
Towards Solving the Challenge of Minimal Overhead
Monitoring

David Georg Reichelt
d.g.reichelt@lancaster.ac.uk

Lancaster University in Leipzig /
Universität Leipzig

Leipzig, Saxony, Germany

Stefan Kühne
stefan.kuehne@uni-leipzig.de

Universität Leipzig
Leipzig, Saxony, Germany

Wilhelm Hasselbring
hasselbring@email.uni-kiel.de

Kiel University
Kiel, Schleswig-Holstein, Germany

ABSTRACT
The examination of performance changes or the performance be-
havior of a software requires the measurement of the performance.
This is done via probes, i.e., pieces of code which obtain and process
measurement data, and which are inserted into the examined appli-
cation. The execution of those probes in a singular method creates
overhead, which deteriorates performance measurements of calling
methods and slows down the measurement process. Therefore, an
important challenge for performance measurement is the reduction
of the measurement overhead.

To address this challenge, the overhead should be minimized.
Based on an analysis of the sources of performance overhead, we
derive the following four optimization options: (1) Source instru-
mentation instead of AspectJ instrumentation, (2) reduction of
measurement data, (3) change of the queue and (4) aggregation
of measurement data. We evaluate the effect of these optimization
options using the MooBench benchmark. Thereby, we show that
these optimizations options reduce the monitoring overhead of the
monitoring framework Kieker. For MooBench, the execution dura-
tion could be reduced from 4.77 𝜇𝑠 to 0.39 𝜇𝑠 per method invocation
on average.

CCS CONCEPTS
• General and reference → Performance; • Software and its
engineering → Software performance; Software maintenance
tools.

KEYWORDS
software performance engineering, benchmarking, performance
measurement, monitoring overhead

ACM Reference Format:
David Georg Reichelt, Stefan Kühne, and Wilhelm Hasselbring. 2023. To-
wards Solving the Challenge of Minimal Overhead Monitoring. In Compan-
ion of the 2023 ACM/SPEC International Conference on Performance Engineer-
ing (ICPE ’23 Companion), April 15–19, 2023, Coimbra, Portugal. ACM, New
York, NY, USA, 8 pages. https://doi.org/10.1145/3578245.3584851

Publication rights licensed to ACM. ACM acknowledges that this contribution was
authored or co-authored by an employee, contractor or affiliate of a national govern-
ment. As such, the Government retains a nonexclusive, royalty-free right to publish or
reproduce this article, or to allow others to do so, for Government purposes only.
ICPE ’23 Companion, April 15–19, 2023, Coimbra, Portugal
© 2023 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 979-8-4007-0072-9/23/04. . . $15.00
https://doi.org/10.1145/3578245.3584851

1 INTRODUCTION
The examination of performance changes, performance anomalies
or the general performance behavior of a software usually requires
the measurement of the performance.1 The measurement in produc-
tion environments is called monitoring [21].2 Performance moni-
toring is possible using two options: (1) using instrumentation, i.e.,
by inserting measurement probes into the source code, or (2) us-
ing sampling, i.e., by frequently obtaining the current state of the
application from the outside. Measurement probes are pieces of
code which obtain and process measurement data, and which are
inserted into the examined application. Frequently obtaining the
current state of the application requires a suitable technical inter-
face to do so, e.g. the JVM provides the tool jstack, which obtains
the current stack of an application.

Both, instrumentation and sampling, create overhead. When
measuring the performance, this overhead reduces the accuracy of
the measurements itself and slows down the measurement process.
If the accuracy of measurements decreases, this is often result-
ing in increased standard deviation of the measurement values.
The detectability of small performance changes depends on the
effect size, i.e., the relation between performance change size and
standard deviation. Therefore, especially detection of small perfor-
mance changes require minimal performance monitoring overhead.
This is especially important when aiming for the identification of
small performance changes [17]. Hence, an important challenge
for performance monitoring is the reduction of the measurement
overhead.

To address this challenge, the main options are: (1) the optimiza-
tion of sampling intervals and configuration, (2) the configuration
of adaptive monitoring supported by adaptive instrumentation and
(3) the optimization of the measurement process itself. In this work,
we present a first step addressing the challenge of minimal monitor-
ing overhead by reducing the overhead of the measurement process
itself (option 3). We demonstrate these overhead reductions using
the application performance monitoring framework Kieker [6].

Based on an analysis of the sources of performance overhead in
Kieker, we derive the following four optimizations: (1) Source code
instrumentation, i.e., instrumenting the source code of the software
instead of using AspectJ, (2) Reduced data storage, i.e., only mea-
suring the duration and the method name, (3) Queue exchange,
i.e., use a CircularFifoQueue instead a LinkedBlockingQueue,

1Alternative approaches require data sources with similarly detailed resolution, e.g.
using data from existing logging [11] requires fine-grained log statements.
2Nowadays, the detailed measurement in production environments is often also called
observability, since tool marketing wants to emphasize the comprehensiveness of
obtained data and possible analysis. We stick to the classical term monitoring.

381

https://doi.org/10.1145/3578245.3584851
https://doi.org/10.1145/3578245.3584851

ICPE ’23 Companion, April 15–19, 2023, Coimbra, Portugal David Georg Reichelt, Stefan Kühne, & Wilhelm Hasselbring

and (4) Aggregated writing, i.e., writing the aggregated measured
performance data instead writing the measurement values of every
singular method call. We apply the empirical standard of bench-
marking [5] to compare the effect of these overhead reductions, and
find that each optimization is able to significantly reduce the per-
formance overhead. Using all overhead reductions, we can reduce
the overhead from 4.77 𝜇𝑠 to 0.39𝜇𝑠 per method invocation.

The remainder of this paper is organized as follows: First, we give
an introduction of the Kieker framework and the MooBench bench-
mark. Afterwards, we describe our optimizations for the Kieker
probes. Subsequently, we provide measurement results of the over-
heads using MooBench. Our results are then compared to related
work. Finally, we give a summary and outlook.

2 FOUNDATIONS
In this section, we describe the monitoring framework Kieker and
the monitoring overhead benchmark MooBench.

2.1 Kieker
A variety of tools is able to perform performance monitoring, in-
cluding Kieker, SPASSmeter [3], inspectIT,3 OpenTelemetry4 and
Dynatrace APM.5 The OpenAPM6 initiative gives an overview over
existing monitoring tools and their interoperability.

Two central components of a monitoring tool are the library
and the agent. One of both or both are added to the execution of
a software in order to obtain monitoring data. These monitoring
data might be at infrastructure, application or business level; in this
work, we focus on application monitoring. Application monitoring
can be done either using instrumentation, i.e., adding monitoring
code to the measured system, or using sampling, i.e., obtaining
measurement data at given times by technical interfaces.

Sampling in the JVM is only able to obtain monitoring data
at safepoints [7]. Therefore, it stops the execution of all threads
and might obtain inaccurate measurement data. To avoid these
pitfalls, we focus on monitoring using instrumentation. According
to the MooBench benchmark, Kieker is the framework with the
lowest monitoring overhead when compared to OpenTelemetry
and inspectIT [16].

The measurement process of Kieker is depicted in Figure 1. At
first, the instrumentation is executed, which is regularly done using
AspectJ. This adds a monitoring probe, which creates the monitor-
ing records, e.g., one instance of OperationExecutionRecord for
every method invocation. The records contain metadata of the exe-
cution, e.g., execution order index and execution stack size, which
enable reconstruction of the call tree afterwards. These records are
passed to the queue afterwards, which is a LinkedBlockingQueue
by default. In parallel to the program main thread, a writer is ex-
ecuted in a parallel thread. The writer thread awaits new records
and writes the records to their destination. By default, this is a
FileWriter writing the monitoring records to the hard disk.

3https://www.inspectit.rocks/
4https://opentelemetry.io/
5https://www.dynatrace.com/de/platform/application-performance-monitoring/
6https://openapm.io/

Original
source

2 Probe

1 Instrumentation

3 Queue

4 Writer

Hard Disk

AspectJ OperationExecutionRecord

LinkedBlockingQueue

FileWriter

JVM

Figure 1: Monitoring Process in Kieker

main 𝑚𝑒𝑡ℎ𝑜𝑑

(𝑡, 𝑑)
𝑚𝑒𝑡ℎ𝑜𝑑

(𝑡, 𝑑 − 1)
... 𝑚𝑒𝑡ℎ𝑜𝑑

(𝑡, 1)
𝑚𝑒𝑡ℎ𝑜𝑑

(𝑡, 0)

Figure 2: Call Tree of MooBench

2.2 MooBench
MooBench is a benchmark that aims for measuring the performance
overhead of monitoring frameworks [22]. To measure the perfor-
mance overhead, it calls a method recursively with a given call
depth 𝑑 . In the leaf node, it executes busy waiting until a specified
amount of time 𝑡 has passed. To avoid performance optimizations,
the recursive method calls return the timestamp of the root method
call. The call tree of this process is visualized in Figure 2.7

Performancemeasurement in Java is affected by non-determinism
due to Just-in-Time Compilations, optimizations and garbage col-
lections of the JVM. Therefore, a complex measurement process
and a statistical analysis of measurements is required [4].

Moobench therefore contains scripts which automate the rep-
etition of VM starts and benchmark iterations inside the VM, so
performance differences can be detected in a statistically sound
manner. Originally, it was built to monitor Kieker, inspectIT and
SpassMETER [3]. For each of the supported frameworks, MooBench
contains a definition of different measurement configurations, e.g.,
measuring the overhead of performance measurement in Kieker
with serialization to hard disk or to a TCP receiver. This makes it
possible to compare the performance of these variants. MooBench
has been used in different execution environments [10]. Recently,
it has been extended for measurement of OpenTelemetry [16].

3 PERFORMANCE OPTIMIZATIONS FOR
KIEKER PROBES

All the parts of Kieker’s monitoring process provide room for per-
formance optimization: (1) To avoid the AspectJ overhead, source
code instrumentation can be used, (2) to avoid metadata creation
7Original source code: https://github.com/kieker-monitoring/moobench/blob/
ef9ca00259a8546e6fa9cdda47ac4cca3f116fe5/tools/benchmark/src/main/java/
moobench/application/MonitoredClassSimple.java

382

https://www.inspectit.rocks/
https://opentelemetry.io/
https://www.dynatrace.com/de/platform/application-performance-monitoring/
https://openapm.io/
https://github.com/kieker-monitoring/moobench/blob/ef9ca00259a8546e6fa9cdda47ac4cca3f116fe5/tools/benchmark/src/main/java/moobench/application/MonitoredClassSimple.java
https://github.com/kieker-monitoring/moobench/blob/ef9ca00259a8546e6fa9cdda47ac4cca3f116fe5/tools/benchmark/src/main/java/moobench/application/MonitoredClassSimple.java
https://github.com/kieker-monitoring/moobench/blob/ef9ca00259a8546e6fa9cdda47ac4cca3f116fe5/tools/benchmark/src/main/java/moobench/application/MonitoredClassSimple.java

Towards Solving the Challenge of Minimal Overhead Monitoring ICPE ’23 Companion, April 15–19, 2023, Coimbra, Portugal

steps, only the necessary data to create a DurationRecord can
be obtained, (3) to decrease waiting times for queue inserts, a Cir-
cularFifoQueue can be used and (4) to decrease waiting times
for data storage, only aggregated data can be stored. A summary
of the optimizations is visualized in Figure 4. The details of these
optimizations are described in the following subsections.

3.1 Source Code Instrumentation Instead
AspectJ

Monitoring the program execution, e.g., measuring the execution
time of methods, requires changes to the executed source. This can
be done using instrumentation libraries, like ByteBuddy for Open-
Telemetry8 or AspectJ in Kieker.9 Kiekers AspectJ instrumentation
is configured via the aop.xml. It defines which aspect should be
used, i.e., whether OperationExecutionRecords, capturing start
and end time of a method execution, or BeforeOperationRecords,
capturing only the start of a method cexecution, is used. When
starting the application, the monitoring is started by passing the pa-
rameter -javaagent:kieker-1.15.2-aspectj.jar to the JVM.

Using instrumentation libraries creates overhead, because it cre-
ates JoinPointImpl.proceed calls to the stack trace. The overhead
can be avoided by directly inserting the monitoring code into the
monitored application. Therefore, we created the tool kieker-source-
instrumentation10 which automatically adds measurement code to
all called methods. This requires two automated changes to the
monitored application’s source code: (1) Adding the required vari-
ables to the monitored class and (2) adding the monitoring source
code to all methods that should be monitored.

The first step is necessary, since monitoring requires at least a
reference to the MonitoringController, to pass the created mon-
itoring record to the queue, and the currently used TimeSource, to
get the current time. These are both singletons; however, obtaining
the instances on the fly using getInstance creates overhead and
should be avoided. Therefore, the source instrumentation creates
static final fields for every class that is instrumented.

For the second step, the monitoring source code is inserted into
the method. This always requires definition of the signature, de-
termining start and end time of the method, creating a monitoring
record and writing this record to the queue. Optionally, other meta-
data are obtained, like the execution stack size. All variables are cre-
ated with a prefix, e.g. _kieker, so collisions with existing method
names are avoided. A simplified example of instrumentation with
determining the current stack size is depicted in Listing 1.

3.2 DurationRecord Instead of
OperationExecutionRecord

For monitoring using the OperationExecutionRecord, the execu-
tion order index, the execution stack size, the current hostname
and an id of the current session are stored. This requires storing the
current count of executions and the current stack size. Additionally,
the data are stored in the record and are written to the hard disk.

8https://github.com/open-telemetry/opentelemetry-java-instrumentation/blob/
main/javaagent-extension-api/build.gradle.kts
9https://kieker-monitoring.readthedocs.io/en/1.15.2/getting-started/AspectJ-
Instrumentation-Example.html#gt-aspectj-instrumentation-example
10https://github.com/kieker-monitoring/kieker-source-instrumentation

CircularFifoQueue

start

end

currently
used

Figure 3: CircularFifoQueue Structure

Therefore, we created the DurationRecord, which is a minimal
Kieker record that only stores the duration. To enable monitoring
this record, we adapted the instrumentation process accordingly.

3.3 CircularFifoQueue Instead of
LinkedBlockingQueue

Currently, Kieker uses a LinkedBlockingQueue. It is a singly linked
list that stores a capacity. If there are more elements in the queue
than the capacity, the queue blocks on every new insert. Block-
ing slows down the execution of the application thread signif-
icantly, and should therefore never happen. A downside of the
LinkedBlockingQueue is, that it needs to create new queue ele-
ments, which requires reserving space, and link the new element
by setting the pointer of the last queue element.

Using a CircularFifoQueue, the queue speed can be increased.
The CircularFifoQueue is a ring buffer for queue elements. Its
structure is visualized in Figure 3: It contains an array of a given
size, the index of the current start element and the index of the
current end element. If a new element is added, the element at the
end index is set and the end index is increased (modulo the queue
size). If an element is taken from the queue, the element at the start
index is returned, it is set to null and the start index is increased
(modulo the queue size). Thereby, no new memory needs to be
allocated while handling the queue. The current implementation of
Apache Commons Collections does not react if the queue is full, i.e.,
if all elements are used, the new elements overwrite old elements.

Another problem of the basic CircularFifoQueue is, that it is
not directly usable in parallel. Since Kieker reading and writing
is tone by different threads, this is necessary. Therefore, we use
a tweaked version of the CircularFifoQueue which is synchro-
nized.11 To use it, we configured the queue using the Java properties
that Kieker reads.

3.4 Storing Aggregated Data Instead of Method
Executions

Every insertion into the queue and every write to the hard disk is
time-consuming. Additionally, the execution time depends on the
current state of the hard disk. Therefore, we reduce the stored data
by only obtaining and storing aggregated data, e.g., the average

11Synchronized version of CircularFifoQueue: https://github.com/DaGeRe/
KoPeMe/blob/main/kopeme-core/src/main/java/de/dagere/kopeme/collections/
SynchronizedCircularFifoQueue.java

383

https://github.com/open-telemetry/opentelemetry-java-instrumentation/blob/main/javaagent-extension-api/build.gradle.kts
https://github.com/open-telemetry/opentelemetry-java-instrumentation/blob/main/javaagent-extension-api/build.gradle.kts
https://kieker-monitoring.readthedocs.io/en/1.15.2/getting-started/AspectJ-Instrumentation-Example.html#gt-aspectj-instrumentation-example
https://kieker-monitoring.readthedocs.io/en/1.15.2/getting-started/AspectJ-Instrumentation-Example.html#gt-aspectj-instrumentation-example
https://github.com/kieker-monitoring/kieker-source-instrumentation
https://github.com/DaGeRe/KoPeMe/blob/main/kopeme-core/src/main/java/de/dagere/kopeme/collections/SynchronizedCircularFifoQueue.java
https://github.com/DaGeRe/KoPeMe/blob/main/kopeme-core/src/main/java/de/dagere/kopeme/collections/SynchronizedCircularFifoQueue.java
https://github.com/DaGeRe/KoPeMe/blob/main/kopeme-core/src/main/java/de/dagere/kopeme/collections/SynchronizedCircularFifoQueue.java

ICPE ’23 Companion, April 15–19, 2023, Coimbra, Portugal David Georg Reichelt, Stefan Kühne, & Wilhelm Hasselbring

Listing 1: Example Instrumented Source
public void myMethod (){

final String _kieker_signature = "public␣void␣net.kieker.Class.myMethod ()";

[...]

final int _kieker_ess;

long _kieker_traceId = _kieker_controlFlowRegistry.recallThreadLocalTraceId ();

[...]

if (_kieker_traceId == -1) {

_kieker_ess = _kieker_controlFlowRegistry.recallAndIncrementThreadLocalESS ();

[...]

} else {

_kieker_ess = _kieker_controlFlowRegistry.recallAndIncrementThreadLocalESS ();

[...]

}

final long _kieker_tin = C0_0._kieker_TIME_SOURCE.getTime ();

try {

// Execute method original code

} finally {

final long _kieker_tout = C0_0._kieker_TIME_SOURCE.getTime ();

_kieker_controller.newMonitoringRecord(

new OperationExecutionRecord(_kieker_signature , _kieker_tin , _kieker_tout , ...));

}

Original
source

2 Probe

1 Instrumentation

3 Queue

4 Writer

Hard Disk

Source Code
Instrumentation DurationRecord

CircularFifoQueue

AggregatedWriter

JVM

Figure 4: Possible Monitoring Optimizations

of 1000 method execution durations, instead of every method exe-
cution duration. This is achieved by adding two counters to each
examined class, one which contains the sum execution time and
one which contains the count of executions. For every iteration,
the current execution time is added to the sum and the counter
is increased by one. If the counter is equal to the parameterized
execution count, for example 1000, a monitoring record is created.
Additionally, the sum and the counter are reset.

This optimization makes it impossible to examine fine-grained
properties of method invocations, e.g., the frequency of outliers.
Therefore, it can only be applied if performance behaviour in the
long run should be examined. For example, if a method became
slower on 2 % on average, this could be examined using aggregated

data storage. If outliers occur every 500 invocations, that cause an
average slowdown of 0.5 %, this cannot be examined with aggre-
gated data storage; in this case, the fine-grained data are required.

4 BENCHMARKING RESULTS OF THE
PERFORMANCE OPTIMIZATIONS

To measure the overhead of our performance optimizations, we
used the MooBench benchmark and executed the optimizations
individually and the combination of them. In this section, we first
describe our setup and afterwards the individual measurements.

4.1 Setup
For every optimization, we executed MooBench with and without
the optimization. We used a call tree depth of 10, a method invoca-
tion count of 2 000 000 and a VM start count of 10, which are the
default parameters of MooBench. Based on the technical suitability,
we also compared the combination of different optimizations. Ad-
ditionally, we compare the measurements to the execution without
any instrumentation.

All measurements have been executed on an i7-4770 CPU @
3.40GHz using the JVM from OpenJDK 1.8.0_352, i.e., the latest
OpenJDK release at the execution time. The following subsections
describe our measurement results. All values are, if not otherwise
specified, inmicroseconds (𝜇𝑠) perMooBench method call. For
example, a measured value of 4.77 for Kieker with AspectJ and a
call tree depth of 10 means that it took 4.77𝜇𝑠 for the monitoring
of 10 nodes, i.e., a single node monitoring would have an average
overhead of 0.477𝜇𝑠 . The measurements can be repeated using the

384

Towards Solving the Challenge of Minimal Overhead Monitoring ICPE ’23 Companion, April 15–19, 2023, Coimbra, Portugal

No instr. AspectJ Source Code Instr.
Mean 0.0548 4.7711 2.4169
95 % ± 0.0 ± 0.0444 ± 0.0038
𝑄1 0.0520 4.1890 2.4380

Median 0.0530 5.0790 2.5730
𝑄3 0.0580 5.5030 2.6880

Table 1: Statistics of Source Code Instrumentation

No instr. Source Code Instr. DurationRecord
Mean 0.0548 2.4169 2.3426
95 % ± 0.0 ± 0.0038 ± 0.0037
𝑄1 0.0520 2.4380 2.1720

Median 0.0530 2.5730 2.4720
𝑄3 0.0580 2.6880 2.6080

Table 2: Statistics of DurationRecord

optimizations-all branch of the MooBench main repository.12
The dataset of our measurement results is published.13

4.2 Source Code Instrumentation
The statistics of no instrumentation, AspectJ instrumentation and
source code instrumentation are displayed in Table 1. Due to the
low mean execution time without instrumentation, the 95% con-
fidence interval has technically a size of 0. It shows that AspectJ
instrumentation roughly increases the execution time by a factor of
10. Based on the granularity of methods, this factor might be higher
or lower in production workloads. Using source code instrumenta-
tion roughly decreases the execution time by a factor of 2 and is
therefore a recommendable optimization. However, it is only usable
if the source code is available; therefore, using the -javaagent to
inject monitoring probes will in some cases stay necessary.

4.3 DurationRecord
Since the DurationRecord is currently only implemented for the
source code instrumentation, we compared the source code instru-
mentation for Kiekers regular OperationExecutionRecord and
the source code instrumentation using the DurationRecord. The re-
sults are displayed in Table 3. It shows that using DurationRecord
also reduces the measurement duration statistically significant, but
not with an effect size in the order of magnitude of the improvement
using source code instrumentation.

4.4 CircularFifoQueue
The CircularFifoQueue can be used with source instrumenta-
tion and either OperationExecutionRecord or DurationRecord.
Therefore, we compare the execution times of both. The results are
displayed in Table 3. The table shows that the CircularFifoQueue
provides a statistically significant performance improvement, both
when using OperationExecutionRecord and DurationRecord.
Surprisingly, the improvement is higher when using Kiekers default
OperationExecutionRecord than when using DurationRecord.
12https://github.com/kieker-monitoring/moobench/tree/optimizations-all
13https://doi.org/10.5281/zenodo.7566677

Weassume that this is due to internal optimizations of the JVM; how-
ever, combining CircularFifoQueue and DurationRecord should
therefore not be blindly applied.

No instr. CircularFifoQueue CircularFifoQueue
+ OperationExecutionR. + DurationRecord

Mean 0.0548 1.5017 1.6503
95 % ± 0.0 ± 0.0047 ± 0.0039
𝑄1 0.0520 1.2330 1.2670

Median 0.0530 1.3300 1.4190
𝑄3 0.0580 1.4810 1.7420

Table 3: Statistics of CircularFifoQueue

Additionally, the CircularFifoQueue could swallow elements
if more elements than the capacity of the queue are added. There-
fore, we would only advise using CircularFifoQueue in specific
settings, where it can be guaranteed that this does not happen.
Another method for reduction of the queue overhead is the aggre-
gation of data before they are inserted into the queue, is presented
in the following.

4.5 Aggregated Writing
Aggregating is currently only implemented for source code instru-
mentation. Additionally, it is only implementable straightforward
for DurationRecord, since metadata like the execution stack size
might not be aggregated easily. Therefore, we compare the aggre-
gated writing and usage of DurationRecord. There might be mech-
anisms for aggregating also metadata, e.g., by storing a mapping
from the execution stack size to the current data. The performance
characteristics of this would heavily depend on the tree structure.
Examining this could be a part of future work.

Table 4 shows the statistics of aggregated data reading (when
aggregating always 1000 method invocations). It shows that aggre-
gating the data also significantly decreases themonitoring overhead.
Therefore, for use cases where aggregated data can be used, we
would advise using aggregated writing.

No instr. DurationRecord Aggregated Writing
Mean 0.0548 2.3426 0.4014
95 % ± 0.0 ± 0.0037 ± 0.0003
𝑄1 0.0520 2.1720 0.3810

Median 0.0530 2.4720 0.3860
𝑄3 0.0580 2.6080 0.3870

Table 4: Statistics of aggregated data reading

4.6 Combination
Since aggregated writing reduces the amount of created monitoring
records, it also makes sense to combine aggregated writing and
the usage of the CircularFifoQueue. Table 5 shows the statistics
of this approach. In this setting, the difference in the measured
values is not statistically significant. Therefore, we cannot make a
statement about whether using the CircularFifoQueue leads to
an overhead reduction in this setting.

385

https://github.com/kieker-monitoring/moobench/tree/optimizations-all
https://doi.org/10.5281/zenodo.7566677

ICPE ’23 Companion, April 15–19, 2023, Coimbra, Portugal David Georg Reichelt, Stefan Kühne, & Wilhelm Hasselbring

No instr. Aggregated Writing Combination
Mean 0.0548 0.4014 0.3897
95 % ± 0.0 ± 0.0003 ± 0.0002
𝑄1 0.0520 0.3810 0.3830

Median 0.0530 0.3860 0.3880
𝑄3 0.0580 0.3870 0.3890
Table 5: Statistics of aggregated data reading

In real-world use cases, the overhead is not only relevant for
a call tree depth of 10. Therefore, we measured how the combi-
nation of these optimizations perform for different call tree sizes.
Figure 5 shows how the overhead evolves with growing call tree
depth. For better visibility, the measurement points are connected,
even if the call tree depth is a concrete value. The areas around
the curves marks the area of 𝜇 + 𝜎 and 𝜇 − 𝑠𝑖𝑔𝑚𝑎, where 𝜇 is the
mean and 𝜎 is the standard deviation. We see adding the use of
DurationRecord only slightly reduces the overhead for the exam-
ined call tree sizes. Since using the DurationRecord also reduces
the overhead if we do not use the CirclarFifoQueue, and since the
metadata are not usable when aggregating operation calls, we keep
using the DurationRecord. Overall, the figure shows that for a call
tree size of 128, all optimizations reduce the overhead significantly
in comparison to the regular monitoring using AspectJ.

5 RELATEDWORK
Related work can be grouped into work that only measures the
monitoring overhead, work that examines ways to reduce the moni-
toring overhead and work that reduces the monitoring itself. In the
following, we give an overview over works from these fields.

5.1 Measurement
Horky et al. [8] examine the overhead of dynamic monitoring in
Java, i.e., monitoring that is inserted and removed by demand. They
state that three effects–the mere presence of the probe, the manipu-
lation of the probes execution and the code optimizations possibly
happening because of the probe–influence the execution time of
the monitored method. By using the SPECjbb2015™, they find that
the activation and deactivation of probes in realistic environments
might both slow down or speed up the execution.

Bara et al. [1] develop hardware support for performance moni-
toring in an processor core and show that performance monitoring
also increases the energy consumption of a processor. In contrast
to this work, they focus on hardware level performance monitors.

A main requirement for performance measurement is reprodu-
cability. Eichelberger et al. [2] research how MooBench measure-
ments of SPASS-meter can be reproduced. Additionally, Knoche
and Eichelberger [9, 10] discuss how a Raspberry Pi can be used
for reproducable performance measurement. In contrast to their
work, we present measurement results of an established benchmark
on a typical Desktop PC. In order to facilitate reproducibility of
our result, it would make sense to repeat our measurements on
different execution hardware, e.g., on a Raspberry Pi.

Furtheremore, there exist measurement implementations that
aim for minimal overhead using different techniques. JPortal [25]

achieves minimal overhead by using hardware-based tracing us-
ing Intel processor trace. Since this requires decoding the stored
metadata of maschine code executions, the obtained traces are not
completely correct. However, they report an overhead of at maxi-
mum 16.5 %. In contrast to our work, they used different workloads
for benchmarking and their goal was not to get measure accurate
runtimes but obtain accurate traces.

Schardl et al. [18] develop the CSI framework, which is able to
insert code at compile time. This can–amongst other use cases–be
utilized to measure the performance of executed code. They eval-
uate the CSI framework by instrumenting the Apache Server and
the bzip2 data compressor and benchmarking them by appropriate
benchmarks. They find that the overhead is less than 70% of the
programs execution time. While they pursue a similiar approach
for instrumentation, e.g., instrumenting at compile time, they use
a different technology (software written in c) and evaluate bench-
marks measuring real-world use cases. Therefore, their results are
not directly compareable to ours.

5.2 Reduction of the Monitoring Overhead
In the following, we first describe the research on overhead reduc-
tion in Kieker chronologically and afterwards the work on using a
different instrumentation technique.

To reduce the the monitoring overhead, Waller and Hasselbring
[24] first researched how the use of multi-core processors influence
the runtime overhead of Kieker. They find that asynchronous mon-
itoring writers have lower overhead when multi-core processor
systems are used. Waller et al. [23] state that the monitoring over-
head consists of the instrumentation overhead, the data collection
time and the time for writing the data to a queue. They examine
four possible optimizations: (1) Internal optimizations, e.g., reusing
the method String definition, (2) using an ArrayBlockingQueue
from the disruptor framework, (3) sending ByteBuffer instances
to the monitoring queue, instead of the record, and (4) reducing the
amount of source used in Kieker by providing a minimal Kieker
project. They find that the first two optimizations provide signifi-
cant improvements and are feasible from a maintainability point of
view. Optimization (3) reduces the overhead, but requires the defini-
tion of individual serializations for each record type, and is therefore
not considered further. Optimization (4) does slightly reduce the
overhead, but also reduces the maintainability and extendability of
Kieker and is therefore also not considered further.

Finally, Strubel andWulf [20] further reduce themonitoring over-
head. Formerly, string attributes were serialized using a registry
records having an id, so strings are not fully serialized. This trans-
formation of registry records was done in the application thread;
by moving it to the writer thread, both the code complexity and
the overhead inside of the application thread could be reduced.

Since this work builds on the current Kieker version, the feasible
optimizations created by Waller and Hasselbring [24], Waller et
al. [23] and Strubel and Wulf [20] are already included. Neverthe-
less, they had the focus of preserving the architecture discovery
functionality of focus, whereas this work focusses on monitoring
method execution duration without preserving the architecture
discovery functionality.

386

Towards Solving the Challenge of Minimal Overhead Monitoring ICPE ’23 Companion, April 15–19, 2023, Coimbra, Portugal

 0

 10000

 20000

 30000

 40000

 50000

 60000

 70000

 80000

 0 20 40 60 80 100 120 140

D
u
ra

ti
o
n
 /

 µ
s

Call Tree Depth

Kieker Overhead Reductions Measurement Durations

Baseline
Kieker (AspectJ)

Source Instrumentation
+ CircularFifoQueue

+ DurationRecord
+ Aggregated Writer

Figure 5: Growth of the Overhead Based on Call Tree Size

The domain-specific language for bytecode instrumentation
(DiSL) enables a more fine-grained instrumentation than AspectJ
[12]. Since it relies on ASM, it is very likely to have different per-
formance characteristics than Kieker’s default AspectJ instrumen-
tation. Therefore, it would be an alternative for our source code in-
strumentation and could therefore be evaluated against it. However,
there is currently no usable implementation provided, therefore we
cannot compare them.

Okanovic et al. [14] examined how to use different instrumenta-
tion techniques in order to reduce the monitoring overhead. There-
fore, they used DiSL instead of AspectJ for their monitoring system
DProf. They find that using DiSLs reduced the monitoring overhead
by 1.2 % for their use case. In contrast to our work, they used their
system DProf to evaluate the performance overhead. Their perfor-
mance improvement by 1.2 % indicates that DiSL very likely does
not offer a overhead reduction that is as big as the improvement of
our source instrumentation.

5.3 Reduction of the Monitoring
For reduction of monitoring itself, Popiolek et al. [15] research how
to reduce the overhead of performance monitoring by reducing the
performance monitors in cloud infrastructures. They do so by clus-
tering the counters using the Pearson correlation coefficient, i.e., by
determining which counters are either high or low at the same time.
Thereby, they reduce the monitoring overhead by up to one third.
Similarly, Shang et al. [19] determine the performance counters
also by using Pearson correlation of the measured values. After-
wards, they hierarchically cluster the performance counters using

Calinski-Harabasz stopping rule. In contrast to these works, we do
not try to select where to monitor but to reduce the monitoring
overhead at the methods where monitoring happens.

Mertz and Nunes [13] reduce the overhead by adaptive config-
uration: In the first step, they perform a lightweight monitoring.
Based on the results of this monitoring, they decide which parts of
the source code should be monitored in more detail. In contrast to
this work, we do not perform an adaptive configuration but try to
reduce monitoring overhead with static configuration.

6 SUMMARY AND OUTLOOK
We described how we reduced the monitoring overhead of the
Kieker framework. This was done using four changes to the moni-
toring process: Instrumenting the source code directly instead of
instrumenting using AspectJ, reducing the stored monitoring data,
using CircularFifoQueue instead LinkedBlockingQueue and us-
ing an aggregated writer instead of Kiekers FileWriter.

Reduction of the stored monitoring data and usage of an aggre-
gated writer is only feasible if the long-term performance should be
examined. If individual method invocations and outliers for these
invocations should be examined, only source code instrumentation
and the queue exchange can be used.

Using themonitoring overhead benchmarkMooBench, we showed
that all of these optimizations decrease the monitoring overhead.
Therefore, it is planned to make them available for regular monitor-
ing. This requires the following adaptions: (1) For Kieker source in-
strumentation, this has been already done by publishing the code as
part of the Kieker GitHub organization. (2) For the DurationRecord,

387

ICPE ’23 Companion, April 15–19, 2023, Coimbra, Portugal David Georg Reichelt, Stefan Kühne, & Wilhelm Hasselbring

the process of including records with reduced monitoring infor-
mation into the Kieker infrastructure is currently ongoing. Since
Kieker supports a variety of languages, the inclusion of such records
requires defining a basic record in the Kieker Instrumentation Lan-
guage and generating the records for every language out of it.
(3) Switching the queue is a functionality that will stay up to the
user. While using the CircularFifoQueue improves the perfor-
mance statistically significant, it is unclear whether production
systems might produce too many records for the queue and there-
fore records get lost. Future researchmight examinewhether adding
additional checks for integrity could be added without disturbing
the monitoring overhead reduction. (4) It is also planned to add the
AggregatedWriter as part of Kieker itself, but not set it as default.
Thereby, users can switch to the AggregatedWriter if they use
the DurationRecord and aim for only measuring the performance,
but not doing architecture recovery tasks. In addition to adapting
Kieker itself, it should also be checked to which degree aggregating
the data improves the measurement quality. While we assume that
lower overhead always results in improved distinguishability of
measurement results, this thesis requires checking.

This work is a first step towards minimal overhead monitor-
ing: In addition to optimize the process itself, the following fur-
ther optimizations should be researched: (1) Our optimized moni-
toring process should be compared to sampling. While sampling
is only able to obtain the stack trace at safepoints, it has a very
low overhead. Therefore, a comparison between our optimized
Kieker probe and sampling should compare both, the overhead
and the ability to detect performance changes. (2) Usage of adap-
tive monitoring (like [13]): It was shown that deactivated probes
nearly reduce the monitoring overhead to 0. To obtain usable data
while preserving measurement accuracy, it might be promising
to activate probes only part-time. Additionally, our approach is
only able to measure the performance and not the creation of the
call tree, since no monitoring metadata are present. If monitoring
metadata are required, it would also be possible to add multiple
probes to the same source code, one regular probe for creation of
OperationExecutionRecord and one probe for DurationRecord.
Afterwards, the necessary probes could be used. By this work and
the examination of sampling and adaptive monitoring, the defini-
tion of minimal overhead processes for performance monitoring
can be created. This could be the basis for understanding the perfor-
mance behavior of software on a low level in production systems.

Acknowledgments This work was funded by the German Fed-
eral Ministry of Education and Research within the project “Per-
formance Überwachung Effizient Integriert” (PermanEnt, BMBF
01IS20032D).

REFERENCES
[1] Lucian Bara, Oana Boncalo, and Marius Marcu. 2015. Hardware support for per-

formance measurements and energy estimation of OpenRISC processor. In 2015
IEEE 10th Jubilee International Symposium on Applied Computational Intelligence
and Informatics. 399–404. https://doi.org/10.1109/SACI.2015.7208237

[2] Holger Eichelberger, Aike Sass, and Klaus Schmid. 2016. From reproducibility
problems to improvements: a journey. In SSP 2016, Softwaretechnik-Trends, Vol. 36.
43–45.

[3] Holger Eichelberger and Klaus Schmid. 2014. Flexible resource monitoring of
Java programs. Journal of Systems and Software 93 (2014), 163–186. https:
//doi.org/10.1016/j.jss.2014.02.022

[4] Andy Georges, Dries Buytaert, and Lieven Eeckhout. 2007. Statistically Rigorous
Java Performance Evaluation. ACM SIGPLAN Notices 42, 10 (2007), 57–76. https:

//doi.org/10.1145/1297027.1297033
[5] Wilhelm Hasselbring. 2021. Benchmarking as Empirical Standard in Software

Engineering Research, In EASE 2021: Evaluation and Assessment in Software
Engineering. Evaluation and Assessment in Software Engineering, 365–372. https:
//doi.org/doi:10.1145/3463274.3463361

[6] Wilhelm Hasselbring and André van Hoorn. 2020. Kieker: A monitoring frame-
work for software engineering research. Software Impacts 5 (2020), 100019.
https://doi.org/10.1016/j.simpa.2020.100019

[7] Peter Hofer, David Gnedt, and Hanspeter Mössenböck. 2015. Lightweight Java
profiling with partial safepoints and incremental stack tracing. In Proceedings of
the 6th ACM/SPEC International Conference on Performance Engineering. 75–86.

[8] Vojtěch Horký, Jaroslav Kotrč, Peter Libič, and Petr Tůma. 2016. Analysis of
Overhead in Dynamic Java Performance Monitoring. In 7th ACM/SPEC ICPE
(Delft, The Netherlands) (ICPE ’16). Association for Computing Machinery, New
York, NY, USA, 275–286. https://doi.org/10.1145/2851553.2851569

[9] Holger Knoche and Holger Eichelberger. 2017. The Raspberry Pi: A Platform
for Replicable Performance Benchmarks? Softwaretechnik-Trends 37, 3 (2017),
14–16.

[10] Holger Knoche and Holger Eichelberger. 2018. Using the Raspberry Pi and Docker
for Replicable Performance Experiments: Experience Paper. In Proceedings of the
2018 ICPE. 305–316. https://doi.org/10.1145/3184407.3184431

[11] Lizhi Liao, Jinfu Chen, Heng Li, Yi Zeng, Weiyi Shang, Catalin Sporea, Andrei
Toma, and Sarah Sajedi. 2022. Locating Performance Regression Root Causes
in the Field Operations of Web-Based Systems: An Experience Report. IEEE
Transactions on Software Engineering 48, 12 (2022), 4986–5006. https://doi.org/10.
1109/TSE.2021.3131529

[12] Lukáš Marek, Alex Villazón, Yudi Zheng, Danilo Ansaloni, Walter Binder, and
Zhengwei Qi. 2012. DiSL: a domain-specific language for bytecode instrumenta-
tion. In 11th International Conference on Aspect-oriented Software Development.
239–250. https://doi.org/10.1145/2162049.2162077

[13] Jhonny Mertz and Ingrid Nunes. 2019. On the Practical Feasibility of Software
Monitoring: A Framework for Low-Impact Execution Tracing. In 14th SEAMS
(Montreal, Quebec, Canada). IEEE Press, 169–180. https://doi.org/10.1109/SEAMS.
2019.00030

[14] Dušan Okanović, Milan Vidaković, and Zora Konjović. 2013. Towards perfor-
mance monitoring overhead reduction. In 2013 IEEE 11th International Symposium
on Intelligent Systems and Informatics (SISY). 135–140. https://doi.org/10.1109/
SISY.2013.6662557

[15] Pedro Freire Popiolek, Karina dos Santos Machado, and Odorico Machado Men-
dizabal. 2021. Low overhead performance monitoring for shared infrastructures.
Expert Systems with Applications 171 (2021), 114558. https://doi.org/10.1016/j.
eswa.2020.114558

[16] David Georg Reichelt, Stefan Kühne, and Wilhelm Hasselbring. 2021. Overhead
Comparison of OpenTelemetry, inspectIT and Kieker. In SSP 2021.

[17] David Georg Reichelt, Stefan Kühne, and Willhelm Hasselbring. 2019. PeASS: A
Tool for Identifying Performance Changes at Code Level. In Proceedings of the
33rd ACM/IEEE ASE. ACM. https://doi.org/10.1109/ASE.2019.00123

[18] Tao B Schardl, Tyler Denniston, Damon Doucet, Bradley C Kuszmaul, I-Ting An-
gelina Lee, and Charles E Leiserson. 2017. The CSI Framework for Compiler-
Inserted Program Instrumentation. Proceedings of the ACM on Measurement and
Analysis of Computing Systems 1, 2 (2017), 1–25. https://doi.org/10.1145/3154502

[19] Weiyi Shang, Ahmed E Hassan, Mohamed Nasser, and Parminder Flora. 2015.
Automated Detection of Performance Regressions Using Regression Models on
Clustered Performance Counters. In Proceedings of the 6th ACM/SPEC Interna-
tional Conference on Performance Engineering. ACM, 15–26. https://doi.org/10.
1145/2668930.2688052

[20] Hannes Strubel and Christian Wulf. 2016. Refactoring Kieker’s Monitoring
Component to further Reduce the Runtime Overhead. In Symposium on Software
Performance 2016 (SSP ’16).

[21] Jan Waller. 2015. Performance Benchmarking of Application Monitoring Frame-
works. BoD–Books on Demand.

[22] Jan Waller, Nils Christian Ehmke, and Wilhelm Hasselbring. 2015. Including
Performance Benchmarks into Continuous Integration to Enable DevOps. ACM
SIGSOFT Software Engineering Notes 40, 2 (3 2015), 1–4. https://doi.org/10.1145/
2735399.2735416

[23] Jan Waller, Florian Fittkau, and Wilhelm Hasselbring. 2014. Application perfor-
mance monitoring: Trade-off between overhead reduction and maintainability.
Proceedings of the Symposium on Software Performance (2014).

[24] Jan Waller and Wilhelm Hasselbring. 2012. A Comparison of the Influence
of Different Multi-Core Processors on the Runtime Overhead for Application-
Level Monitoring. In International Conference on Multicore Software Engineering,
Performance, and Tools. Springer, 42–53. https://doi.org/10.1007/978-3-642-31202-
1_5

[25] Zhiqiang Zuo, Kai Ji, Yifei Wang, Wei Tao, Linzhang Wang, Xuandong Li, and
Guoqing Harry Xu. 2021. JPortal: Precise and efficient control-flow tracing
for JVM programs with Intel Processor Trace. In Proceedings of the 42nd ACM
SIGPLAN ICPLDI. 1080–1094. https://doi.org/10.1145/3453483.3454096

388

https://doi.org/10.1109/SACI.2015.7208237
https://doi.org/10.1016/j.jss.2014.02.022
https://doi.org/10.1016/j.jss.2014.02.022
https://doi.org/10.1145/1297027.1297033
https://doi.org/10.1145/1297027.1297033
https://doi.org/doi:10.1145/3463274.3463361
https://doi.org/doi:10.1145/3463274.3463361
https://doi.org/10.1016/j.simpa.2020.100019
https://doi.org/10.1145/2851553.2851569
https://doi.org/10.1145/3184407.3184431
https://doi.org/10.1109/TSE.2021.3131529
https://doi.org/10.1109/TSE.2021.3131529
https://doi.org/10.1145/2162049.2162077
https://doi.org/10.1109/SEAMS.2019.00030
https://doi.org/10.1109/SEAMS.2019.00030
https://doi.org/10.1109/SISY.2013.6662557
https://doi.org/10.1109/SISY.2013.6662557
https://doi.org/10.1016/j.eswa.2020.114558
https://doi.org/10.1016/j.eswa.2020.114558
https://doi.org/10.1109/ASE.2019.00123
https://doi.org/10.1145/3154502
https://doi.org/10.1145/2668930.2688052
https://doi.org/10.1145/2668930.2688052
https://doi.org/10.1145/2735399.2735416
https://doi.org/10.1145/2735399.2735416
https://doi.org/10.1007/978-3-642-31202-1_5
https://doi.org/10.1007/978-3-642-31202-1_5
https://doi.org/10.1145/3453483.3454096

	Abstract
	1 Introduction
	2 Foundations
	2.1 Kieker
	2.2 MooBench

	3 Performance Optimizations for Kieker Probes
	3.1 Source Code Instrumentation Instead AspectJ
	3.2 DurationRecord Instead of OperationExecutionRecord
	3.3 CircularFifoQueue Instead of LinkedBlockingQueue
	3.4 Storing Aggregated Data Instead of Method Executions

	4 Benchmarking Results of the Performance Optimizations
	4.1 Setup
	4.2 Source Code Instrumentation
	4.3 DurationRecord
	4.4 CircularFifoQueue
	4.5 Aggregated Writing
	4.6 Combination

	5 Related Work
	5.1 Measurement
	5.2 Reduction of the Monitoring Overhead
	5.3 Reduction of the Monitoring

	6 Summary and Outlook
	References

