensions of the configuration
space using system characteristics don’t consider the dependencies
of the parameters [30, 36].

Among the closely related works, SPEX [45] extracts most of the
parameters’ meta-data in Table 1 with the help of developer anno-
tations and source code analysis. The authors acknowledge that
the product manuals consist of all these meta-data but are limited
by the NLP technology of the period. Recent works [21, 38, 39] use
NLP in their configuration tuning pipeline. Trummer [38] trains the
Transformer model to extract parameters and the suggested values
from the product manuals. DB-BERT [39] is a database tuning tool
that uses a pre-trained BERT [14] model to extract information from
product manuals and other relevant documents to get suggestions
on the best value for different parameter values. Both these works
use NLP to get the parameter and value pair from text documents.
He et al. [21] process technical documents using NLP to warn users
about side-effects on non-performance intentions (e.g., reliability,
security). However, these methods fail to fully utilize the poten-
tial of natural language understanding as i) they are not able to
perform automated and exhaustive mining of text, and ii) they do
not utilize the language models for learning new associations and
dependencies based on experimental feedback i.e., no knowledge
update occurs.

3 PROPOSED APPROACH
The configuration tuning pipeline we envision is shown in Figure 1.
We add a Prompt Generator and a Domain-adapted LLM (7 in
Figure 1) in addition to the typical stages (1 to 5 in Figure 1)
to enhance the configuration tuning pipeline. In this section, we
discuss the motivation behind the choice of our model, followed

by a discussion of how we plan to perform domain adaptation and
prompt engineering. We end the section with a discussion of our
goal to use the model as an in-house knowledge system for tuning
different applications in an enterprise.

3.1 Large Language Model Selection
LLMs can be classified into two primary categories based on their
training objective, namely – the masked language modeling (MLM)
and autoregressive language modeling. In a typical MLM, some
tokens are replaced by a special token ‘[MASK]’, with an objec-
tive to predict the original token using the context around the
‘[MASK]’ (for example, BERT [14]). On the other hand, autoregres-
sive modeling works by predicting the next token in a sentence
given the previous tokens i.e., these models do not have access to
the future/upcoming tokens when generating the current token
in a sentence. As autoregressive models learn a sequential gener-
ative process for text data, these models naturally perform better
for natural language generation (for example, GPT-3 [9, 32] and
Transformer-XL [12]). We propose to use autoregressive models of
the GPT-x family. This choice is based on the fact that text comple-
tion requires learning the generative process. Additionally, GPT-x
have code compatible models like Codex and Code-davinci-002,
which is advantageous when learning text representation of user
manuals that have unnatural tokens (from natural language per-
spective) like commands along with sample code snippets and for
extracting metadata from source code when product manuals are
incomplete or have errors. Codex and Code-davinci-002 are trained
on both natural language and billions of lines of public code from
GitHub.

3.2 Domain Adaptation
Once a pretrained LLM has been selected, we will perform domain
adaptation using a collection of documents containing informa-
tion on microservices. Domain adaptation will allow the language
model to mitigate against domain shift and also learn targeted rep-
resentations, which may not have been learnt by the pretrained
LLM (for example, ChatGPT [openAI’s chat bot based on GPT-3.5
model] incorrectly finds no relationship between the MongoDB’s
wiredTigerConcurrentReadTransactions and cache_size pa-
rameters [1]). We will start by preprocessing the data (remove
URLs, special tokens and symbols, concatenate the whole corpus
and divide into equal-sized chunks to prevent truncation for long
text samples, and tokenization), setting hyperparameters, loading
and compiling the pretrained model, followed by Domain Adaptive
Pretraining (DAPT) [20, 33]. For evaluating quality of language
modeling during domain adaptation, we will use metrics such as
perplexity, BLEU score or ROUGE score. Additional evaluation will
be performed via human evaluation ratings of the generated text.

3.3 Prompt Engineering
Once we have a domain-adapted model, we can use it to obtain
metadata and complex inter-parameter relationships for experimen-
tal tuning via text completion of developer-generated prompts. We
will obtain a parameter list by using simple prompts such as: “the
exhaustive list of parameters in MongoDB (without description)

42

Enhancing the Configuration Tuning Pipeline of Large-Scale Distributed Applications Using Large Language Models ICPE ’23 Companion, April 15–19, 2023, Coimbra, Portugal

are as follows:.” Once we have extracted parameters, we can ob-
tain their values and attributes (Table 1) with prompts similar to:
“The default value of ldapUserCacheStalenessInterval is.” The
prompts will be more complex for capturing parameter dependen-
cies within and across different sub-components of the distributed
application. They would require engineering prompts using devel-
oper knowledge and the required use case.

3.4 Building An In-house Knowledge System
For every configuration tuning experiment performed for various
enterprise applications across an organization, we propose log-
ging experimental data like performance metrics, CPU, memory
and other resource utilization numbers, and workload statistics
(requests per second, request composition, etc.). We also assume
the existence of design documents describing the application’s
architecture. We will convert these experimental logs and the de-
sign documents to paired prompts of the form {"prompt": "<verbal
description of the workload for the application>", "completion":
"<optimal subset of parameters>"} and will use them for fine-tuning
the domain adapted LLM (as obtained in section 3.2). GPT-x family
language models require pairs of prompt and completion in the
form {"prompt":<>, "completion":<>} for fine-tuning (gradual task
adaptation in figure 2). Fine-tuning will allow the language model
to learn about dependencies between different components, such
as frontend, backend, etc., which are usually not captured in formal
documentation and require experimentation. We envision collect-
ing logs for every experiment followed by periodic fine-tuning of
the domain-adapted LLM for a knowledge update.

4 PLANNED EVALUATION
We plan to evaluate our approach on small-scale, on-premises de-
ployments and large-scale cloud deployments of the widely used
DeathStarBench benchmarking suite [17] and the train ticket appli-
cation [46]. We will specifically evaluate the following aspects:
• Compare the quality of meta-data generated using our model
with that generated by program synthesis.

• A study on developer hours saved by automating parameter meta-
data extraction.

• Compare the list of impactful parameters generated by our model
with other techniques to find impactful parameters [30, 36].

• Measure the generalization of the fine-tuned language model to
new applications versus manual tuning without the language
model, using the number of trials required to reach the optimal
configuration as the metric.

5 CONCLUSION
We discussed and presented a case for using LLMs to enhance the
configuration tuning of large cloud services implemented using the
microservice architecture. Additionally, we ideated on how to use
experimental feedback for learning language models that may be
able to generalize across applications for configuration tuning.

ACKNOWLEDGMENTS
We thank the anonymous reviewers for providing valuable feed-
back that has improved the quality of this paper. Additionally, we

would like to thank Prof. Anshul Gandhi and Akshata Bhat, whose
discussions helped shape the direction of our research. This work
was supported by the NSF grant CNS-1750109.

REFERENCES
[1] 2015. MongoDB Jira. jira.mongodb.org/browse/SERVER-19911.
[2] Accessed in January 2023. memcached(1). https://linux.die.net/man/1/

memcached.
[3] Accessed in January 2023. Redis configuration. https://redis.io/topics/config.
[4] Wasi Uddin Ahmad, Saikat Chakraborty, Baishakhi Ray, and Kai-Wei Chang.

2021. Unified Pre-training for Program Understanding and Generation. https:
//doi.org/10.48550/ARXIV.2103.06333

[5] Toufique Ahmed, Supriyo GHOSH, Chetan Bansal, Tom Zimmermann, Xuchao
Zhang, and Saravan Rajmohan. 2023. Recommending Root-Cause and Mitigation
Steps for Cloud Incidents using Large Language Models. In ICSE 2023. https:
//www.microsoft.com/en-us/research/publication/recommending-root-cause-
and-mitigation-steps-for-cloud-incidents-using-large-language-models/

[6] Omid Alipourfard, Hongqiang Harry Liu, Jianshu Chen, Shivaram Venkataraman,
Minlan Yu, and Ming Zhang. 2017. Cherrypick: Adaptively Unearthing the Best
Cloud Configurations for Big Data Analytics. In Proceedings of the 14th USENIX
Conference on Networked Systems Design and Implementation (NSDI’17).

[7] Muhammad Bilal, Marco Canini, and Rodrigo Rodrigues. [n. d.]. Finding the
Right Cloud Configuration for Analytics Clusters. In Proceedings of the 11th ACM
Symposium on Cloud Computing (SoCC ’20).

[8] Muhammad Bilal, Marco Serafini, Marco Canini, and Rodrigo Rodrigues. 2020.
Do the Best Cloud Configurations Grow on Trees? An Experimental Evaluation
of Black Box Algorithms for Optimizing Cloud Workloads. Proc. VLDB Endow.
(2020).

[9] Tom B. Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared Kaplan,
Prafulla Dhariwal, Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda
Askell, Sandhini Agarwal, Ariel Herbert-Voss, Gretchen Krueger, Tom Henighan,
Rewon Child, Aditya Ramesh, Daniel M. Ziegler, Jeffrey Wu, Clemens Winter,
Christopher Hesse, Mark Chen, Eric Sigler, Mateusz Litwin, Scott Gray, Benjamin
Chess, Jack Clark, Christopher Berner, Sam McCandlish, Alec Radford, Ilya
Sutskever, and Dario Amodei. 2020. Language Models are Few-Shot Learners.
https://doi.org/10.48550/ARXIV.2005.14165

[10] Zhen Cao, Geoff Kuenning, and Erez Zadok. [n. d.]. Carver: Finding Important
Parameters for Storage System Tuning. In 18th USENIX Conference on File and
Storage Technologies (FAST 20).

[11] Stefano Cereda, Stefano Valladares, Paolo Cremonesi, and Stefano Doni. 2021.
CGPTuner: A Contextual Gaussian Process Bandit Approach for the Automatic
Tuning of IT Configurations under Varying Workload Conditions. Proc. VLDB
Endow. 14, 8 (oct 2021), 1401–1413. https://doi.org/10.14778/3457390.3457404

[12] Zihang Dai, Zhilin Yang, Yiming Yang, Jaime Carbonell, Quoc V. Le, and Ruslan
Salakhutdinov. 2019. Transformer-XL: Attentive Language Models Beyond a
Fixed-Length Context. https://doi.org/10.48550/ARXIV.1901.02860

[13] J. Dean and L. A. Barroso. 2013. The Tail at Scale. Communications of ACM 56, 2
(2013), 74–80.

[14] Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. 2018. BERT:
Pre-training of Deep Bidirectional Transformers for Language Understanding.
https://doi.org/10.48550/ARXIV.1810.04805

[15] SongyunDuan, Vamsidhar Thummala, and Shivnath Babu. 2009. TuningDatabase
Configuration Parameters with ITuned. Proc. VLDB Endow. 2, 1 (aug 2009),
1246–1257. https://doi.org/10.14778/1687627.1687767

[16] Zhangyin Feng, Daya Guo, Duyu Tang, Nan Duan, Xiaocheng Feng, Ming Gong,
Linjun Shou, Bing Qin, Ting Liu, Daxin Jiang, and Ming Zhou. 2020. CodeBERT:
A Pre-Trained Model for Programming and Natural Languages. In Findings of the
Association for Computational Linguistics: EMNLP 2020. Association for Computa-
tional Linguistics, Online, 1536–1547. https://doi.org/10.18653/v1/2020.findings-
emnlp.139

[17] Yu Gan, Yanqi Zhang, Dailun Cheng, Ankitha Shetty, Priyal Rathi, Nayantara
Katarki, Ariana Bruno, Justin Hu, Brian Ritchken, Brendon Jackson, Kelvin Hu,
Meghna Pancholi, Brett Clancy, Chris Colen, Fukang Wen, Catherine Leung,
Siyuan Wang, Leon Zaruvinsky, Mateo Espinosa, Yuan He, and Christina De-
limitrou. 2019. An Open-Source Benchmark Suite for Microservices and Their
Hardware-Software Implications for Cloud and Edge Systems. In Proceedings of
the Twenty Fourth International Conference on Architectural Support for Program-
ming Languages and Operating Systems (ASPLOS).

[18] Daya Guo, Shuai Lu, Nan Duan, Yanlin Wang, Ming Zhou, and Jian Yin. 2022.
UniXcoder: Unified Cross-Modal Pre-training for Code Representation. https:
//doi.org/10.48550/ARXIV.2203.03850

[19] Daya Guo, Shuo Ren, Shuai Lu, Zhangyin Feng, Duyu Tang, Shujie Liu, Long
Zhou, Nan Duan, Alexey Svyatkovskiy, Shengyu Fu, Michele Tufano, Shao Kun
Deng, Colin Clement, Dawn Drain, Neel Sundaresan, Jian Yin, Daxin Jiang, and
Ming Zhou. 2020. GraphCodeBERT: Pre-training Code Representations with
Data Flow. https://doi.org/10.48550/ARXIV.2009.08366

43

jira.mongodb.org/browse/SERVER-19911
https://linux.die.net/man/1/memcached
https://linux.die.net/man/1/memcached
https://redis.io/topics/config
https://doi.org/10.48550/ARXIV.2103.06333
https://doi.org/10.48550/ARXIV.2103.06333
https://www.microsoft.com/en-us/research/publication/recommending-root-cause-and-mitigation-steps-for-cloud-incidents-using-large-language-models/
https://www.microsoft.com/en-us/research/publication/recommending-root-cause-and-mitigation-steps-for-cloud-incidents-using-large-language-models/
https://www.microsoft.com/en-us/research/publication/recommending-root-cause-and-mitigation-steps-for-cloud-incidents-using-large-language-models/
https://doi.org/10.48550/ARXIV.2005.14165
https://doi.org/10.14778/3457390.3457404
https://doi.org/10.48550/ARXIV.1901.02860
https://doi.org/10.48550/ARXIV.1810.04805
https://doi.org/10.14778/1687627.1687767
https://doi.org/10.18653/v1/2020.findings-emnlp.139
https://doi.org/10.18653/v1/2020.findings-emnlp.139
https://doi.org/10.48550/ARXIV.2203.03850
https://doi.org/10.48550/ARXIV.2203.03850
https://doi.org/10.48550/ARXIV.2009.08366

ICPE ’23 Companion, April 15–19, 2023, Coimbra, Portugal Gagan Somashekar & Rajat Kumar

[20] Suchin Gururangan, Ana Marasović, Swabha Swayamdipta, Kyle Lo, Iz Beltagy,
Doug Downey, and Noah A. Smith. 2020. Don’t Stop Pretraining: Adapt Language
Models to Domains and Tasks. https://doi.org/10.48550/ARXIV.2004.10964

[21] Haochen He, Zhouyang Jia, Shanshan Li, Yue Yu, Chenglong Zhou, Qing Liao,
Ji Wang, and Xiangke Liao. 2022. Multi-Intention-Aware Configuration Se-
lection for Performance Tuning. In Proceedings of the 44th International Con-
ference on Software Engineering (Pittsburgh, Pennsylvania) (ICSE ’22). Asso-
ciation for Computing Machinery, New York, NY, USA, 1431–1442. https:
//doi.org/10.1145/3510003.3510094

[22] Chiaki Ishikawa, Ken Sakamura, and Mamoru Maekawa. 1982. Dynamic tuning
of operating systems. In Operating Systems Engineering, Mamoru Maekawa and
Laszio A. Belady (Eds.). Springer Berlin Heidelberg, Berlin, Heidelberg, 119–142.

[23] Ajaykrishna Karthikeyan, Nagarajan Natarajan, Gagan Somashekhar, Lei
Zhao, Ranjita Bhagwan, Rodrigo Fonseca, Tatiana Racheva, and Yogesh
Bansal. 2023. SelfTune: Tuning Cluster Managers. In To Appear in
NSDI. https://www.microsoft.com/en-us/research/uploads/prod/2022/10/
SelfTune_NSDI2023_Cameraready.pdf.

[24] Ron Kohavi, Randal M. Henne, and Dan Sommerfield. [n. d.]. Practical Guide to
Controlled Experiments on the Web: Listen to Your Customers Not to the Hippo.
In Proceedings of the 13th ACM SIGKDD International Conference on Knowledge
Discovery and Data Mining.

[25] Mike Lewis, Yinhan Liu, Naman Goyal, Marjan Ghazvininejad, Abdelrahman
Mohamed, Omer Levy, Ves Stoyanov, and Luke Zettlemoyer. 2019. BART: De-
noising Sequence-to-Sequence Pre-training for Natural Language Generation,
Translation, and Comprehension. https://doi.org/10.48550/ARXIV.1910.13461

[26] Zhao Lucis Li, Chieh-Jan Mike Liang, Wenjia He, Lianjie Zhu, Wenjun Dai, Jin
Jiang, and Guangzhong Sun. 2018. Metis: Robustly Tuning Tail Latencies of Cloud
Systems. In 2018 USENIX Annual Technical Conference (USENIX ATC 18). USENIX
Association, Boston, MA, 981–992. https://www.usenix.org/conference/atc18/
presentation/li-zhao

[27] Shutian Luo, Huanle Xu, Chengzhi Lu, Kejiang Ye, Guoyao Xu, Liping Zhang, Yu
Ding, Jian He, and Chengzhong Xu. 2021. Characterizing Microservice Dependency
and Performance: Alibaba Trace Analysis.

[28] Ashraf Mahgoub, Alexander Michaelson Medoff, Rakesh Kumar, Subrata Mitra,
Ana Klimovic, Somali Chaterji, and Saurabh Bagchi. 2020. OPTIMUSCLOUD:
Heterogeneous Configuration Optimization for Distributed Databases in the
Cloud. In 2020 USENIX Annual Technical Conference (USENIX ATC 20).

[29] Per-Olov Östberg, Thang Le Duc, Paolo Casari, Rafael García Leiva, Antonio
Fernández Anta, and Jörg Domaschka. 2020. Application Optimisation: Workload
Prediction and Autonomous Autoscaling of Distributed Cloud Applications. Springer
International Publishing, Cham, 51–68. https://doi.org/10.1007/978-3-030-39863-
7_3

[30] Haoran Qiu, Subho S. Banerjee, Saurabh Jha, Zbigniew T. Kalbarczyk, and Ravis-
hankar K. Iyer. 2020. FIRM: An Intelligent Fine-grained Resource Management
Framework for SLO-Oriented Microservices. In 14th USENIX Symposium on Op-
erating Systems Design and Implementation (OSDI 20).

[31] Ariel Rabkin and Randy Katz. 2011. Static Extraction of Program Configuration
Options. In Proceedings of the 33rd International Conference on Software Engineer-
ing (Waikiki, Honolulu, HI, USA) (ICSE ’11). Association for Computing Machin-
ery, New York, NY, USA, 131–140. https://doi.org/10.1145/1985793.1985812

[32] Alec Radford, Karthik Narasimhan, Tim Salimans, Ilya Sutskever, et al. [n. d.].
Improving language understanding by generative pre-training. ([n. d.]).

[33] Alan Ramponi and Barbara Plank. 2020. Neural Unsupervised Domain Adaptation
in NLP—A Survey. https://doi.org/10.48550/ARXIV.2006.00632

[34] Jeffrey Semke, Jamshid Mahdavi, and Matthew Mathis. 1998. Automatic TCP
Buffer Tuning. SIGCOMM Comput. Commun. Rev. 28, 4 (oct 1998), 315–323.

https://doi.org/10.1145/285243.285292
[35] Dennis Shasha. 1997. Lessons from Wall Street: Case Studies in Configura-

tion, Tuning, and Distribution. In Proceedings of the 1997 ACM SIGMOD In-
ternational Conference on Management of Data (Tucson, Arizona, USA) (SIG-
MOD ’97). Association for Computing Machinery, New York, NY, USA, 498–501.
https://doi.org/10.1145/253260.253368

[36] G. Somashekar, A. Suresh, S. Tyagi, V. Dhyani, K. Donkada, A. Pradhan, and A.
Gandhi. 2022. Reducing the Tail Latency of Microservices Applications via Opti-
mal Configuration Tuning. In 2022 IEEE International Conference on Autonomic
Computing and Self-Organizing Systems (ACSOS). IEEE Computer Society, Los
Alamitos, CA, USA, 111–120. https://doi.org/10.1109/ACSOS55765.2022.00029

[37] Akshitha Sriraman and Thomas F. Wenisch. 2018. Mtune: AutoTuned Threading
for OLDIMicroservices. In Proceedings of the 13th USENIX Conference on Operating
Systems Design and Implementation (Carlsbad, CA, USA) (OSDI 2018). USENIX
Association, USA, 177–194.

[38] Immanuel Trummer. 2021. The case for NLP-enhanced database tuning: towards
tuning tools that" read the manual". Proceedings of the VLDB Endowment 14, 7
(2021), 1159–1165.

[39] Immanuel Trummer. 2022. DB-BERT: a database tuning tool that "reads the
manual". In SIGMOD.

[40] Valentin Bartenev (F5 networks). 2015. Thread Pools in Nginx Boost Performance
9x! https://www.nginx.com/blog/thread-pools-boost-performance-9x/. Online;
accessed November, 2022.

[41] Dana Van Aken, Andrew Pavlo, Geoffrey J. Gordon, and Bohan Zhang. 2017.
Automatic Database Management System Tuning Through Large-Scale Machine
Learning. In Proceedings of the 2017 ACM International Conference on Management
of Data (Chicago, Illinois, USA) (SIGMOD ’17). Association for ComputingMachin-
ery, New York, NY, USA, 1009–1024. https://doi.org/10.1145/3035918.3064029

[42] Dana Van Aken, Andrew Pavlo, Geoffrey J Gordon, and Bohan Zhang. 2017.
Automatic database management system tuning through large-scale machine
learning. In Proceedings of the 2017 ACM international conference on management
of data. 1009–1024.

[43] Xin Wang, Yasheng Wang, Fei Mi, Pingyi Zhou, Yao Wan, Xiao Liu, Li Li, Hao
Wu, Jin Liu, and Xin Jiang. 2021. SynCoBERT: Syntax-Guided Multi-Modal
Contrastive Pre-Training for Code Representation. https://doi.org/10.48550/
ARXIV.2108.04556

[44] Yue Wang, Weishi Wang, Shafiq Joty, and Steven C.H. Hoi. 2021. CodeT5:
Identifier-aware Unified Pre-trained Encoder-Decoder Models for Code Un-
derstanding and Generation. In Proceedings of the 2021 Conference on Empir-
ical Methods in Natural Language Processing. Association for Computational
Linguistics, Online and Punta Cana, Dominican Republic, 8696–8708. https:
//doi.org/10.18653/v1/2021.emnlp-main.685

[45] Tianyin Xu, Jiaqi Zhang, Peng Huang, Jing Zheng, Tianwei Sheng, Ding Yuan,
Yuanyuan Zhou, and Shankar Pasupathy. 2013. Do Not Blame Users for Miscon-
figurations. In Proceedings of the Twenty-Fourth ACM Symposium on Operating
Systems Principles (Farminton, Pennsylvania) (SOSP ’13). Association for Comput-
ing Machinery, New York, NY, USA, 244–259. https://doi.org/10.1145/2517349.
2522727

[46] Xiang Zhou, Xin Peng, Tao Xie, Jun Sun, Chenjie Xu, Chao Ji, and Wenyun Zhao.
2018. Poster: Benchmarking Microservice Systems for Software Engineering
Research. In 2018 IEEE/ACM 40th International Conference on Software Engineering:
Companion (ICSE-Companion).

[47] Yuqing Zhu, Jianxun Liu, Mengying Guo, Yungang Bao, Wenlong Ma, Zhuoyue
Liu, Kunpeng Song, and Yingchun Yang. 2017. Bestconfig: tapping the perfor-
mance potential of systems via automatic configuration tuning. In Proceedings of
the 2017 Symposium on Cloud Computing. 338–350.

44

https://doi.org/10.48550/ARXIV.2004.10964
https://doi.org/10.1145/3510003.3510094
https://doi.org/10.1145/3510003.3510094
https://www.microsoft.com/en-us/research/uploads/prod/2022/10/SelfTune_NSDI2023_Cameraready.pdf
https://www.microsoft.com/en-us/research/uploads/prod/2022/10/SelfTune_NSDI2023_Cameraready.pdf
https://doi.org/10.48550/ARXIV.1910.13461
https://www.usenix.org/conference/atc18/presentation/li-zhao
https://www.usenix.org/conference/atc18/presentation/li-zhao
https://doi.org/10.1007/978-3-030-39863-7_3
https://doi.org/10.1007/978-3-030-39863-7_3
https://doi.org/10.1145/1985793.1985812
https://doi.org/10.48550/ARXIV.2006.00632
https://doi.org/10.1145/285243.285292
https://doi.org/10.1145/253260.253368
https://doi.org/10.1109/ACSOS55765.2022.00029
https://www.nginx.com/blog/thread-pools-boost-performance-9x/
https://doi.org/10.1145/3035918.3064029
https://doi.org/10.48550/ARXIV.2108.04556
https://doi.org/10.48550/ARXIV.2108.04556
https://doi.org/10.18653/v1/2021.emnlp-main.685
https://doi.org/10.18653/v1/2021.emnlp-main.685
https://doi.org/10.1145/2517349.2522727
https://doi.org/10.1145/2517349.2522727

	Abstract
	1 Introduction
	2 Background and Related Work
	2.1 Configuration Tuning Pipeline
	2.2 Parameter Meta-data
	2.3 Large Language Models
	2.4 Related Work

	3 Proposed approach
	3.1 Large Language Model Selection
	3.2 Domain Adaptation
	3.3 Prompt Engineering
	3.4 Building An In-house Knowledge System

	4 Planned Evaluation
	5 Conclusion
	Acknowledgments
	References

