
From UML/MARTE Specifications to ESL HW/SW Co-Design:
Early Functional Verification and Timing Validation

Vittorio Cortellessa
University of L’Aquila

Italy
vittorio.cortellessa@univaq.it

Luigi Pomante
University of L’Aquila

Italy
luigi.pomante@univaq.it

Vincenzo Stoico
University of L’Aquila

L’Aquila, Italy
vincenzo.stoico@graduate.univaq.it

Abstract
The continuous adoption of embedded systems in the most diverse
application domains contributes to the increasing complexity of
their development. Hardware/Software Co-Design methodologies
are usually employed to tackle the challenges deriving from even
more stringent functional and non-functional requirements. Using
thesemethodologies, several validation and verification steps can be
carried out early in the design process using a unified, technology-
independent system model.

This work investigates the possibility of integrating formal func-
tional verification and timing validation in a Hardware/Software
Co-Design flow at the system-level of abstraction. Specifically, we
introduce Co-V&V, namely an additional step that consists of two
phases: (i) a transformation from UML/MARTE to UPPAAL Timed
Automata, and (ii) a preliminary functional verification and timing
validation that exploits the UPPAAL verifier.

We describe the Co-V&V step through a case study character-
ized by a component-based architecture and reactive behavior. The
verification and validation conducted with UPPAAL indicate that
our approach is particularly effective in discovering design flaws
located in the communication protocol as well as those arising from
the internal behavior of components.

CCS Concepts
• Software and its engineering→UnifiedModeling Language
(UML); Formal software verification; • Computer systems organi-
zation → Embedded systems.

Keywords
UML, HW/SW Co-Design, UPPAAL, Model Checking, Formal Veri-
fication, Timing Validation

ACM Reference Format:
Vittorio Cortellessa, Luigi Pomante, and Vincenzo Stoico. 2023. From UML/
MARTE Specifications to ESL HW/SW Co-Design: Early Functional Ver-
ification and Timing Validation. In Companion of the 2023 ACM/SPEC In-
ternational Conference on Performance Engineering (ICPE ’23 Companion),
April 15–19, 2023, Coimbra, Portugal. ACM, New York, NY, USA, 8 pages.
https://doi.org/10.1145/3578245.3584850

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
ICPE ’23 Companion, April 15–19, 2023, Coimbra, Portugal
© 2023 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 979-8-4007-0072-9/23/04. . . $15.00
https://doi.org/10.1145/3578245.3584850

1 Introduction

The rising adoption of embedded systems led designers to deal
with more stringent functional and non-functional requirements.
This trend has made inefficient the classical design flow in which
the hardware and software were developed independently until
the final integration step. Hardware/Software Co-Design has been
introduced to overcome the shortcomings of such a classical de-
sign flow. Its key feature consists in the adoption of a behavioral
and implementation-agnostic model to represent the target system.
Based on this model, the designer can perform preliminary analyses
before the Design Space Exploration (DSE) step and, consequently,
reduce the defect density in later stages. Therefore, these activities
require modeling languages, sufficiently expressive, to represent
system functional and non-functional requirements.

The survey conducted by Liebel et al. [15] shows that UML is
among the most used modeling languages in the embedded systems
industry, where UML is often enriched with MARTE (Modeling
and Analysis of the Real-Time Embedded systems) annotations
[18]. MARTE is a standard profile to represent quantitative non-
functional properties (e.g., time, performance). UML specification,
in some of its sections, delegates to the designer the interpreta-
tion of its semantics (i.e., variation points). This aspect enables
the designer to explore potential design alternatives, but at the
same time it hampers a rigorous analysis of system properties [9].
The introduction of Model-To-Model (M2M) transformations from
UML/MARTE to formal languages is a common practice to include
formal verification into the design flow [16]. As a consequence,
M2M transformations that apply to MARTE-annotated UML mod-
els have the potential to generate not only functional models but
also non-functional ones.

There is significant evidence in literature about the need to intro-
duce formal analyses in the ESL (Electronic System-Level) design
flow [14, 15, 21, 23, 26]. Moreover, the state of art already provides
examples of HW/SW Co-Design flows starting from UML/MARTE
models that integrate formal verification and validation (V&V)
[2, 13, 25]. However, V&V is usually performed after some refine-
ments of the initial model. We intend to anticipate V&V by raising
its level of abstraction, thus we add a step dedicated to functional
verification and timing validation, namely Co-V&V, early in the de-
sign flow. In this paper, Co-V&V is based on a M2M transformation
from UML/MARTE to Timed Automata, and the usage of UPPAAL
model checker [1] to analyse the generated automata.

Figure 1 shows the V&V-based HW/SW Co-Design flow that we
envision in this paper. The flow starts with the Co-Specification
step focusing on the construction of an initial model. We envisage a
model that results from the composition of three views: Application,
Communication, and Time. The Application View embodies the

373

https://orcid.org/0000-0002-4507-464X
https://orcid.org/0000-0002-4137-3634
https://orcid.org/0000-0002-3681-372X
https://doi.org/10.1145/3578245.3584850
https://doi.org/10.1145/3578245.3584850

ICPE ’23 Companion, April 15–19, 2023, Coimbra, Portugal Vittorio Cortellessa, Luigi Pomante, & Vincenzo Stoico

logical structure and the behavior aspects of the application. In
this view, system entities are described at a high abstraction level
and cannot be distinguished according to their implementation
(i.e., hardware or software). The Communication View includes
the communication protocols used for system entities interactions,
while the Time View encloses time requirements such as duration
constraints.

The Co-Specification is followed by two steps targeting different
system properties: Co-V&V and Co-Analysis. Co-V&V purpose is to
check control flow correctness and the satisfiability of timing con-
straints. Co-Analysis focuses on the analysis of system performance
exploiting performance models (e.g., Layered Queuing Networks).
Co-Analysis provides a first performance estimation, which will be
thereafter refined during the DSE phase. In the proposed HW/SW
Co-Design flow, the DSE suggests the physical structure of the sys-
tem (e.g., the processors, the memory architecture, and the physical
links connecting them) and the mapping of the model elements
onto it. After such mapping, the performance of the new model is
estimated through a further Co-Analysis step. The DSE outputs a
system model enclosing hardware/software structure and behavior.

In this paper, we investigate the problem of model checking
UML/MARTE models to assess control-flow correctness and time
constraints satisfiability. These problems are faced during Co-V&V,
which is based (as mentioned before) on UPPAAL Timed Automata.
We illustrate in some details the Co-Specification and Co-V&V steps
through the FIRGCD (Finite Impulse Response Greatest Common
Divisor) case study [20]. The major contributions provided by this
work are:

• we introduce a novel organization for embedded systems
models composed by three views: Application, Communica-
tion, Time. We refine the definition of Communication View
proposed by Enrici et al. [10] and contribute by adding a
Time View;

• we exploit a subset of UML/MARTE for modeling reactive
components, message-based communication, and time con-
straints on the duration of interactions;

• we define a semantic mapping from UML/MARTE to a net-
work of timed automata. The transformation exploits both
system architectural and behavioral description as well as
the organization in views of the model;

• we provide strategies to perform functional verification and
timing validation of embedded systems using UPPAAL.

The paper is organized into the following sections: Section 2
describes UML/MARTE and the main features of UPPAAL, Section 3
illustrates the Co-Specification step, Section 4 deepens the semantic
mapping between UML/MARTE and timed automata, Section 5
reports the properties verified using UPPAAL and the results of
the verification on the considered case study, Section 6 discusses
related work while Section 7 concludes the paper.

2 Background

2.1 UML/MARTE
The Unified Modeling Language (UML) [19] is a general-purpose
modeling language, among the most used in the embedded systems
domain [15]. Due to its vast semantics, UML enables the repre-
sentation of structural and behavioral aspects at different levels

DSE

Application View

Time View

Communication View

Low-level

stages

Figure 1: V&V-Based Hardware/Software Co-Design Flow

of abstraction. For example, the UML Component Diagram is of-
ten employed to model component-based architectures, while the
UML Activity Diagram is used to represent fine-grained behaviors.
However, UML, as a general-purpose language, fails to represent
domain-specific situations. For example, when modeling real-time
behaviors where a more precise representation of timing properties
is needed. For this purpose, UML can be extended using the Model-
ing and Analysis of the Real-Time Embedded systems (MARTE) [18]
profile. Indeed, MARTE provides classes such as TimedProcessing
to assign a duration to system entities. Moreover, MARTE includes
the Value Specification Language (VSL) to specify time constants
and expressions. For example, the tuple (100,ms) denotes 100 mil-
liseconds. This tuple can be used to define a duration constraint
such as (endEvent - startEvent) <= (100, ms). This constraint
binds the interval between two observed events to last at most 100
milliseconds.

2.2 UPPAAL
The UPPAAL model checker [1] aims at the verification of real-time
systems represented via a network of timed automata. Automata
execute in parallel and they can synchronize using channels. A
rendezvous is modeled by labeling two edges of two different au-
tomata with c? and c!. Moreover, UPPAAL automata are specified
as parametric templates that may be extended with discrete and
real-valued variables named clocks. A timed automaton is made by
a set of locations and a set of edges. A location may have an invari-
ant that denotes the property held while staying at that location.
An initial location is unique and describes the starting condition
of the automaton, while an urgent one defines a location with no
delay. Edges may have guards to allow transitions, channel syn-
chronizations, and variable assignment.

System properties are expressed using Computational Tree Logic
(CTL) [7]. Examples of properties are deadlock freedom, program
termination, and location reachability. A CTL formula may be de-
fined over the states or the paths of the timed automata network.
Properties over paths are written using two CTL quantifiers: All (A)
and Exists (E). A 𝜙 says that 𝜙 should hold for all paths, while E 𝜙

describes a property valid for one or more paths. In UPPAAL, a path
quantifier should be followed by a linear time operator between

374

From UML/MARTE Specifications to ESL HW/SW Co-Design: Early Functional Verification and Timing Validation ICPE ’23 Companion, April 15–19, 2023, Coimbra, Portugal

Finally (F) 𝜙 (i.e., ^) and Globally (G) 𝜙 (i.e., □). They express state-
ments specific to a path. Indeed, F 𝜙 is used when 𝜙 can eventually
hold in the path, while, using G, 𝜙 should be satisfied in all the
subsequent states.

Timed automata are insufficient for modeling non-deterministic
decisions [7]. For this reason, UPPAAL has been extended to support
Stochastic Model Checking (SMC) [7]. Probabilistic branches are
defined by labeling outgoing edges of branching points with proba-
bilities. This enhancement allows for more fine-grained analyses.
It is possible to write properties over a fixed observation time and
number of executions. For example, 𝑃𝑟 [<= 100; 200] (^𝜙) returns
the probability to satisfy 𝜙 in 100 time units, and the expression
is evaluated by performing 200 runs. The precision of the result
is proportional to the number of repeated runs. Lastly, the SMC
extension provides an operator to calculate the expected value of an
integer clock variable with an interval of time. Such an expression
is written as 𝐸 [<= 100; 200] (𝑚𝑎𝑥 : 𝜙) that calculates the average
of 𝜙 by considering, at each run, the maximum value that 𝜙 can
assume.

3 Co-Specification
As explained in the Introduction, the proposed HW/SW Co-Design
flow involves an initial modeling step called Co-Specification. Sec-
tion 3.1 details the constructs of UML/MARTE used, in each view, to
describe system structural, behavioral, and time concerns. Instead,
Section 3.2 presents a toy case study: FIRGCD.

3.1 UML/MARTE Subset
The three views of the system embed, respectively, the application,
the communication protocols, and the timing constraints. Aspects as
structure and behavior are cross-cutting to the views. For example,
system behavior is partly represented in the Application View,
for what concerns a system element internal behavior, and partly
represented in the Communication View, for what concerns the
interactions among system elements. This section describes the
elements of UML/MARTE selected to model FIRGCD structure,
behavior, and time.

3.1.1 Structure Specification The description of the logical struc-
ture of the system involves system entities and their interconnec-
tions. These static aspects are shown using a UML Component
Diagram, which consists of a set of UML Components connected
through UML Connectors. Components exchange data over connec-
tors through one or more input/output UML Ports. Each component
may contain sub-components in a hierarchical fashion. Data are
forwarded to sub-components by binding the input ports of a com-
ponent to those of its sub-components. Data forwarding is modeled
annotating a UML association with «delegate». Figure 2 reports
the structure specification of FIRGCD, which is described in details
in Section 3.2.

3.1.2 Behavior Specification A designer can leverage the exten-
sive semantics of UML to define fine-grained behaviors. Such a
detailed behavioral specification reproduces the flow of operations
executed by system components. In an activity diagram, the UML
CallOperationAction element represents the action of calling of
an operation. Moreover, the execution flow may involve branching
points and possible exceptions. Branching points are denoted by a

UML DecisionNode, while exceptions are indicated using the UML
RaiseExceptionAction element.

Since embedded systems are typically reactive [24], it is neces-
sary to model behaviors dealing with asynchronous events. The
action of waiting for an event has been modeled using the UML
AcceptEventAction element. This element has an attribute (i.e.,
Trigger) defining the kind of expected event. However, UML lacks se-
mantics for representing the reception of specific types of messages.
We employ the MARTE «DataEvent» stereotype to fill this lack.
The «DataEvent» stereotype extends the UML AnyReceiveEvent
element by adding a tag denoting the message type. After process-
ing, data are written on ports using the UML SendObjectAction
element. Instead, signals reception and sending are modeled, respec-
tively, through UML ReceiveSignalEvent and SendSignalEvent.

3.1.3 Time Specification In the time model of UML, time instants
correspond to event occurrences. UML provides the concept of
Observation to represent an instant (i.e., UML TimeObservation)
during an execution. Observations can be combined with value
specifications to define temporal constraints on system behavior.
For this purpose, it is useful to exploit the syntax of the Value
Specification Language (VSL) [18], embedded in MARTE, to define
time values. For example, the VSL expression 𝑒𝑛𝑑𝐸𝑣𝑒𝑛𝑡−𝑠𝑡𝑎𝑟𝑡𝐸𝑣𝑒𝑛𝑡
represents the duration between the occurrence of two events. In
our model, 𝑒𝑛𝑑𝐸𝑣𝑒𝑛𝑡 and 𝑠𝑡𝑎𝑟𝑡𝐸𝑣𝑒𝑛𝑡 are two TimeObservation
associated to the occurrence of two events. Therefore, we define
constraints on execution chunks written as 𝑒𝑣𝑒𝑛𝑡2 − 𝑒𝑣𝑒𝑛𝑡1 ∽ 𝑥

where 𝑒𝑣𝑒𝑛𝑡1, 𝑒𝑣𝑒𝑛𝑡2 are instances of TimeObservation, ∽ ∈ {>=
, <=, >, <,=}, and 𝑥 is a real number or a VSL time value.

3.2 Modeling the case study: FIRGCD
The features of FIRGCD [20] made it suitable for V&V of reactive
and distributed computation. FIRGCD [20] is made by a network
of processes communicating via point-to-point channels. The pro-
cesses react upon the reception of data or signals.

3.2.1 Application View Figure 2 shows the structure of FIRGCD.
The structure comprises a cluster of components dealing with the
generation of inputs for the Application. This cluster includes two
Stimulus (i.e., stim0 and stim1) and a Timer. The stimuli generate
a random integer every time they receive signals from the timer.
The generated integers are passed to the FIR filters: fir8 and fir16.
The filters execute whenever an integer shows up at their input
port. The GCD component waits until data is ready on both input
ports before starting the processing. GCD receives the data from
the filters and sends the result to a Display instance. The latter
component shows the result of the Application. The behavioral
specification of FIRGCD embodies the interactions among system
entities (i.e., system-level behavior) plus the description of their
internal behavior. The latter is specified by the class to which each
element belongs to. For example, the fir8 and fir16 components,
in Figure 2, have the same behavior since they are instances of
the same class (i.e., the FIR class). In system-level behavior, they
can be parameterized differently and associated with different time
constraints.

3.2.2 Communication View The Communication View describes
the exchange of information among components and was first in-
troduced by Enrici et al. [10]. The main reason behind the adoption

375

ICPE ’23 Companion, April 15–19, 2023, Coimbra, Portugal Vittorio Cortellessa, Luigi Pomante, & Vincenzo Stoico

Figure 2: FIRGCD Component Diagram

integer at sender port

channel_buffer : Integer

transmit

lost

Figure 3: Communication Protocol adopted by the connectors
of FIRGCD

of the Communication View is to overcome communication mis-
match in the later stages of the design. As highlighted by Enrici
et al., communication logic is usually embedded in the application
and platform description but it is realized using different models of
computation. Therefore, the designer may encounter inconsistency
issues during the mapping stage of a HW/SW Co-Design flow. For
the sake of simplicity, we consider all the connectors of FIRGCD,
i.e. the solid lines in Figure 2, implementing the same protocol. Fig-
ure 3 shows the communication protocol of FIRGCD. The protocol
implemented in our case study consists of a point-to-point com-
munication. The exchange is unidirectional, so it involves a single
sender and receiver. The data is kept until the buffer is filled. Once
full, buffer elements are transmitted one at a time to the receiver.
Data received while the buffer is full are lost. Moreover, data could
be lost during transmission. In this case, the protocol provides for
the re-transmission of the data. The flow ends whenever everything
is successfully transmitted.

3.2.3 Time View In FIRGCD, time flows continuously. The genera-
tion of integers is regulated by a Timer, which periodically sends a
signal to stim0 and stim1 after a delay of 100 time units. To model
the duration of the delay, we used the MARTE TimedProcessing
stereotype. The activity diagram of the Timer includes an action
named delay annotated with TimedProcessing. This stereotype
has the tag duration set to 100. Moreover, MARTE helps in con-
straining the duration of actions and execution chunks. Such a
constraint expresses the duration between the occurrence of two
events. In FIRGCD, we impose a limit of 100 time units on the exe-
cution chunk that begins when the timer is triggered (i.e., receipt
of reset on stim0), and ends when the output is shown to the
user. This constraint, named 𝑔𝑙𝑜𝑏𝑎𝑙_𝑐𝑜𝑛𝑠𝑡𝑟𝑎𝑖𝑛𝑡 is defined using the
following VSL expression: 𝑑𝑖𝑠𝑝𝑙𝑎𝑦𝑒𝑑 − 𝑟𝑒𝑠𝑒𝑡 < 100.

4 UML/MARTE to UPPAAL Timed Automata
Transformation

In order to exploit UPPAAL for functional verification and timing
validation, we defined a semantic mapping from UML/MARTE to
UPPAAL timed automata network. The network is built considering
the architecture of the model and the behavioral description of each
component. Table 1 reports all the elements involved in the genera-
tion of the automata. Each activity diagram represents the internal
behavior of a system element and it has a corresponding UPPAAL
template. A template can be instantiated in one or more UPPAAL
Processes. In our case, each process represents the behavior of a
component. The node starting the flow of an activity diagram (i.e.,
InitialNode) is converted into the initial location of the target au-
tomaton. The remaining locations are obtained transforming each
action found in the activity diagram.

We used the architecture of the model, in Figure 2, to define
the topology of the network of timed automata. In UPPAAL, we
bound connectors by modeling the data exchange between compo-
nents. Indeed, in the UML/MARTE model, components can write
and read data to/from the connectors. This aspect is modeled in UP-
PAAL using channels. For each connector, we create two channels:
conn and data. The conn channels are used to model rendezvous
between components and connectors. We use conn! to denote a

376

From UML/MARTE Specifications to ESL HW/SW Co-Design: Early Functional Verification and Timing Validation ICPE ’23 Companion, April 15–19, 2023, Coimbra, Portugal

Table 1: UML/MARTE to UPPAAL Timed Automata Trans-
formation

UML/MARTE Element UPPAAL Element

InitialNode InitialLocation

Action Location

lost
«raiseException»

AcceptEventAction Reception of Signal
integer at
sender port s?

SendSignalAction Emission of Signal

transmit s!

Decision Branching Point

component sending data to a connector, while conn? embodies a
connector waiting for data to be written. The data channels have
the same semantics but the roles are inverted. In the same way, we
use UPPAAL synchronizations to model the arrival and the emis-
sion of signals. In our model, the signal exchange is modeled using
AcceptEventAction for the reception and SendSignalAction for
the emission of signals. Finally, we translated UML decision nodes
into UPPAAL branching points. Each outgoing edge of a branching
point is annotated with a probability chosen by the designer.

5 Co-V&V
The timed automata network resulting from the transformation is
supplied to UPPAAL for verification and validation. We defined a
set of properties, expressed in Computation Tree Logic (CTL) [7],
to check functional correctness and validate the timing constraints
defined the in UML/MARTE model. Table 2 reports the CTL formu-
lae along with the results produced by the UPPAAL verifier. These
results are used to improve the UML/MARTE model defined dur-
ing Co-Specification. It is evident by looking at the description of
FIRGCD, in Section 3.2, that the results of the V&V are conditioned
by the quality of the communication protocol. Indeed, the latter
implements the most sophisticated behavior. Thus, in the case of
FIRGCD, the quality of the initial design can be improved by sim-
plifying the structure of FIRGCD or the logic of the communication
protocol, respectively, in Figure 2 and Figure 3. Therefore, before
calculating the results, it is necessary to fix the parameters that can
affect the results of the formulae. In FIRGCD, these parameters are
the probability values labeling the edges of the branching points
in Figure 3. As described in Section 3.2.2, the protocol starts the
transmission when the buffer is full. We test the system consider-
ing a small capacity buffer to obtain many transmissions during

the observation time frame. The situation involving a full buffer is
represented setting a likelihood of 80% between DataArrived and
Transmit. The functional correctness of the system can be verified
by defining CTL formulae that ensure the reachability of timed
automata locations and deadlock freedom. During the simulation of
the timed automata network, reaching a specific location can rep-
resent a correct or faulty behavior of the system. Besides, whether
this is done within a time frame reveals the satisfiability of timing
constraints. Before proceeding to deeper analyses, it is important to
know if the system execution does not lead to a deadlock. Deadlock
freedom of FIRGCD is guaranteed executing Equation 1 in Table 2
in the UPPAAL verifier.

5.1 Reachability of Display

In FIRGCD, Display reachability can be considered evidence of suc-
cessful execution. Using the Stochastic Model Checking features of
UPPAAL, we can calculate the likelihood of reaching the displayed
location. Equation 2 and Equation 3 express, respectively, the reach-
ability of the displayed location in some and all the execution
traces. The satisfiability of these formulae suggests whether the
displayed location is eventually reached. Therefore, in case the
formulae are satisfied, a designer can perform a deeper analysis
checking the likelihood to reach displayed. Equation 4 calculates
the probability that the displayed location is reached within the
first 300 time units. A low probability value can be a symptom of
problems occurring before arriving at Display.

The UPPAAL verifier validates the Equation 2, while the com-
pliance of Equation 3 is not guaranteed. The non-compliance of
Equation 3 implies that Display might never be reached. This behav-
ior may stem from the communication protocol, since the protocol
models the situation in which there is a loss of data. Thus, in the
worst case, data could be infinitely lost and never reach Display.
The execution of the Equation 4 outputs that the probability to
reach the displayed location within 300 time units lies between
82% and 85% measured in 2000 runs.

Figure 6a reveals that the displayed location is periodically
reached. This phenomenon may originate from the behavior of
Timer. Indeed, the Timer starts the execution flow by sending a
signal to stim0 and stim1 each 50 time unit. In order to prove it,
we have shortened the Timer by decreasing the delay to 20 time
units. The results show that the probability increased to a range
of 89% to 92%. This hypothesis is supported by comparing Figure
6a and Figure 6b. Indeed, Figure 6b shows a chart shifted to the
left with more concentrated values than Figure 6a. However, the
average number of data lost by all the connectors, calculated using
the Equation 8, increases from 1.48 to 1.84. This issue can be fixed
by changing the structure of the UML/MARTE model, in Figure
2, by merging the connectors linking the filters with the GCD
component. Moreover, the resulting connector will implement a
larger buffer to store the results of the filters. A larger buffer can be
represented by decreasing the probability that the buffer is full from
80% to 60%. Thus, in Figure 4, we change the probability value on
the edge connecting DataArrived to Transmit. The reachability
of the displayed location becomes almost certain within 300 time
units, while the average number of data lost decreases from 1.84 to
0.91.

377

ICPE ’23 Companion, April 15–19, 2023, Coimbra, Portugal Vittorio Cortellessa, Luigi Pomante, & Vincenzo Stoico

Table 2: System properties checked using UPPAAL

Property Expression Results
Deadlock Freedom (1) 𝐴□𝑛𝑜𝑡 𝑑𝑒𝑎𝑑𝑙𝑜𝑐𝑘 Satisfied
Reachability (2) 𝐸^ 𝑑𝑖𝑠𝑝𝑙𝑎𝑦.𝐷𝑖𝑠𝑝𝑙𝑎𝑦𝑒𝑑 Satisfied

(3) 𝐴^ 𝑑𝑖𝑠𝑝𝑙𝑎𝑦.𝐷𝑖𝑠𝑝𝑙𝑎𝑦𝑒𝑑 Unsatisfied
(4) 𝑃𝑟 [<= 300; 2000] (^𝑑𝑖𝑠𝑝𝑙𝑎𝑦.𝐷𝑖𝑠𝑝𝑙𝑎𝑦𝑒𝑑) [0.821109, 0.853893]

Communication (5) 𝐸^ 𝑓 𝑜𝑟𝑎𝑙𝑙 (𝑖 : 𝑐𝑜𝑛𝑛_𝑡)𝐶𝑜𝑛𝑛𝑒𝑐𝑡𝑜𝑟 (𝑖) .𝑇𝑟𝑎𝑛𝑠𝑚𝑖𝑡𝑡𝑒𝑑 Satisfied
(6) 𝑃𝑟 [<= 200; 500] (^𝐶𝑜𝑛𝑛𝑒𝑐𝑡𝑜𝑟 (4) .𝑇𝑟𝑎𝑛𝑠𝑚𝑖𝑡𝑡𝑒𝑑) [0.419613, 0.508815]
(7) 𝐸 [<= 300; 500] (𝑚𝑎𝑥 : 𝑠𝑢𝑚(𝑖 : 𝑐𝑜𝑛𝑛_𝑡)𝐶𝑜𝑛𝑛𝑒𝑐𝑡𝑜𝑟 (𝑖).𝑇𝑟𝑎𝑛𝑠𝑚𝑖𝑡𝑡𝑒𝑑) 2.078
(8) 𝐸 [<= 300; 500] (𝑚𝑎𝑥 : 𝑠𝑢𝑚(𝑖 : 𝑐𝑜𝑛𝑛_𝑡)𝐶𝑜𝑛𝑛𝑒𝑐𝑡𝑜𝑟 (𝑖).𝐿𝑜𝑠𝑡) 1.48

Time (9) 𝐸 [<= 100; 2000] (𝑚𝑎𝑥 : 𝑆𝑡𝑜𝑝𝑤𝑎𝑡𝑐ℎ.𝑥) 53.991

5.2 Communication Correctness
The benefits of introducing a Communication View become ev-
ident in the Co-V&V step. Throughout the transformation, each
communication protocol is translated into an independent UPPAAL
template. In this way, every protocol results in a different timed
automaton that can be analyzed separately. This modeling decision
reduces V&V complexity since the designer may check communi-
cation properties independently from the network behavior. The
architecture of FIRGCD, in Figure 2, presents five connectors im-
plementing a common communication protocol. Therefore, the
resulting network contains a unique UPPAAL template, embodying
the protocol behavior, and a UPPAAL process for each connector.
The functional correctness of the protocol implies that data is even-
tually transmitted. This test can be done by checking the location
representing the system state after the transmission of an item.
However, due to the shape of the Activity Diagram, the obtained
protocol automaton does not include such a location. Therefore, we
add a location to the protocol automaton called Transmitted. Fig-
ure 4 depicts the protocol automaton including the Transmitted
location. This situation can happen whenever a designer represents
a behavior at a high level of abstraction and desires to perform
a more fine-grained verification during Co-V&V. In our case, the
Transmit location denotes the system state when ready to send
data. However, it does not inform about what happened before (i.e.,
if data has just been sent or not). Equation 5 guarantees that data
is eventually transmitted by all the connectors. Instead, Equation
6 returns the probability of transmitting data from the Connec-
tor(4), namely cnc4 in Figure 2, within the first 200 time units.
Consequently, the same property can be checked when data is lost.
Expressions involving time values, like Equation 5, are well suited
for checking the satisfiability of timing constraints defined in the
Time View.

The UPPAAL verifier outputs a range between 41% and 50% for
Equation 6, while a likelihood within 38% and 47% that information
is lost. Further insights about the system model may arise by check-
ing the average number of data items transmitted and lost. Equation
7 outputs 2.078 that denotes the maximum average data transmitted
within 300 time units. The same property can be written for the
loss of data. In this case, the verifier returns an average of 1.48.

5.3 Timing Validation
The Time View describes the definition of constraints on the time
elapsing between the occurrence of two events. One example of

Figure 4: Connector Automata

such a constraint, i.e. the global_constraint, is described in Sec-
tion 3.2.3. This constraint binds time from when stim0 generates
an integer to the moment this integer will be displayed. An event
can occur multiple times during an execution. Therefore, to mea-
sure a time interval, we need to track the time elapsing between
the 𝑖𝑡ℎ occurrences of two events. The introduction of variables or
locking mechanisms to control the occurrence of events seemed a
solution that would substantially complicate the network of timed
automata. For this reason, we introduced an additional timed au-
tomaton behaving as a stopwatch. Figure 5 depicts the automaton
of the stopwatch. The stopwatch switches to the waiting state upon
the arrival of 𝑠𝑡𝑎𝑟𝑡 ! and exits at the reception of 𝑠𝑡𝑜𝑝!. Hence, the
duration of intervals can be checked by measuring how much time
the stopwatch spends in the waiting state.

We check the satisfiability of 𝑔𝑙𝑜𝑏𝑎𝑙_𝑐𝑜𝑛𝑠𝑡𝑟𝑎𝑖𝑛𝑡 through Equa-
tion 9. This formula includes the expression 𝑚𝑎𝑥 : 𝑆𝑡𝑜𝑝𝑤𝑎𝑡𝑐ℎ.𝑥

that denotes the maximum value of 𝑥 over a run. The variable 𝑥
is a clock that is reset as the stopwatch enters and exits the wait-
ing state. The UPPAAL verifier evaluates Equation 9 for 2000 runs,
each lasting for 300 time units. At each run, the verifier takes the
maximum value of 𝑥 , and then it returns the average of all values
chosen in 2000 runs. Equation 9 outputs that the average dura-
tion of the interval between reset and displayed equals to 130.75
time units. So, 𝑔𝑙𝑜𝑏𝑎𝑙_𝑐𝑜𝑛𝑠𝑡𝑟𝑎𝑖𝑛𝑡 is not satisfied since the dura-
tion between these two events should not exceed 100 time units.
The same thing happens considering the improved structure of
FIRGCD as described in Section 5.1. In this case, Equation 9 results
in an average of 118.59. It is worth noting that the satisfiability of
𝑔𝑙𝑜𝑏𝑎𝑙_𝑐𝑜𝑛𝑠𝑡𝑟𝑎𝑖𝑛𝑡 is remarkably affected by the delay of the timer
as well as the duration of the shifting and evaluation operations
of the filters. Consequently, it is sufficient to reduce these duration

378

From UML/MARTE Specifications to ESL HW/SW Co-Design: Early Functional Verification and Timing Validation ICPE ’23 Companion, April 15–19, 2023, Coimbra, Portugal

Figure 5: Stopwatch Automaton

values to meet 𝑔𝑙𝑜𝑏𝑎𝑙_𝑐𝑜𝑛𝑠𝑡𝑟𝑎𝑖𝑛𝑡 . This is supported by the UPPAAL
verifier that outputs an average of 96.51 just decreasing the duration
of the evaluation operation from 50 to 25 on fir8 and from 45 to
25 on fir16. Such an analysis suggests, to the designer, possible
operation duration values to consider for subsequent design phases.

6 Related Work
UML/MARTE is a widely used language for modeling the character-
istics of real-time embedded systems. However, it lacks support for
functional verification and validation of time constraints. A popular
strategy to achieve verification consists in the creation of a seman-
tic mapping towards UPPAAL timed automata. This approach has
already been investigated by several works [3, 4, 8, 11, 12, 22, 27].

Some of the most representative work start from a state-based
representation of system behavior for the conversion into timed
automata. Surdyevara et al. [22] propose a mapping between UML
Statemachine and UPPAAL timed automata. The UML state ma-
chines are annotated using MARTE+CCSL to express causal con-
straints of clock instants. A similar work is Chen et al. [3] which
focuses on verification of component-based systems. They propose
a novel mapping from MARTE+CCSL to UPPAAL-TIGA timed I/O
automata to model components interfaces. These works differ from
ours by the level of abstraction of the source model. Their conver-
sion maps a state to a location. In this way, a location of a timed
automaton represents the state of the system when it assumes a
particular configuration (i.e., values of its variables or set of active
objects) and thus when an invariant condition holds. In this paper,
a location represents a fundamental unit of executable functionality.
Hence, the semantics of actions in activity diagrams. This is neces-
sary to examine specific execution flows, including those internal
to the state of a system. Besides, state representation would lead to
inaccurate time estimation and thus invalid timing validation. Both
[22] and [3] employ CCSL to model causal constraints on event
occurrences. They constrain event order or their timing. Our work
diverges since the control flow of events is expressed using the
constructs of activity diagrams. Instead, we constrain the duration
of actions and executions rather than events timing.

Another peculiarity of our work is the adoption of stochastic
model checking to analyze the likelihood of reaching a location. Gu
et al. [11] has commonalities with our work both for the adoption of
stochastic model checking and the usage of activity diagrams. They
exploit stochastic modeling to represent user inputs and action du-
ration. Gu et al. use a different strategy to model actions duration.
Indeed, they annotate actions with a range denoting their execu-
tion time variation. Instead, we express action duration constraints
using MARTE/VSL. Both of the approaches use properties written
as 𝑃𝑟 [<= 𝑇] (𝜓) to check whether constraints are validated. The
works differ in how action durations are described in UPPAAL. Gu
et al. use a two-dimensional array storing the execution duration

variation for each node. We implement the duration constraint as a
guard on transition. This choice was made considering that we per-
form timing validation in the early stages of the design. So, action
execution time is estimated and modeled as a delay in UPPAAL.
Finally, to the best of our knowledge, it is a novelty to involve both
structural and dynamic aspects of a UML/MARTE model to obtain a
network of timed automata. Indeed, the component diagram defines
the topology of the network, while the activity diagrams induce
each automaton composing the network. Moreover, arranging the
system model in views allows to reduce verification complexity and
analyze system properties independently (e.g., communication).

7 Conclusion
In this work, we presented a novel HW/SW Co-Design flow inte-
grating formal analyses in the early stages of the design. During
the first step, i.e. Co-Specification, we exploited UML/MARTE to
model the functional and non-functional requirements of the sys-
tem. The UML/MARTE model is made by three views: Application,
Communication, Time. We introduced a new verification and val-
idation step, namely Co-V&V. Co-V&V uses the UPPAAL model
checker for functional verification and timing validation of the
system. To use UPPAAL, Co-V&V includes an M2M transformation
from UML/MARTE to a network of timed automata. We showed Co-
Specification and Co-V&V through the FIRGCD case study. FIRGCD
is characterized by a component-based architecture where each
component runs asynchronously at the reception of data or signals.
After the transformation into timed automata, we used UPPAAL
to check the reachability of the displayed state, the correctness
of the communication protocol, and the satisfiability of the timing
constraints. The Co-V&V showed how reachability verification can
be beneficial to improve the structure of the system. Indeed, we
achieved a higher probability value of reaching the displayed lo-
cation eliminating the two connectors linking the FIR filters to the
GCD component. We proved that the 𝑔𝑙𝑜𝑏𝑎𝑙_𝑐𝑜𝑛𝑠𝑡𝑟𝑎𝑖𝑛𝑡 is not sat-
isfiable with the initial design of FIRGCD. The validation revealed
that the constrained execution chunk is mostly affected by the delay
of the timer and the duration of the operations of the two FIR and
poorly influenced by the structure of FIRGCD.

In the future, we plan to examine case studies with more strin-
gent non-functional requirements (e.g., real-time constraints [17])
or more complex behavior (e.g., self-adaptive [6]). Moreover, it
will be necessary to study how to associate UPPAAL time units
with more concrete metrics such as milliseconds. We intend to
implement Co-Analysis, shown in Figure 1, for performance esti-
mation and validation. Furthermore, we are investigating a method
to automatically improve model performance by exploiting multi-
objective optimization approaches [5]. Consequently, after building
a model, a designer can check its functional correctness, validate
performance requirements, and optimize the design.

References
[1] Gerd Behrmann, Alexandre David, and Kim G. Larsen. 2004. A Tutorial on

Uppaal. In FormalMethods for the Design of Real-Time Systems: International School
on Formal Methods for the Design of Computer, Communication, and Software
Systems, Bertinora, Italy, September 13-18, 2004, Revised Lectures. Springer, Berlin,
Heidelberg.

[2] Rabie Ben Atitallah, Philippe Marquet, Éric Piel, Samy Meftali, Smail Niar, Anne
Etien, Jean-Luc Dekeyser, and Pierre Boulet. 2008. Gaspard2: from MARTE
to SystemC Simulation. In Proceeedings of the DATE’08 workshop on Modeling

379

ICPE ’23 Companion, April 15–19, 2023, Coimbra, Portugal Vittorio Cortellessa, Luigi Pomante, & Vincenzo Stoico

run

fr
eq
ue
nc
y

run
fr
eq
ue
nc
y

(a) Timer’s period equal to 50 time unit (b) Timer’s period equal to 20 time units

Figure 6: Number of times the displayed state is reached in 1000 time units by stimulating the application with different timers.
and Analyzis of Real-Time and Embedded Systems with the MARTE UML profile.
Washington, United States.

[3] Bo Chen, Xi Li, and Xuehai Zhou. 2018. Model checking of MARTE/CCSL time
behaviors using timed I/O automata. Journal of Systems Architecture 88 (2018),
120–125.

[4] Jinho Choi, Eunkyoung Jee, and Doo-Hwan Bae. 2016. Timing consistency
checking for UML/MARTE behavioral models. Software Quality Journal 24, 3
(2016), 835–876.

[5] Vittorio Cortellessa, Daniele Di Pompeo, Vincenzo Stoico, andMichele Tucci. 2023.
Many-objective optimization of non-functional attributes based on refactoring
of software models. Information and Software Technology 157 (2023), 107159.
https://doi.org/10.1016/j.infsof.2023.107159

[6] G. D’Andrea, T. Di Mascio, and G. Valente. 2019. Self-adaptive loop for CPSs:
Is the Dynamic Partial Reconfiguration profitable?. In 2019 8th Mediterranean
Conference on Embedded Computing, MECO 2019 - Proceedings.

[7] Alexandre David, Kim G. Larsen, Axel Legay, Marius Mikučionis, and Danny Bøg-
sted Poulsen. 2015. Uppaal SMC tutorial. International Journal on Software Tools
for Technology Transfer 17 (2015), 397–415.

[8] Zamira Daw and Rance Cleaveland. 2015. Comparing model checkers for timed
UML activity diagrams. Science of Computer Programming 111 (2015), 277–299.

[9] P. Derler, E. A. Lee, and A. Sangiovanni Vincentelli. 2012. Modeling Cy-
ber–Physical Systems. Proc. IEEE 100, 1 (2012), 13–28.

[10] Andrea Enrici, Ludovic Apvrille, and Renaud Pacalet. 2017. A Model-Driven
Engineering Methodology to Design Parallel and Distributed Embedded Systems.
ACM Transactions on Design Automation of Electronic Systems 22 (2017), 34:1–
34:25.

[11] Fan Gu, Xinqian Zhang, Mingsong Chen, Daniel Große, and Rolf Drechsler. 2016.
Quantitative Timing Analysis of UML Activity Diagrams Using Statistical Model
Checking. In Proceedings of the 2016 Conference on Design, Automation & Test in
Europe (Dresden, Germany) (DATE ’16). EDA Consortium, San Jose, CA, USA,
780–785.

[12] Fenglin Han, Peter Herrmann, and Hien Le. 2013. Modeling and Verifying Real-
Time Properties of Reactive Systems. In Proceedings of the 2013 18th International
Conference on Engineering of Complex Computer Systems (ICECCS ’13). IEEE
Computer Society, USA, 14–23. https://doi.org/10.1109/ICECCS.2013.13

[13] Fernando Herrera, Julio Medina, and Eugenio Villar. 2017. Modeling Hard-
ware/Software Embedded Systems with UML/MARTE: A Single-Source Design Ap-
proach. Springer Netherlands, Dordrecht, 141–185.

[14] K. Keutzer, A. R. Newton, J. M. Rabaey, and A. Sangiovanni-Vincentelli. 2000.
System-level design: orthogonalization of concerns and platform-based design.
IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems
19, 12 (2000), 1523–1543.

[15] Grischa Liebel, NadjaMarko,Matthias Tichy, Andrea Leitner, and JörgenHansson.
2018. Model-based engineering in the embedded systems domain: an industrial

survey on the state-of-practice. SoSyM 17 (2018), 91–113.
[16] William E. McUmber and Betty H. C. Cheng. 2001. A General Framework for

Formalizing UML with Formal Languages. In Proceedings of the 23rd International
Conference on Software Engineering (Toronto, Ontario, Canada) (ICSE ’01). IEEE
Computer Society, USA, 433–442.

[17] V. Muttillo, G. Valente, D. Ciambrone, V. Stoico, and L. Pomante. 2018. Hepsycode-
RT: A real-time extension for an ESL HW/SW Co-design methodology. In ACM
International Conference Proceeding Series.

[18] OMG Standards Development Organization. 2023. About the UML Profile for
MARTE Specification Version 1.2. https://www.omg.org/spec/MARTE/1.2/
About-MARTE/ Last accessed 25 January 2023.

[19] OMG Standards Development Organization. 2023. The Unified Modeling Lan-
guage 2.5.1 Specification. https://www.omg.org/spec/UML/2.5.1/About-UML/
Last accessed 25 January 2023.

[20] Luigi Pomante, Vittoriano Muttillo, Marco Santic, and Paolo Serri. 2020. SystemC-
based electronic system-level design space exploration environment for dedicated
heterogeneous multi-processor systems. Microprocessors and Microsystems 72
(Feb. 2020).

[21] Ingo Sander, Axel Jantsch, and Seyed-Hosein Attarzadeh-Niaki. 2017. ForSyDe:
System Design Using a Functional Language and Models of Computation. In
Handbook of Hardware/Software Codesign. Springer Netherlands, Dordrecht, 1–
42.

[22] Jagadish Suryadevara, Cristina Seceleanu, Frédéric Mallet, and Paul Pettersson.
2013. Verifying MARTE/CCSL Mode Behaviors Using UPPAAL. In Proceedings of
the 11th International Conference on Software Engineering and Formal Methods -
Volume 8137 (Madrid, Spain) (SEFM 2013). Springer-Verlag, Berlin, Heidelberg,
1–15.

[23] J. Teich. 2012. Hardware/Software Codesign: The Past, the Present, and Predicting
the Future. Proc. IEEE 100 (2012), 1411–1430.

[24] Frank Vahid and Tony Givargis. 2001. Embedded System Design: A Unified Hard-
ware/Software Introduction (1st ed.). John Wiley & Sons, Inc., USA.

[25] Jorgiano Vidal, Florent de Lamotte, Guy Gogniat, Philippe Soulard, and Jean-
Philippe Diguet. 2009. A Co-Design Approach for Embedded System Modeling
and Code Generation with UML and MARTE. In Proceedings of the Conference
on Design, Automation and Test in Europe (Nice, France) (DATE ’09). European
Design and Automation Association, Leuven, BEL, 226–231.

[26] Jim Woodcock, Peter Gorm Larsen, Juan Bicarregui, and John Fitzgerald. 2009.
Formal methods: Practice and experience. Comput. Surveys 41, 4 (2009), 19:1–
19:36.

[27] Yu Zhou, Luciano Baresi, and Matteo Rossi. 2013. Towards a Formal Semantics for
UML/MARTE State Machines Based on Hierarchical Timed Automata. Journal
of Computer Science and Technology 28, 1 (2013), 188–202.

380

https://doi.org/10.1016/j.infsof.2023.107159
https://doi.org/10.1109/ICECCS.2013.13
https://www.omg.org/spec/MARTE/1.2/About-MARTE/
https://www.omg.org/spec/MARTE/1.2/About-MARTE/
https://www.omg.org/spec/UML/2.5.1/About-UML/

	Abstract
	1 Introduction
	2 Background
	2.1 UML/MARTE
	2.2 UPPAAL

	3 Co-Specification
	3.1 UML/MARTE Subset
	3.2 Modeling the case study: FIRGCD

	4 UML/MARTE to UPPAAL Timed Automata Transformation
	5 Co-V&V
	5.1 Reachability of Display
	5.2 Communication Correctness
	5.3 Timing Validation

	6 Related Work
	7 Conclusion
	References

