
Heuristic Derivation of a Fluid Model from a Layered
Queueing Network∗

Murray Woodside
Carleton University

Ottawa, Canada
cmw@sce.carleton.ca

ABSTRACT
Fluid approximations are useful for representing transient
behaviour of queueing systems. For layered queues a fluid model
has previously been derived indirectly via transformation first to
a PEPA model, or via recursive neural networks. This paper
presents a derivation directly from the layered queueing
mechanisms, starting from a transformation to a context-sensitive
layered form. The accuracy of predictions, compared to transient
simulations and steady-state solutions, is evaluated and appears
to be useful.

CCS CONCEPTS
• Distributed computing models • Software
performance • Markov processes

KEYWORDS
Performance models; Layered Queues; Fluid Approximations.

ACM Reference format:

Murray Woodside. 2018. Heuristic Derivation of a Fluid Model from a
Layered Queueing Network. In the Companion of the 2023 ACM/SPEC
International Conference on Performance Engineering (ICPE’23 Companion),
April 15–19, 2023, Coimbra, Portugal. ACM, New York, NY, USA. 7 pages.
https://doi.org/10.1145/3578245.3584852

1 INTRODUCTION
A number of problems in performance management can benefit
from a dynamic model of the system to predict the short-term
effects of management actions. Model-based management has
often used steady-state models and ignored the transient, on the
assumption that the transient is short-lived (e.g. [5]). Model
parameter tracking by Kalman Filters as in [19] also assumes a
steady state reached over each measurement interval, yet the
intervals may be too short to obtain a steady state; tracking based
on a dynamic model should be better.

A fluid model is a tractable way to make approximate
dynamic predictions. This work describes a heuristic direct
derivation. Fluid models for performance approximate the
populations of customers at queues by continuous variables
governed by an ordinary differential equation (ODE). Models
derived by the mean-field theory of Kurtz [6] represent the
expected value 𝑥(𝑡) of the random population vector 𝑥̃ , with
derivatives given by the expected rate of change of 𝑥̃:
 𝑑 𝑥̃/𝑑𝑡 = Exp(𝑑 𝑥̃/𝑑𝑡) = Exp{f(𝑥̃)}
and then approximate the right-hand side by a function of 𝑥.

Layered queueing networks (LQNs) are extended queueing
networks with simultaneous resource possession of many
resources. Steady-state performance estimates are found by
approximate Mean Value Analysis (AMVA) [4][12]. Two
approaches have been taken to make a fluid model of a LQN. The
first transforms it to a PEPA model (based on process-algebra
concepts), and uses a fluid approximation to the PEPA model [15];
the second creates a single approximate closed queueing network
and transforms it [1][10]. This paper takes a different approach
which avoids introducing extraneous modeling concepts such as
PEPA and follows LQN semantics more closely.

In this paper the fluid model is based directly on the
mechanisms of the layered servers and their simultaneous
resource possession. The analysis is based on the methods of
mean-field analysis, [6][11] but is heuristic and does not include
any investigation of convergence to the solution of the underlying
Markov model. Some LQN features are not covered by the
transformation described here but the necessary extensions seem
to be straightforward. The paper describes the derivation and
some experience applying it to performance models. The
representation of transient behaviour is satisfactory, for the
purposes envisaged. The accuracy in steady-state is less good.

2 LAYERED QUEUEING
Figure 1 shows a layered queueing model, displayed as a high level
architectural model with performance parameters. Software
services are called tasks (eg. DB). Each task is a multiserver queue
with a multiplicity of 𝑚𝑇 for task 𝑇 (for multi-threading), and
runs on a processor (eg. DB_P) with a multiplicity of 𝑚𝑃 for
processor 𝑃 (for multi-cores). The system users are modeled by
one or more User tasks (called “reference tasks” below) have a
multiplicity equal to the number of users, and a demand 𝑑𝑖 equal
to the thinking time.

A task offers one or more operations called entries (eg.
dbAccess). Entry 𝐸𝑖 has mean execution demand 𝑑𝑖 and makes an

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full
citation on the first page. Copyrights for components of this work owned by others
than the author(s) must be honored. Abstracting with credit is permitted. To copy
otherwise, or republish, to post on servers or to redistribute to lists, requires prior
specific permission and/or a fee. Request permissions from Permissions@acm.org.
ICPE '23 Companion, April 15–19, 2023, Coimbra, Portugal
© 2023 Copyright is held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 979-8-4007-0072-9/23/04…$15.00
https://doi.org/10.1145/3578245.35848520

389

ICPE '23 Companion, April 15–19, 2023, Coimbra, Portugal Murray Woodside

average of 𝑦𝑖𝑗 calls to other lower-layer entries 𝐸𝑗 . Between calls,

𝐸𝑖 demands slices of execution from its processor, with mean slice
demands of 𝑑𝑖/(1 + ∑ 𝑦𝑖𝑗)𝑗 . Calls may be synchronous or
asynchronous, but this paper considers models with only
synchronous calls. We suppose that each user of the system is
represented by a token, which moves from the user task to the
entries as they are executed.

Since its first introduction in [16], most layered queueing
solutions have been for steady-state measures via AMVA [4][12],
as for example implemented in the LQNS solver [3][2]. The LINE
tool added fluid solutions [9][1].

2.1 Context-Sensitive LQN for Fluid Modeling
The context of an entry execution is the set of entries along its
calling path. In general an entry can execute in multiple contexts,
called from different higher-level entries. To uniquely define the
transitions in the state vector, the LQN model is transformed to a
context-sensitive form, in which each entry has only one caller.
This is done by splitting the model entries with multiple callers
into identical copies, one per caller. The detailed behaviour of the
model and thus its performance measures are unchanged by the
splitting. The number of additional entries is in general more than
linear in the number of excess callers because nested calls may
also produce additional splits. In Figure 1(b) the entries
appRequest and dbAccess have been split, and the split in
appRequest causes an additional split in dbAccess.

Instead of splitting the entries, an alternative approach
(taken in [15]) would be to send the reply to any one of the set of
active callers, choosing non-deterministically). However this
would require additional state to keep track of which call an entry
is blocked on, and would give the same complexity.

2.2 The LQN Forwarding Transformation
A (synchronous) forwarded call transfers the return address

along with a request, so the server can reply directly to the
original caller. This mechanism is used to model referral of calls,
and pipelining. In the LQNS solver the “forwarding
transformation” [3] replaces the sequence of calls by a set of
synchronous calls from the original caller, without imposing a
sequence on them. This transformation was applied to forwarded
calls. It gives the correct total average delay in a steady state
analysis, but because it replaces the sequence of single calls by a
random collection of calls in any order, it is not correct for
transient analysis. A more complete transformation would replace
the call by a sequence of activities, each making one call.

3 THE FLUID APPROXIMATION
The fluid approximation to the expectation of queue states

is a differential equation whose elements estimate the expected
queue state at time 𝑡 . Following [6] the derivation considers a
large ensemble of models and expected rates of change based on
a large system population, but has also been found to be useful
for modest state populations.

Figure 1(a) LQN for a Two-
Tier System

Figure 1(b) Entries
Duplicated by Context

The main approximation is to replace the expectation of a
nonlinear function of state by the function of the expected state,
which is not necessarily a good approximation. Some heuristic
adjustments are made to try to improve this.

The state is represented by tokens, one for each system user,
that are located at different system entries. Each task is a server
with a queue, and a class of service for each entry.
Define:
𝑥̃𝑖 (𝑡) =the random value of the state at time 𝑡 , which is the

number of tokens at 𝐸𝑖 (on a call from 𝐸𝑖 to 𝐸𝑗 , the token
moves to 𝐸𝑗)

𝑥𝑖 (𝑡) = the (approximate) expected value of 𝑥̃𝑖 (𝑡)
𝑇(𝑖) = the task of which 𝐸𝑖 is a part,
𝑚𝑇(𝑖) = the multiplicity of 𝑇(𝑖)

𝓔𝑇(𝑖) = the set of indices of entries of 𝑇(𝑖).

𝑃(𝑖) = the processor for 𝑇(𝑖).
𝓔𝑃(𝑖) = the set of indices of entries that execute on 𝑃(𝑖).

𝑥𝑇(𝑖) = the total tokens at 𝑇(𝑖), 𝑥𝑇(𝑖) = ∑ 𝑥𝑗𝑗∈𝓔𝑇(𝑖)
.

Users {100}

userWork

[1000]

(1)

Users2 {40}

user2Work

[400]

(1)

HTTPServer {27}

accept

[2]

(3)

(5)

accept2

[3]

(5)

App {15}

appRequest

[15]

(1)

HTTP_P*

App_P*

DB {2}

dbAccess

[10]

DB_P*

Users {100}

userWork

[1000]

(1)

Users2 {40}

user2Work

[400]

(1)

HTTPServer {27}

accept

[2]

(3)

(5)

accept2

[3]

(5)

App {15}

appRequest_1

[15]

(1)

appRequest_2

[15]

(1)

HTTP_P*

App_P*

DB {2}

dbAccess_2

[10]

dbAccess_3

[10]

dbAccess_1

[10]

DB_P*

390

Heuristic Derivation of a Fluid Model
from a Layered Queueing Network

ICPE '23 Companion, April 15–19, 2023, Coimbra, Portugal

𝑥𝑖
𝑆 = the in-service part of 𝑥𝑖 which is executing at 𝑇(𝑖). These

tokens are queued at the processor 𝑃(𝑖).

𝑥𝑖
𝑄

= the queued part of 𝑥𝑖 which is queued at 𝑇(𝑖), 𝑥𝑖
𝑄

= 𝑥𝑖 −

𝑥𝑖
𝑆 ≥ 0.

𝑚𝑇(𝑖) = the multiplicity of 𝑇(𝑖).

𝑚𝑃(𝑖) = the multiplicity of 𝑃(𝑖).

𝑫(𝑖) = direct descendants of 𝐸𝑖 , the set of entries 𝐸𝑗 which are
called directly by 𝐸𝑖 (𝑦𝑖𝑗 > 0).

𝑫+(𝑖) = all descendants of 𝐸𝑖 , being the set of entries 𝐸𝑗 which are

called directly and indirectly by 𝐸𝑖 .
𝐴(𝑖) = the unique calling entry of 𝐸𝑖 (its ancestor).

Because of synchronous calls, when an entry makes a call

its task thread is blocked, even though the token moves to the
called entry. The number of blocked threads at 𝑇(𝑖) is 𝑏𝑖(𝑥):

𝑏𝑖(𝑥) = 𝐸𝑥𝑝{∑ 𝑥̃𝑗} = 𝐸𝑗∈𝑫+(𝑖) ∑ 𝑥𝑗𝐸𝑗∈𝑫+(𝑖) (1)

At the processor 𝑃(𝑖) , 𝑥̃𝑖
𝑆(𝑡) in-service tokens for 𝐸𝑖 are

requesting service, along with tokens for other entries that share
𝑃(𝑖). The number of busy servers of the multiserver 𝑃(𝑖) is

𝑚′ = min (𝑚𝑃(𝑖), ∑ 𝑥̃𝑗
𝑆(𝑡))𝑗∈𝓔𝑃(𝑖)

and the mean number of servers devoted to tokens for 𝐸𝑖 is

 𝑥̃𝑖
𝑃(𝑡) = Exp{(𝑥̃𝑖

𝑆(𝑡)/ ∑ 𝑥̃𝑗
𝑆(𝑡))𝑗∈𝓔𝑃(𝑖)

)𝑚′}

 = Exp {𝑥̃𝑖
𝑆(𝑡)min (1, 𝑚𝑃(𝑖)/ ∑ 𝑥̃𝑗

𝑆(𝑡))𝑗∈𝓔𝑃(𝑖)
} (2)

The non-linear function min(1, 𝑓(𝑥̃)) has an expectation less
than 𝑓(𝑥) for 𝑥 near to 1, depending on the distribution of 𝑥̃. A
consideration of this issue in [13] led to a very successful proposal
to replace the min function by a smoothed version of the form:

 smoothmin(1, 𝑦) = 𝑦/((1 + 𝑦𝑝)
1

𝑝) (3)
using a value of 𝑝 which depends on the distribution of the
random function represented here by 𝑦. Here it is proposed to use
smoothmin with a fixed value of 𝑝 and replace Eq (2) with:
 𝑥𝑖

𝑃(𝑡) = 𝑥𝑖
𝑆(𝑡)smoothmin (1, 𝑚𝑃(𝑖)/ ∑ 𝑥𝑗

𝑆(𝑡))𝑗∈𝓔𝑃(𝑖)
 (4)

Rates will be expressed as 𝑟 events/s, with a superscript to
identify the event type. An entry is executed in slices separated by
calls, giving a mean of (1 + ∑ 𝑦𝑖𝑗)𝑗 slices for 𝐸𝑖 with a mean

demand of 𝑑𝑖/(1 + ∑ 𝑦𝑖𝑗)𝑗 . With an average of 𝑥𝑖
𝑃(𝑡) servers

given by Eq (4) the expected rate of completion of slices of 𝐸𝑖 is
 𝑟𝑖

𝑠𝑙𝑖𝑐𝑒 = 𝑥𝑖
𝑃(𝑡)𝜎𝑖 [𝑑𝑖/(1 + ∑ 𝑦𝑖𝑗)𝑗]−1 (5)

where 𝜎𝑖 is a speed factor for 𝑃(𝑖).
The state evolves as tokens arrive at an entry, are admitted

to the task thread pools, make calls, and finish task service. The
rate of tokens finishing service at 𝐸𝑖 is

 𝑟𝑖
𝑟𝑒𝑝𝑙𝑦

= reply rate = 𝑟𝑖
𝑠𝑙𝑖𝑐𝑒/(1 + ∑ 𝑦𝑖𝑗)𝑗 (6)

The rate of tokens at 𝐸𝑖 making calls to other entries is

𝑟𝑖
𝑐𝑎𝑙𝑙𝑖𝑛𝑔

= calling rate = 𝑟𝑖
𝑠𝑙𝑖𝑐𝑒𝑦𝑖𝑗/(1 + ∑ 𝑦𝑖𝑗)𝑗 (7)

The arrival rate at 𝐸𝑖 due to calls from other entries is
𝑟𝑖

𝑐𝑎𝑙𝑙𝑒𝑑 = called rate = ∑ 𝑟𝑗
𝑠𝑙𝑖𝑐𝑒𝑦𝑗𝑖/(1 + ∑ 𝑦𝑗𝑘)𝑘𝑗 (8)

The rate of receiving replies at 𝐸𝑖 is

𝑟𝑖
𝑟𝑒𝑝𝑙𝑖𝑒𝑑

= replied rate ∑ 𝑟𝑗
𝑟𝑒𝑝𝑙𝑦

𝑗∈𝐷(𝑖) (9)

The rate of admission 𝑟𝑖
𝑎𝑑𝑚𝑖𝑡 to the thread pool of task 𝑇(𝑖)

is at least the arrival rate 𝑟𝑖
𝑐𝑎𝑙𝑙𝑒𝑑 when there are free threads

(when 𝑥̃𝑇(𝑖) + 𝑏𝑖 < 𝑚𝑇(𝑖)). A maximum value 𝑟𝑖
𝑏𝑒𝑠𝑡 was set to the

arrival rate plus the maximum possible rate of completions with
no competition and no nested calls, which is 𝑚𝑇(𝑖)/𝑑𝑖 :

𝑟𝑖
𝑎𝑑𝑚𝑖𝑡(𝑥̃𝑖) = 𝑟𝑖

𝑏𝑒𝑠𝑡
= 𝑟𝑖

𝑐𝑎𝑙𝑙𝑒𝑑 + 𝑚𝑇(𝑖)/𝑑𝑖 , if 𝑥̃𝑇(𝑖) + 𝑏𝑖 < 𝑚𝑇(𝑖).
When all threads are blocked or busy, it is limited by the rate of
service completions at 𝑇(𝑖):

 𝑟𝑖
𝑐𝑜𝑚𝑝𝑙𝑒𝑡𝑖𝑜𝑛

= ∑ 𝑟𝑗
𝑟𝑒𝑝𝑙𝑦

𝑗∈ℰ𝑇(𝑖)

In this case the admission rate of tokens for 𝐸𝑖 is assumed to be in

the ratio of its task queue size 𝑥𝑖
𝑄 (an approximation for FIFO

queueing), giving:

𝑟𝑖
𝑎𝑑𝑚𝑖𝑡 = 𝑟𝑖

𝑐𝑜𝑚𝑝𝑙𝑒𝑡𝑖𝑜𝑛 (𝑥̃𝑖
𝑄

/ ∑ 𝑥̃𝑗
𝑄

𝑗∈ℰ𝑇(𝑖)
), if 𝑥̃𝑇(𝑖) + 𝑏𝑖 ≥ 𝑚𝑇(𝑖)

The admission rate has a step between two values, which
gives a more severe non-linearity than the min function. It was
also smoothed for the same reason, using a well-known function
for a unit step:

 step(𝑦) = 0 if 𝑦 < 0, or 1 if 𝑦 ≥ 0
 smoothstep(𝑦) = 3(𝑦/𝜖)2 – 2(𝑦/𝜖)3

where 𝜖 was fixed. This gives the approximation
𝑟𝑖

𝑎𝑑𝑚𝑖𝑡(𝑥𝑖) = 𝑟𝑖
𝑏𝑒𝑠𝑡 +

[𝑟𝑖
𝑇𝐴𝑆𝐾(𝑥̃𝑖

𝑄
/ ∑ 𝑥̃𝑗

𝑄
𝑗∈ℰ𝑇(𝑖)

) − 𝑟𝑖
𝑏𝑒𝑠𝑡] smoothstep(𝑥̃𝑇(𝑖) + 𝑏𝑖 −

𝑚𝑇(𝑖)) (10)
A reference task receives no calls and admits all replies, so

 𝑟𝑖
𝑎𝑑𝑚𝑖𝑡 = 𝑟𝑖

𝑟𝑒𝑝𝑙𝑖𝑒𝑑.
This admission rate ignores the fact that queueing at tasks

is usually FIFO. The information in 𝑥(𝑡) is insufficient to
represent the detailed state of a FIFO queue, which includes the
order in the queue of requests for different entries, and the
residual service time of the currently served tokens. On the other
hand a FIFO queue treats the classes symmetrically, as does the
approximation. This question was treated differently in [1], by a
transformation to the processor-sharing discipline for the queue;
this approach can be examined in future work.

The in-service tokens 𝑥𝑆(𝑡) and the queue length 𝑥𝑄(𝑡) are
both needed to calculate the rates of change, so both are modeled
as states, with 𝑥 = 𝑥𝑆 + 𝑥𝑄. The differential equations are then:
 𝑥̇𝑖

𝑆 = admit rate+sum of reply rates to it–calling rate–reply rate

 = 𝑟𝑖
𝑐𝑎𝑙𝑙𝑒𝑑 + ∑ 𝑟𝑗

𝑟𝑒𝑝𝑙𝑦
𝑗∈𝐷𝑖

 − 𝑟𝑖
𝑐𝑎𝑙𝑙𝑖𝑛𝑔

− 𝑟𝑖
𝑟𝑒𝑝𝑙𝑦 (11a)

 𝑥̇𝑖
𝑄

= called rate – admit rate = 𝑟𝑖
𝑐𝑎𝑙𝑙𝑒𝑑 − 𝑟𝑖

𝑎𝑑𝑚𝑖𝑡 (for non-
reference tasks). (11b)

Reference tasks representing system users receive no calls

and make no replies, so 𝑟𝑖
𝑐𝑎𝑙𝑙𝑒𝑑 = 𝑟𝑖

𝑟𝑒𝑝𝑙𝑦
= 0. They have no queue

so there is no need for a queue state variable for them.
In summary, the steps to compute the right-hand sides

replace the random variable 𝑥̃ by its expectation 𝑥 and:

1. Determine 𝑏𝑖(𝑥) from Eq (1) and 𝑥𝑖
𝑃(𝑥) from Eq (4) for all 𝑖,

2. Determine 𝑟𝑖
𝑠𝑙𝑖𝑐𝑒 , 𝑟𝑖

𝑟𝑒𝑝𝑙𝑦 𝑟𝑖
𝑐𝑎𝑙𝑙𝑖𝑛𝑔

, 𝑟𝑖
𝑐𝑎𝑙𝑙𝑒𝑑 , 𝑟𝑖

𝑟𝑒𝑝𝑙𝑖𝑒𝑑 from Eq (5)
– (9),

391

ICPE '23 Companion, April 15–19, 2023, Coimbra, Portugal Murray Woodside

3. Determine 𝑟𝑖
𝑎𝑑𝑚𝑖𝑡 from Eq (10),

4. Determine the right-hand sides from Eq (11a), (11b).

The ODEs were solved by the Matlab solver ode45 which

was sufficiently fast.

3.1 Performance Measures
Some steady-state performance measures are:

• Entry throughput is the rate of departure of tokens, which is

𝑟𝑖
𝑟𝑒𝑝𝑙𝑦.

• Wait for service at entry 𝐸𝑖 is, by Little’s formula:

 𝑊𝑖 = 𝑟𝑖
𝑟𝑒𝑝𝑙𝑦

𝑥𝑖
𝑄 (12)

• Entry service time 𝑋𝑖 between admitting a call for service,
and replying, is made up of two parts, the entry execution
time (1 + ∑ 𝑦𝑖𝑗)𝑗 /𝑟𝑖

𝑠𝑙𝑖𝑐𝑒 and the delay for nested calls (if
any):

 𝑋𝑖 = (1 + ∑ 𝑦𝑖𝑗)𝑗 /𝑟𝑖
𝑠𝑙𝑖𝑐𝑒 + ∑ 𝑦𝑖𝑗(𝑊𝑗 + 𝑋𝑗)𝑗∈𝑫(𝑖) . (13)

• The response time seen by a User (represented by an entry of
a reference task) is its service time 𝑋𝑖 minus the think time.

• Entry utilization = 𝑟𝑖
𝑟𝑒𝑝𝑙𝑦

𝑋𝑖 . (14)

• Task utilization = ∑ 𝑟𝑖
𝑟𝑒𝑝𝑙𝑦

𝑋𝑖𝑖∈ℰ𝑇
 (15)

3.2 Limitations and Possible Extensions
The above transformation has the following limitations,

however removing them appears to be mostly straightforward.

1. All calls are synchronous.
2. No open arrivals processes.
3. There are no activities within entries; this can be introduced

by defining an in-service state for each activity.
4. Incomplete handling of forwarded calls. The forwarding

transformation described above can improved by moving the
calls to activities in the originating entry which mirror the
forwarding path structure.

5. No priorities.
Zero (or very small) demand on an entry creates numerical
problems for solving the differential equation due to stiffness.

4 TESTING
The quality of the approximation was tested by comparing its
predictions to simulations by LQSIM [2]. The simulation started
from an idle system with N users. Across 30 independent runs the
mean and standard deviation of the states of the tasks were
computed and plotted for comparison with the fluid
approximation. The states of entries on each task were summed
because only task values were provided in the LQSIM trace.

4.1 Simple Two-Tier Example
The first example is a simplification of the model shown in

Figure 1, without the second class of users (User2). There were 100
users and the comparison was made over 5000 ms.

In Figure 2 the simulation results are plotted as the mean
plus/minus the standard deviation (not the confidence interval).
The agreement is excellent. The onset of saturation at DB is clear,
and most of the Users are blocked at the HTTPServer and App (a
layered bottleneck).

(a) Users task (b) HTTPServer task

(c) App task (d) DB task

Figure 2. Comparison of the Fluid Model Predictions to
Simulation for the Simple Two-tier Model

The entry throughput and waiting measures at t=10000 are
compared to the steady-state estimates found by LQNS in Table 1.
Notice that the entries of DB were split in creating the fluid model.
The agreement is very good except for the waiting time
calculation at entry appRequest.

Table 1 Steady-State Performance Measures vs LQNS

Entry Throughput
fluid lqns

Wait for Entry
fluid lqns

userWork 0.0125 0.0127
accept 0.0125 0.0127 4840 4760
appRequest 0.0375 0.0380 15 7.38
dbAccess_1 0.0625 0.635 215.6 229.9
dbAccess_2 0.0375 0.0381 276.9 229.8

4.2 Two-Tier System with Two Classes of Users
The model as shown in Figure 1 with two classes of users

was compared in the same way with the results in Figure 3. The
results for the lower layer servers are not as accurate, under-
estimated for App and overestimated for DB. However the upper
layers are modeled very well. It appears that the traffic to DB
directly from HTTPServer displaces some of the traffic from App,
compared to the simulation. This did not happen in the same way
with just one class, but with two classes there is an additional
degree of freedom, and the two classes put very different loads on
DB.

392

Heuristic Derivation of a Fluid Model
from a Layered Queueing Network

ICPE '23 Companion, April 15–19, 2023, Coimbra, Portugal

(a) task Users (b) Users2

(c) HTTPServer (d) App

(e) DB

Figure 3. Comparison of the Fluid Model Predictions to
Simulation for the Two-class Version

The steady-state results comparison by entry is given in
Table 2. Compared to LQNS, the predicted throughput is shifted
in favour of the first group of users, giving it a longer wait at the
HTTPServer entry accept and increasing the load on appRequest.
In this context the smaller waiting time at appRequest is
surprising.

Table 2 Steady state results for the two-class model

Entry Throughput
fluid lqns

Wait for Entry
fluid lqns

userWork 0.01071 0.00991
user2Work 0.002814 0.004396
accept 0.010713 0.00991 6285.3 7084.7
accept2 0.002814 0.004396 11896 7091.1
appRequest 0.04646 0.05172 14.92 62.06
dbAccess 0.0955 0.10127 247.1 187.6

4.3 A Business Reporting System (BRS)
Example
This example was taken from [8][17] and is based on an industrial
business intelligence system. It creates small and large reports and
provides viewing of stored reports. The system has eight layers,
so congestion propagation between layers is important. Figure 4
shows the context-transformed model, in which the split entries

(near the bottom of the diagram) are indicated by suffices “_1”,
“_2”, etc.

Figure 4. The BRS model after the context and forwarding

transformations

Figure 5 shows a representative selection of the simulation
comparisons for the 12 tasks. The remaining tasks had very small
values. The traces cover different time periods depending on how

Client {100}

Request

[0.2]

(5) (15)

RSClient

RSRequest

[0.01]

(1)

VSClient

VSRequest

[0.01]

(1)

WebServer

AcceptRS

[0.03]

(1)

AcceptVS

[0.025]

(1) (1) (1)

AppS_DSP

AppS_DispRS

[1]

(0.1) (0.1) (0.4) (0.4)

AppS_DispVS

[1]

(1)

AppS_Scheduler

AppS_SchedRS

[0.01]

AppS_SchedVS

[0.01]
WebP*

AppS_BigReport1

AppS_BigRep1

[0.3]

(1)

(1)

AppS_BigReport2

AppS_BigRep2

[0.3]

(1)

(1)

AppS_SmallReport1

AppS_SmallR1

[0.03]

(1)

AppS_SmallReport2

AppS_SmallR2

[0.03]

(1)

AppS_ViewData

AppS_View

[0.06]

(1)

AppS_ReportGen

AppS_GenReport_1

[0.26]

(2)

AppS_GenReport_2

[0.26]

(2)

AppS_AsP*

{2}

CacheInfo

cache_2

[0.04]

(1)

cache_3

[0.04]

(1)

cache_1

[0.04]

(1)

CachP*

DBServer

CachOP

[0.4]

BigOP_1

[4]

BigOP_2

[4]

SmallOP_1

[0.5]

SmallOP_2

[0.5]

DBP*

393

ICPE '23 Companion, April 15–19, 2023, Coimbra, Portugal Murray Woodside

quickly they approach a steady state; the transients at the
AppS_DSP and AppS_ViewData tasks are even longer than is
shown.

Transient effects are very prominent in the start-up
situation evaluated here, as the first requests propagate
downwards through the layers. Notice how the number of in-
service tokens at the WebServer task jumps upwards and then
decays away; it eventually becomes quite small. The population of
AppS_DSP has a long transient and becomes small at about 180 s.,
while Apps_ViewData rises steadily to that point in time and
levels off at just above 70 tokens. AppS_ViewData is a slightly
overloaded bottleneck which gradually builds up until it holds a
significant fraction of the requests.

The agreement is quite good for all 12 tasks, although the
approximation shifts some load from ViewData to DSP This
example has a notable range of fast and slow behaviour by
different tasks.

(a) Client (users) (b) WebServer

(c) AppS_ViewData (d) AppS_DSP

(e) AppS_ReportGen (f) AppS_SmallReport1

Figure 5. BRS Predictions Compared to Simulation

5 PREVIOUS WORK
Mean-field theory has been described for modeling the evolution
of the expectation of populations within a Markovian system by,
eg. [6][11]. Mean-field models for queues and queueing networks
have a considerable literature which is surveyed, along with other
models, in [14]. Much of the attention has been focused on

queueing networks with a combination of infinite servers and
processor-sharing nodes, eg [9]. An improved approach to such
networks is described in [13], including mixed open and closed
classes. It was shown in [10] how to derive the distribution of
response times from a fluid model.

The first fluid model for LQN was based on first
transforming it to a PEPA model [15]. The PEPA model deviates
from the LQN semantics in two ways: it replaces FIFO queueing
by random-order (by making a non-deterministic choice from a
pool of requests), and it replaces the sending of a service reply to
the caller, by sending to a non-deterministic choice from the set
of callers waiting for a reply. The first of these is effectively also
part of the present transformation, but the second is dealt with by
the context transformation.

Fluid models in the LINE tool [1],[9] are created by the
transformation described in [10]. From the description in [10] an
LQN is converted to a queueing network in which the software
queues are not represented, equivalent to all the tasks being
infinite servers. Instead, the requests for service at a task are
passed directly to the corresponding processor queue.

6 CONCLUSIONS
The state of a LQN has more structure than the state of a

queueing network because of the simultaneous resource
possession implied by blocking of task threads for nested requests,
and this is reflected in the state structure used here. On the other
hand the class structure and class switching is implicit in the
entries (the customers at each entry are a separate class) and does
not need to be considered explicitly, as in models for queueing
networks.

The model derived here shows a reasonable accuracy for
transient prediction, but needs to be improved for steady-state
accuracy.

The features of LQN models that are not covered by this
work can be included in an extended transformation. Activities
define detailed sequences of operations within an entry, and
would require additional state for the activities that are in-service.
Forwarded messages are presently dealt with as in LQNS (thesis)
but could be better handled by constructing a sequence of
activities to order them. Second phases also require activities.
Arrival processes and asynchronous calls (which give a mixed
open/closed system) will be a significant extension.

ACKNOWLEDGMENTS
This research was supported by grant RGPIN-2016-06274 from the
Natural Sciences and Engineering Research Council of Canada.

REFERENCES
[1] G. Casale, 2020. Integrated performance evaluation of extended queueing

network models with LINE, Proc Winter Simulation Conference, pp 2377–
2388.

[2] G. Franks, G. et al, 2022. Layered Queueing Network Solver and Simulator User
Manual, Carleton University, at
http://www.sce.carleton.ca/rads/lqns/userman22.pdf, accessed Jan 20, 2022.

[3] G. Franks. 1999. Performance Analysis of Distributed Server Systems. Ph.D.
thesis, Carleton University.

394

Heuristic Derivation of a Fluid Model
from a Layered Queueing Network

ICPE '23 Companion, April 15–19, 2023, Coimbra, Portugal

[4] G. Franks, T. Al-Omari, M. Woodside, O. Das, S. Derisavi, 2009. Enhanced
modeling and solution of layered queueing networks, IEEE Trans. on Software
Eng., vol. 35, no. 2, pp. 148-161.

[5] A. Gias, G. Casale, M. Woodside, 2019. ATOM: Model-driven autoscaling for
microservices. Int. Conf on Distributed Computing Systems, pp 1994-2004.

[6] T.G. Kurtz, 1970. Solutions of ordinary differential equations as limits of pure
markov processes,” J. Applied Probability, vol. 7, no. 1, pp. 49-58.

[7] E. Incerto, M. Tribastone, C. Trubiani, 2017. Software performance self-
adaptation through efficient model predictive control, Proc 32nd IEEE/ACM
Int. Conf. on Automated Software Engineering (ASE), , pp. 485–496.

[8] A. Martens, H. Koziolek, S. Becker, R. Reussner. 2010. Automatically improve
software architecture models for performance, reliability, and cost using
evolutionary algorithms. In Proc. 1st Joint WOSP/SIPEW Int. Conf. on
Performance Engineering. ACM, New York, NY, 105–116.

[9] J. F. Pérez, G. Casale, 2017. Line: evaluating software applications in unreliable
environments. IEEE Trans. Reliab. 66(3): 837-853.

[10] J. F. Perez, G. Casale, 2013. Assessing SLA compliance from palladio
component models, Proc. 15th Int. Symp. Symbolic Numeric Algorithms Sci.
Comput., 2013, pp. 409–416.

[11] E. Renshaw, 2011. Stochastic Population Processes, Oxford University Press.

[12] J. A. Rolia and K. C. Sevcik. 1995. The method of layers. IEEE Trans. Softw.
Eng. 21, 8, 689–700.

[13] J. Ruuskanen, T. Berner, K. Årzén, A. Cervin,2021. Improving the mean-field
fluid model of processor sharing queueing networks for dynamic performance
models in cloud computing, Performance Evaluation, 151 .

[14] J.A. Schwarz, G. Selinka, R. Stolletz, 2016. Performance analysis of time-
dependent queueing systems: Survey and classification, Omega 63, pp 170–
189.

[15] M. Tribastone, 2013. Fluid model for layered queueing networks, IEEE Trans.
Software Engineering, v. 39, pp 744-756.

[16] C.M. Woodside, 1986. An active-server model for the performance of parallel
programs written using rendezvous", J. Systems and Software, pp. 125-131.

[17] X. Wu, 2003. An Approaqch to Predicting Performance for Component-based
Systems, MASc thesis, Carleton University.

[18] X. Wu, M. Woodside, 2004. Performance modeling from software
components," Proc. 4th Int. Workshop on Software and Performance, pp. 290-
301.

[19] T. Zheng, M. Woodside, M. Litoiu, 2008. Performance model estimation and
tracking using optimal filters", IEEE Trans. on Software Engineering, V 34 , no.
3 pp 391-406.

395

