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ABSTRACT 
Fluid approximations are useful for representing transient 
behaviour of queueing systems. For layered queues a fluid model 
has previously been derived indirectly via transformation first to 
a PEPA model, or via recursive neural networks. This paper 
presents a derivation directly from the layered queueing 
mechanisms, starting from a transformation to a context-sensitive 
layered form. The accuracy of predictions, compared to transient 
simulations and steady-state solutions, is evaluated and appears 
to be useful. 
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1 INTRODUCTION 
A number of problems in performance management can benefit 
from a dynamic model of the system to predict the short-term 
effects of management actions. Model-based management has 
often used steady-state models and ignored the transient, on the 
assumption that the transient is short-lived (e.g. [5]). Model 
parameter tracking by Kalman Filters as in [19] also assumes a 
steady state reached over each measurement interval, yet the 
intervals may be too short to obtain a steady state; tracking based 
on a dynamic model should be better.  

A fluid model is a tractable way to make approximate 
dynamic predictions. This work describes a heuristic direct 
derivation. Fluid models for performance approximate the 
populations of customers at queues by continuous variables 
governed by an ordinary differential equation (ODE). Models 
derived by the mean-field theory of Kurtz [6] represent the 
expected value 𝑥(𝑡)  of the random population vector 𝑥̃ , with 
derivatives given by the expected rate of change of 𝑥̃: 
         𝑑 𝑥̃/𝑑𝑡  = Exp(𝑑 𝑥̃/𝑑𝑡  ) = Exp{f(𝑥̃)} 
and then approximate the right-hand side by a function of 𝑥.  

Layered queueing networks (LQNs) are extended queueing 
networks with simultaneous resource possession of many 
resources. Steady-state performance estimates are found by 
approximate Mean Value Analysis (AMVA) [4][12]. Two 
approaches have been taken to make a fluid model of a LQN. The 
first transforms it to a PEPA model (based on process-algebra 
concepts), and uses a fluid approximation to the PEPA model [15]; 
the second creates a single approximate closed queueing network 
and transforms it [1][10]. This paper takes a different approach 
which avoids introducing extraneous modeling concepts such as 
PEPA and follows LQN semantics more closely.  

In this paper the fluid model is based directly on the 
mechanisms of the layered servers and their simultaneous 
resource possession. The analysis is based on the methods of 
mean-field analysis, [6][11] but is heuristic and does not include 
any investigation of convergence to the solution of the underlying 
Markov model. Some LQN features are not covered by the 
transformation described here but the necessary extensions seem 
to be straightforward. The paper describes the derivation and 
some experience applying it to performance models. The 
representation of transient behaviour is satisfactory, for the 
purposes envisaged. The accuracy in steady-state is less good. 

2  LAYERED QUEUEING 
Figure 1 shows a layered queueing model, displayed as a high level 
architectural model with performance parameters. Software 
services are called tasks (eg. DB). Each task is a multiserver queue 
with a multiplicity of 𝑚𝑇  for task 𝑇  (for multi-threading), and 
runs on a processor (eg. DB_P) with a multiplicity of 𝑚𝑃  for 
processor 𝑃 (for multi-cores). The system users are modeled by 
one or more User tasks (called “reference tasks” below) have a 
multiplicity equal to the number of users, and a demand 𝑑𝑖 equal 
to the thinking time. 

A task offers one or more operations called entries (eg. 
dbAccess). Entry 𝐸𝑖 has mean execution demand 𝑑𝑖 and makes an 
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average of 𝑦𝑖𝑗 calls to other lower-layer entries 𝐸𝑗 . Between calls, 

𝐸𝑖 demands slices of execution from its processor, with mean slice 
demands of 𝑑𝑖/(1 + ∑ 𝑦𝑖𝑗)𝑗 . Calls may be synchronous or 
asynchronous, but this paper considers models with only 
synchronous calls. We suppose that each user of the system is 
represented by a token, which moves from the user task to the 
entries as they are executed. 

Since its first introduction in [16], most layered queueing 
solutions have been for steady-state measures via AMVA [4][12], 
as for example implemented in the LQNS solver [3][2]. The LINE 
tool added fluid solutions [9][1]. 

2.1  Context-Sensitive LQN for Fluid Modeling 
The context of an entry execution is the set of entries along its 
calling path. In general an entry can execute in multiple contexts, 
called from different higher-level entries. To uniquely define the 
transitions in the state vector, the LQN model is transformed to a 
context-sensitive form, in which each entry has only one caller. 
This is done by splitting the model entries with multiple callers 
into identical copies, one per caller. The detailed behaviour of the 
model and thus its performance measures are unchanged by the 
splitting. The number of additional entries is in general more than 
linear in the number of excess callers because nested calls may 
also produce additional splits. In Figure 1(b) the entries 
appRequest and dbAccess have been split, and the split in 
appRequest causes an additional split in dbAccess. 

Instead of splitting the entries, an alternative approach 
(taken in [15]) would be to send the reply to any one of the set of 
active callers, choosing non-deterministically). However this 
would require additional state to keep track of which call an entry 
is blocked on, and would give the same complexity.  

2.2  The LQN Forwarding Transformation 
A (synchronous) forwarded call transfers the return address 

along with a request, so the server can reply directly to the 
original caller. This mechanism is used to model referral of calls, 
and pipelining. In the LQNS solver the “forwarding 
transformation” [3] replaces the sequence of calls by a set of 
synchronous calls from the original caller, without imposing a 
sequence on them. This transformation was applied to forwarded 
calls. It gives the correct total average delay in a steady state 
analysis, but because it replaces the sequence of single calls by a 
random collection of calls in any order, it is not correct for 
transient analysis. A more complete transformation would replace 
the call by a sequence of activities, each making one call.  

 

3  THE FLUID APPROXIMATION 
The fluid approximation to the expectation of queue states 

is a differential equation whose elements estimate the expected 
queue state at time 𝑡 . Following [6] the derivation considers a 
large ensemble of models and expected rates of change based on 
a large system population, but  has also been found to be useful 
for modest state populations. 

 

  

Figure 1(a) LQN for a Two-
Tier System 

Figure 1(b) Entries 
Duplicated by Context 

The main approximation is to replace the expectation of a 
nonlinear function of state by the function of the expected state, 
which is not necessarily a good approximation. Some heuristic 
adjustments are made to try to improve this. 

The state is represented by tokens, one for each system user, 
that are located at different system entries. Each task is a server 
with a queue, and a class of service for each entry. 
Define:  
𝑥̃𝑖 (𝑡) =the random value of the state at time 𝑡 , which is the 

number of tokens at 𝐸𝑖 (on a call from 𝐸𝑖 to 𝐸𝑗 , the token 
moves to 𝐸𝑗) 

𝑥𝑖 (𝑡) = the (approximate) expected value of  𝑥̃𝑖 (𝑡) 
𝑇(𝑖) = the task of which 𝐸𝑖 is a part, 
𝑚𝑇(𝑖)  = the multiplicity of 𝑇(𝑖)  

𝓔𝑇(𝑖)  = the set of indices of entries of 𝑇(𝑖).  

𝑃(𝑖) = the processor for 𝑇(𝑖). 
𝓔𝑃(𝑖)  = the set of indices of entries that execute on 𝑃(𝑖). 

𝑥𝑇(𝑖) = the total tokens at 𝑇(𝑖),       𝑥𝑇(𝑖) =   ∑ 𝑥𝑗𝑗∈𝓔𝑇(𝑖)
. 
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𝑥𝑖
𝑆 = the in-service part of 𝑥𝑖  which is executing at 𝑇(𝑖). These 

tokens are queued at the processor 𝑃(𝑖). 

𝑥𝑖
𝑄

= the queued part of 𝑥𝑖  which is queued at 𝑇(𝑖),  𝑥𝑖
𝑄

= 𝑥𝑖 −

𝑥𝑖
𝑆 ≥ 0. 

𝑚𝑇(𝑖)  = the multiplicity of 𝑇(𝑖). 

𝑚𝑃(𝑖)  = the multiplicity of 𝑃(𝑖). 

𝑫(𝑖) = direct descendants of 𝐸𝑖 , the set of entries 𝐸𝑗  which are 
called directly by 𝐸𝑖 ( 𝑦𝑖𝑗 > 0). 

𝑫+(𝑖) = all descendants of 𝐸𝑖 , being the set of entries 𝐸𝑗  which are 

called directly and indirectly by 𝐸𝑖 . 
𝐴(𝑖) = the unique calling entry of 𝐸𝑖 (its ancestor). 

 
Because of synchronous calls, when an entry makes a call 

its task thread is blocked, even though the token moves to the 
called entry. The number of blocked threads at 𝑇(𝑖) is 𝑏𝑖(𝑥): 

𝑏𝑖(𝑥) =  𝐸𝑥𝑝{∑ 𝑥̃𝑗} = 𝐸𝑗∈𝑫+(𝑖) ∑ 𝑥𝑗𝐸𝑗∈𝑫+(𝑖)         (1) 

At the processor 𝑃(𝑖) , 𝑥̃𝑖
𝑆(𝑡)  in-service tokens for 𝐸𝑖  are 

requesting service, along with tokens for other entries that share 
𝑃(𝑖). The number of busy servers of the multiserver 𝑃(𝑖) is 

𝑚′ = min (𝑚𝑃(𝑖), ∑ 𝑥̃𝑗
𝑆(𝑡))𝑗∈𝓔𝑃(𝑖)

  

and the mean number of servers devoted to tokens for 𝐸𝑖 is 

 𝑥̃𝑖
𝑃(𝑡) = Exp{(𝑥̃𝑖

𝑆(𝑡)/ ∑ 𝑥̃𝑗
𝑆(𝑡))𝑗∈𝓔𝑃(𝑖)

)𝑚′} 

            =  Exp {𝑥̃𝑖
𝑆(𝑡)min (1,  𝑚𝑃(𝑖)/ ∑ 𝑥̃𝑗

𝑆(𝑡))𝑗∈𝓔𝑃(𝑖)
}                (2) 

The non-linear function min(1, 𝑓(𝑥̃))   has an expectation less 
than 𝑓(𝑥) for 𝑥 near to 1, depending on the distribution of 𝑥̃. A 
consideration of this issue in [13] led to a very successful proposal 
to replace the min function by a smoothed version of the form: 

        smoothmin(1, 𝑦) =    𝑦/((1 + 𝑦𝑝)
1

𝑝)       (3) 
using a value of 𝑝  which depends on the distribution of the 
random function represented here by 𝑦. Here it is proposed to use 
smoothmin with a fixed value of 𝑝 and replace Eq (2) with: 
      𝑥𝑖

𝑃(𝑡) = 𝑥𝑖
𝑆(𝑡)smoothmin (1,  𝑚𝑃(𝑖)/ ∑ 𝑥𝑗

𝑆(𝑡))𝑗∈𝓔𝑃(𝑖)
          (4) 

Rates will be expressed as 𝑟 events/s, with a superscript to 
identify the event type. An entry is executed in slices separated by 
calls, giving a mean of (1 + ∑ 𝑦𝑖𝑗)𝑗  slices for 𝐸𝑖  with a mean 

demand of 𝑑𝑖/(1 + ∑ 𝑦𝑖𝑗)𝑗 . With an average of  𝑥𝑖
𝑃(𝑡)  servers 

given by Eq (4) the expected rate of completion of slices of 𝐸𝑖 is 
 𝑟𝑖

𝑠𝑙𝑖𝑐𝑒 = 𝑥𝑖
𝑃(𝑡)𝜎𝑖  [𝑑𝑖/(1 + ∑ 𝑦𝑖𝑗)𝑗 ]−1                         (5) 

where 𝜎𝑖 is a speed factor for 𝑃(𝑖).  
The state evolves as tokens arrive at an entry, are admitted 

to the task thread pools, make calls, and finish task service. The 
rate of tokens finishing service at 𝐸𝑖 is 

 𝑟𝑖
𝑟𝑒𝑝𝑙𝑦

= reply rate =  𝑟𝑖
𝑠𝑙𝑖𝑐𝑒/(1 + ∑ 𝑦𝑖𝑗)𝑗   (6) 

The rate of tokens at 𝐸𝑖 making calls to other entries is 

𝑟𝑖
𝑐𝑎𝑙𝑙𝑖𝑛𝑔

= calling rate =  𝑟𝑖
𝑠𝑙𝑖𝑐𝑒𝑦𝑖𝑗/(1 + ∑ 𝑦𝑖𝑗)𝑗  (7) 

The arrival rate at 𝐸𝑖 due to calls from other entries is 
𝑟𝑖

𝑐𝑎𝑙𝑙𝑒𝑑 = called rate = ∑ 𝑟𝑗
𝑠𝑙𝑖𝑐𝑒𝑦𝑗𝑖/(1 + ∑ 𝑦𝑗𝑘)𝑘𝑗  (8) 

The rate of receiving replies at 𝐸𝑖 is 

𝑟𝑖
𝑟𝑒𝑝𝑙𝑖𝑒𝑑

= replied rate  ∑ 𝑟𝑗
𝑟𝑒𝑝𝑙𝑦

𝑗∈𝐷(𝑖)           (9) 

The rate of admission 𝑟𝑖
𝑎𝑑𝑚𝑖𝑡 to the thread pool of task 𝑇(𝑖) 

is at least the arrival rate 𝑟𝑖
𝑐𝑎𝑙𝑙𝑒𝑑  when there are free threads 

(when 𝑥̃𝑇(𝑖) + 𝑏𝑖 < 𝑚𝑇(𝑖)). A maximum value 𝑟𝑖
𝑏𝑒𝑠𝑡  was set to the 

arrival rate plus the maximum possible rate of completions with 
no competition and no nested calls, which is 𝑚𝑇(𝑖)/𝑑𝑖 :  

𝑟𝑖
𝑎𝑑𝑚𝑖𝑡(𝑥̃𝑖) = 𝑟𝑖

𝑏𝑒𝑠𝑡  
= 𝑟𝑖

𝑐𝑎𝑙𝑙𝑒𝑑 + 𝑚𝑇(𝑖)/𝑑𝑖 ,   if 𝑥̃𝑇(𝑖) + 𝑏𝑖 < 𝑚𝑇(𝑖).  
When all threads are blocked or busy, it is limited by the rate of 
service completions at 𝑇(𝑖):  

 𝑟𝑖
𝑐𝑜𝑚𝑝𝑙𝑒𝑡𝑖𝑜𝑛

= ∑ 𝑟𝑗
𝑟𝑒𝑝𝑙𝑦

𝑗∈ℰ𝑇(𝑖)
 

In this case the admission rate of tokens for 𝐸𝑖 is assumed to be in 

the ratio of its task queue size 𝑥𝑖
𝑄  (an approximation for FIFO 

queueing), giving: 

𝑟𝑖
𝑎𝑑𝑚𝑖𝑡 = 𝑟𝑖

𝑐𝑜𝑚𝑝𝑙𝑒𝑡𝑖𝑜𝑛  (𝑥̃𝑖
𝑄

/ ∑ 𝑥̃𝑗
𝑄

𝑗∈ℰ𝑇(𝑖)
), if 𝑥̃𝑇(𝑖) + 𝑏𝑖 ≥ 𝑚𝑇(𝑖)   

The admission rate has a step between two values, which 
gives a more severe non-linearity than the min function. It was 
also smoothed for the same reason, using a well-known function 
for a unit step: 

     step(𝑦)  =  0  if 𝑦 < 0, or 1 if 𝑦 ≥ 0 
     smoothstep(𝑦)  =  3(𝑦/𝜖)2 –  2(𝑦/𝜖)3 

where 𝜖 was fixed. This gives the approximation 
𝑟𝑖

𝑎𝑑𝑚𝑖𝑡(𝑥𝑖) = 𝑟𝑖
𝑏𝑒𝑠𝑡 + 

[𝑟𝑖
𝑇𝐴𝑆𝐾(𝑥̃𝑖

𝑄
/ ∑ 𝑥̃𝑗

𝑄
𝑗∈ℰ𝑇(𝑖)

) − 𝑟𝑖
𝑏𝑒𝑠𝑡] smoothstep(𝑥̃𝑇(𝑖) + 𝑏𝑖 −

𝑚𝑇(𝑖)) (10) 
A reference task receives no calls and admits all replies, so                        

 𝑟𝑖
𝑎𝑑𝑚𝑖𝑡 = 𝑟𝑖

𝑟𝑒𝑝𝑙𝑖𝑒𝑑.   
This admission rate ignores the fact that queueing at tasks 

is usually FIFO. The information in 𝑥(𝑡)  is insufficient to 
represent the detailed state of a FIFO queue, which includes the 
order in the queue of requests for different entries, and the 
residual service time of the currently served tokens. On the other 
hand a FIFO queue treats the classes symmetrically, as does the 
approximation. This question was treated differently in [1], by a 
transformation to the processor-sharing discipline for the queue; 
this approach can be examined in future work. 

The in-service tokens 𝑥𝑆(𝑡) and the queue length 𝑥𝑄(𝑡) are 
both needed to calculate the rates of change, so both are modeled 
as states, with 𝑥 = 𝑥𝑆 + 𝑥𝑄. The differential equations are then: 
   𝑥̇𝑖

𝑆 = admit rate+sum of reply rates to it–calling rate–reply rate 

       = 𝑟𝑖
𝑐𝑎𝑙𝑙𝑒𝑑 + ∑ 𝑟𝑗

𝑟𝑒𝑝𝑙𝑦
𝑗∈𝐷𝑖

   − 𝑟𝑖
𝑐𝑎𝑙𝑙𝑖𝑛𝑔

− 𝑟𝑖
𝑟𝑒𝑝𝑙𝑦   (11a) 

   𝑥̇𝑖
𝑄

=  called rate – admit rate = 𝑟𝑖
𝑐𝑎𝑙𝑙𝑒𝑑 − 𝑟𝑖

𝑎𝑑𝑚𝑖𝑡  (for non-
reference tasks). (11b) 

Reference tasks representing system users receive no calls 

and make no replies, so 𝑟𝑖
𝑐𝑎𝑙𝑙𝑒𝑑 = 𝑟𝑖

𝑟𝑒𝑝𝑙𝑦
= 0. They have no queue 

so there is no need for a queue state variable for them. 
In summary, the steps to compute the right-hand sides 

replace the random variable 𝑥̃ by its expectation 𝑥 and: 

1. Determine 𝑏𝑖(𝑥) from Eq (1) and 𝑥𝑖
𝑃(𝑥) from Eq (4) for all 𝑖, 

2. Determine  𝑟𝑖
𝑠𝑙𝑖𝑐𝑒 , 𝑟𝑖

𝑟𝑒𝑝𝑙𝑦 𝑟𝑖
𝑐𝑎𝑙𝑙𝑖𝑛𝑔

, 𝑟𝑖
𝑐𝑎𝑙𝑙𝑒𝑑 , 𝑟𝑖

𝑟𝑒𝑝𝑙𝑖𝑒𝑑 from Eq (5) 
– (9), 
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3. Determine 𝑟𝑖
𝑎𝑑𝑚𝑖𝑡 from Eq (10), 

4. Determine the right-hand sides from Eq (11a), (11b). 
 
The ODEs were solved by the Matlab solver ode45 which 

was sufficiently fast. 

3.1  Performance Measures 
Some steady-state performance measures are: 

• Entry throughput is the rate of departure of tokens, which is 

𝑟𝑖
𝑟𝑒𝑝𝑙𝑦. 

• Wait for service at entry 𝐸𝑖 is, by Little’s formula: 

 𝑊𝑖 = 𝑟𝑖
𝑟𝑒𝑝𝑙𝑦

𝑥𝑖
𝑄         (12) 

• Entry service time 𝑋𝑖 between admitting a call for service, 
and replying, is made up of two parts, the entry execution 
time (1 + ∑ 𝑦𝑖𝑗)𝑗 /𝑟𝑖

𝑠𝑙𝑖𝑐𝑒  and the delay for nested calls (if 
any): 

             𝑋𝑖 =  (1 + ∑ 𝑦𝑖𝑗)𝑗 /𝑟𝑖
𝑠𝑙𝑖𝑐𝑒 + ∑ 𝑦𝑖𝑗(𝑊𝑗 + 𝑋𝑗)𝑗∈𝑫(𝑖) . (13) 

• The response time seen by a User (represented by an entry of 
a reference task) is its service time 𝑋𝑖  minus the think time.  

• Entry utilization = 𝑟𝑖
𝑟𝑒𝑝𝑙𝑦

𝑋𝑖 .        (14) 

• Task utilization = ∑ 𝑟𝑖
𝑟𝑒𝑝𝑙𝑦

𝑋𝑖𝑖∈ℰ𝑇
        (15) 

3.2  Limitations and Possible Extensions 
The above transformation has the following limitations, 

however removing them appears to be mostly straightforward. 

1. All calls are synchronous. 
2. No open arrivals processes.  
3. There are no activities within entries; this can be introduced 

by defining an in-service state for each activity.  
4. Incomplete handling of forwarded calls. The forwarding 

transformation described above can improved by moving the 
calls to activities in the originating entry which mirror the 
forwarding path structure.  

5. No priorities.  
Zero (or very small) demand on an entry creates numerical 
problems for solving the differential equation due to stiffness. 

4  TESTING 
The quality of the approximation was tested by comparing its 
predictions to simulations by LQSIM [2]. The  simulation started 
from an idle system with N users. Across 30 independent runs the 
mean and standard deviation of the states of the tasks were 
computed and plotted for comparison with the fluid 
approximation. The states of entries on each task were summed 
because only task values were provided in the LQSIM trace. 

4.1  Simple Two-Tier Example 
The first example is a simplification of the model shown in 

Figure 1, without the second class of users (User2). There were 100 
users and the comparison was made over 5000 ms.  

In Figure 2 the simulation results are plotted as the mean 
plus/minus the standard deviation (not the confidence interval). 
The agreement is excellent. The onset of saturation at DB is clear, 
and most of the Users are blocked at the HTTPServer and App (a 
layered bottleneck). 

  
(a) Users task (b) HTTPServer task 

  
(c) App task (d) DB task 

Figure 2.  Comparison of the Fluid Model Predictions to 
Simulation for the Simple Two-tier Model 

The entry throughput and waiting measures at t=10000 are 
compared to the steady-state estimates found by LQNS in Table 1. 
Notice that the entries of DB were split in creating the fluid model. 
The agreement is very good except for the waiting time 
calculation at entry appRequest. 

Table 1 Steady-State Performance Measures vs LQNS 

Entry Throughput 
fluid          lqns 

Wait for Entry 
fluid           lqns 

userWork 0.0125 0.0127   
accept 0.0125 0.0127 4840 4760 
appRequest 0.0375 0.0380 15 7.38 
dbAccess_1 0.0625 0.635 215.6 229.9 
dbAccess_2 0.0375 0.0381 276.9 229.8 

4.2  Two-Tier System with Two Classes of Users 
The model as shown in Figure 1 with two classes of users 

was compared in the same way with the results in Figure 3. The 
results for the lower layer servers are not as accurate, under-
estimated for App and overestimated for DB. However the upper 
layers are modeled very well. It appears that the traffic to DB 
directly from HTTPServer displaces some of the traffic from App, 
compared to the simulation. This did not happen in the same way 
with just one class, but with two classes there is an additional 
degree of freedom, and the two classes put very different loads on 
DB. 
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(a) task Users (b) Users2 

  
(c) HTTPServer (d) App 

 
(e) DB 

Figure 3.  Comparison of the Fluid Model Predictions to 
Simulation for the Two-class Version 

The steady-state results comparison by  entry is given in 
Table 2. Compared to LQNS, the predicted throughput is shifted 
in favour of the first group of users, giving it a longer wait at the 
HTTPServer entry accept and increasing the load on appRequest. 
In this context the smaller waiting time at appRequest is 
surprising. 

Table 2 Steady state results for the two-class model 

Entry Throughput 
fluid      lqns 

Wait for Entry 
fluid       lqns 

userWork 0.01071 0.00991   
user2Work 0.002814 0.004396   
accept 0.010713 0.00991 6285.3 7084.7 
accept2 0.002814 0.004396 11896 7091.1 
appRequest 0.04646 0.05172 14.92 62.06 
dbAccess 0.0955 0.10127 247.1 187.6 

4.3  A Business Reporting System (BRS) 
Example 
This example was taken from [8][17] and is based on an industrial 
business intelligence system. It creates small and large reports and 
provides viewing of stored reports. The system has eight layers, 
so congestion propagation between layers is important. Figure 4 
shows the context-transformed model, in which the split entries 

(near the bottom of the diagram) are indicated by suffices “_1”, 
“_2”, etc.  

 
Figure 4.  The BRS model after the context and forwarding 

transformations 

Figure 5 shows a representative selection of the simulation 
comparisons for the 12 tasks. The remaining tasks had very small 
values. The traces cover different time periods depending on how 
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quickly they approach a steady state; the transients at the 
AppS_DSP and AppS_ViewData tasks are even longer than is 
shown.  

Transient effects are very prominent in the start-up 
situation evaluated here, as the first requests propagate 
downwards through the layers. Notice how the number of in-
service tokens at the WebServer task jumps upwards and then 
decays away; it eventually becomes quite small. The population of 
AppS_DSP has a long transient and becomes small at about 180 s., 
while Apps_ViewData rises steadily to that point in time and 
levels off at just above 70 tokens. AppS_ViewData is a slightly 
overloaded bottleneck which gradually builds up until it holds a 
significant fraction of the requests.  

The agreement is quite good for all 12 tasks, although the 
approximation shifts some load from ViewData to DSP This 
example has a notable range of fast and slow behaviour by 
different tasks. 

 
 

  
(a) Client (users) (b) WebServer 

  
(c) AppS_ViewData (d) AppS_DSP 

  
(e) AppS_ReportGen (f) AppS_SmallReport1 

Figure 5.   BRS Predictions Compared to Simulation 

5  PREVIOUS WORK 
Mean-field theory has been described for modeling the evolution 
of the expectation of populations within a Markovian system by, 
eg. [6][11]. Mean-field models for queues and queueing networks 
have a considerable literature which is surveyed, along with other 
models, in [14]. Much of the attention has been focused on 

queueing networks with a combination of infinite servers and 
processor-sharing nodes, eg [9]. An improved approach to such 
networks is described in [13], including mixed open and closed 
classes. It was shown in [10] how to derive the distribution of 
response times from a fluid model.  

The first fluid model for LQN was based on first 
transforming it to a PEPA model [15]. The PEPA model deviates 
from the LQN semantics in two ways: it replaces FIFO queueing 
by random-order (by making a non-deterministic choice from a 
pool of requests), and it replaces the sending of a service reply to 
the caller, by sending to a non-deterministic choice from the set 
of  callers waiting for a reply. The first of these is effectively also 
part of the present transformation, but the second is dealt with by 
the context transformation. 

Fluid  models in the LINE tool [1],[9] are created by the 
transformation described in [10]. From the description in [10] an 
LQN is converted to a queueing network in which the software 
queues are not represented, equivalent to all the tasks being 
infinite servers. Instead, the requests for service at a task are 
passed directly to the corresponding processor queue. 

6  CONCLUSIONS 
The state of a LQN has more structure than the state of a 

queueing network because of the simultaneous resource 
possession implied by blocking of task threads for nested requests, 
and this is reflected in the state structure used here. On the other 
hand the class structure and class switching is implicit in the 
entries (the customers at each entry are a separate class) and does 
not need to be considered explicitly, as in models for queueing 
networks.  

The model derived here shows a reasonable accuracy for 
transient prediction, but needs to be improved for steady-state 
accuracy. 

The features of LQN models that are not covered by this 
work can be included in an extended transformation. Activities 
define detailed sequences of operations within an entry, and 
would require additional state for the activities that are in-service. 
Forwarded messages are presently dealt with as in LQNS (thesis) 
but could be better handled by constructing a sequence of 
activities to order  them. Second phases  also require activities. 
Arrival processes and asynchronous calls (which give a mixed 
open/closed system) will be a significant extension. 

ACKNOWLEDGMENTS 
This research was supported by grant RGPIN-2016-06274 from the 
Natural Sciences and Engineering Research Council of Canada.  

 

REFERENCES 
[1] G. Casale, 2020. Integrated performance evaluation of extended queueing 

network models with LINE, Proc Winter Simulation Conference, pp 2377–
2388. 

[2] G. Franks, G. et al, 2022. Layered Queueing Network Solver and Simulator User 
Manual, Carleton University, at 
http://www.sce.carleton.ca/rads/lqns/userman22.pdf, accessed Jan 20, 2022. 

[3] G. Franks. 1999. Performance Analysis of Distributed Server Systems. Ph.D. 
thesis, Carleton University. 

394



Heuristic Derivation of a Fluid Model  
from a Layered Queueing Network 

ICPE '23 Companion, April 15–19, 2023, Coimbra, Portugal 

 

 

[4] G. Franks, T. Al-Omari, M. Woodside, O. Das, S. Derisavi, 2009. Enhanced 
modeling and solution of layered queueing networks, IEEE Trans. on Software 
Eng., vol. 35, no. 2, pp. 148-161. 

[5] A. Gias, G. Casale, M. Woodside, 2019. ATOM: Model-driven autoscaling for 
microservices. Int. Conf on Distributed Computing Systems, pp 1994-2004. 

[6] T.G. Kurtz, 1970. Solutions of ordinary differential equations as limits of pure 
markov processes,” J. Applied Probability, vol. 7, no. 1, pp. 49-58. 

[7] E. Incerto, M. Tribastone, C. Trubiani, 2017. Software performance self-
adaptation through efficient model predictive control,  Proc 32nd IEEE/ACM 
Int. Conf. on Automated Software Engineering (ASE), , pp. 485–496. 

[8] A. Martens, H. Koziolek, S. Becker, R. Reussner. 2010. Automatically improve 
software architecture models for performance, reliability, and cost using 
evolutionary algorithms. In Proc. 1st Joint WOSP/SIPEW Int. Conf. on 
Performance Engineering. ACM, New York, NY, 105–116. 

[9] J. F. Pérez, G. Casale, 2017. Line: evaluating software applications in unreliable 
environments. IEEE Trans. Reliab. 66(3): 837-853. 

[10] J. F. Perez,  G. Casale, 2013. Assessing SLA compliance from palladio 
component models, Proc. 15th Int. Symp. Symbolic Numeric Algorithms Sci. 
Comput., 2013, pp. 409–416. 

[11] E. Renshaw, 2011. Stochastic Population Processes, Oxford University Press. 

[12] J. A. Rolia and K. C. Sevcik. 1995. The method of layers. IEEE Trans. Softw. 
Eng. 21, 8, 689–700. 

[13] J. Ruuskanen, T. Berner, K. Årzén, A. Cervin,2021. Improving the mean-field 
fluid model of processor sharing queueing networks for dynamic performance 
models in cloud computing, Performance Evaluation, 151 . 

[14] J.A. Schwarz, G. Selinka, R. Stolletz, 2016. Performance analysis of time-
dependent queueing systems: Survey and classification, Omega 63, pp 170–
189.  

[15] M. Tribastone, 2013. Fluid model for layered queueing networks, IEEE Trans. 
Software Engineering, v. 39, pp 744-756. 

[16] C.M. Woodside, 1986. An active-server model for the performance of parallel 
programs written using rendezvous", J. Systems and Software, pp. 125-131. 

[17] X. Wu, 2003. An Approaqch to Predicting Performance for Component-based 
Systems, MASc thesis, Carleton University.  

[18] X. Wu, M. Woodside, 2004. Performance modeling from software 
components," Proc. 4th Int. Workshop on Software and Performance, pp. 290-
301. 

[19] T. Zheng, M. Woodside, M. Litoiu, 2008. Performance model estimation and 
tracking using optimal filters", IEEE Trans. on Software Engineering, V 34 , no. 
3 pp 391-406. 

 

395




