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ABSTRACT
Performance analysis tools are frequently used to support the devel-
opment of parallel MPI applications. They facilitate the detection
of errors, bottlenecks, or inefficiencies but differ substantially in
their instrumentation, measurement, and type of feedback. Espe-
cially, tools that provide visual feedback are helpful for educational
purposes. They provide a visual abstraction of program behavior,
supporting learners to identify and understand performance is-
sues and write more efficient code. However, existing professional
tools for performance analysis are very complex, and their use in
beginner courses can be very demanding. Foremost, their instru-
mentation and measurement require deep knowledge and take a
long time. Immediate, as well as straightforward feedback, is essen-
tial to motivate learners. This paper provides an extensive overview
of performance analysis tools for parallel MPI applications, which
experienced developers broadly use today. It also gives an overview
of existing educational tools for parallel programming with MPI
and shows their shortcomings compared to professional tools. Us-
ing tools for performance analysis of MPI programs in educational
scenarios can promote the understanding of program behavior in
large HPC systems and support learning parallel programming.
At the same time, the complexity of the programs and the lack of
infrastructure in educational institutions are barriers. These aspects
will be considered and discussed in detail.
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1 INTRODUCTION
Scientific calculations, simulations, graphics calculations, or arti-
ficial intelligence calculations often cannot be performed in an
acceptable time on individual computers. The amount of data to be
processed increases over time, and the computational models are
becoming more and more accurate. Therefore, reasonable comput-
ing power is required in the form of High-Performance Computing
(HPC) clusters. In addition, industry also increasingly requires com-
puting resources through HPC clusters (e.g., in developing artificial
intelligence for autonomous driving). That is why parallel program-
ming is becoming more important in programming education. Over
the years, it has been expected that every software developer has
certain basic knowledge of distributed and parallel programming.
The 2013 Computer Science Curricula reports that parallel and dis-
tributed programming should become a core part of the computer
science curriculum and recommends that any courses be distributed
throughout the curriculum [16]. The resulting guidelines were re-
vised and amended in 2020 by Prasad et. al. [53]. Message Passing
Interface (MPI) is a de facto standard for teaching parallel pro-
gramming. Many beginners learn parallel programming with MPI,
which is also widely used in industry and research. Developers are
expected to write correct and efficient code that uses fast, problem-
based algorithms that exploit a cluster’s full computational power.
However, codes that perform well on one system can cause prob-
lems in other environments. Particularly novice programmers, but
also experienced developers, have difficulties here. Neither the code
nor the compiler can tell in advance whether a program is efficient
or whether there are various performance problems, program er-
rors, or bottlenecks.
Performance analysis tools are often used to find and eliminate
such performance issues. For example, tools based on the instru-
mentation framework Valgrind [2] and the GNU profiler gprof [1]
are very well-known and widely used for profiling and debugging
applications to find program issues and analyze program behav-
ior. However, they are not specifically designed to analyze parallel
MPI programs. A problem that can frequently occur in MPI ap-
plications is that a process has to wait too long for an event of
another process (e.g., LateSender problem), and during this time,
computing resources are wasted. For identifying such problems,
special analysis tools are necessary, on which this paper focuses.
General profiling, debugging, and analysis tools developed for serial
applications or not for MPI applications are not considered further.
This paper provides an overview of existing tools for analyzing
MPI applications. First, the relevant steps for conducting a per-
formance analysis are explained. Then, existing tools for perfor-
mance analysis with MPI, widely used in industry and research
today, are presented. These are categorized into “debugging tools”,
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“instrumentation and measurement tools”, “performance analysis,
visualization, and tuning tools”, and “all-in-one tools”. Many of
the tools presented already existed in the 90s and still have a high
relevance today. It can be assumed that the tools will also gain in
importance with the increasing significance of parallel computing.
In the second part, the current state of existing tools to support
programming education with MPI is surveyed, and the use of the
described professional tools in educational scenarios is discussed
based on field reports.

2 RELATEDWORK
A first overview of the visualization of parallel systems was pub-
lished in 1993 by Kraemer and Stasko [37]. Their focus is on in-
strumentation and measurement. However, the tools described in
the paper are now obsolete. With their survey from 2001, Moore
et al. wanted to advance the development and advancement of
the presented tools and libraries for performance analysis of MPI
applications [48]. The “Survey of software environments for paral-
lel distributed processing” by Delistavrou and Margaritis gives an
extensive overview of different environments for parallel program-
ming [18]. Also, various tools for analyzing parallel programs are
mentioned but not explained in detail.
Two papers from the 2014 and 2020 Supercomputing Frontiers and
Innovations conferences present various tools for analyzing parallel
applications. In his paper from 2014, Mohr presents the state-of-the-
art tools that are most commonly used for analysis and performance
measurement of parallel applications [47]. He limits himself to the
best-known tools, whose functionality is explained in detail. In
2020, Knobloch and Mohr presented performance analysis tools
specifically for GPU computing [35]. Although the paper includes
tools that can be used to analyze parallel MPI programs, the focus
is on the general analysis of parallel programs concerning GPU
computing.
The use of professional tools in programming education has also
been discussed in the literature. Delistavrou and Margaritis inte-
grated Eclipse PTP [20], TAU [50], ISP [59], and GEM [58] into a
programming environment for teaching parallel programming with
MPI [19]. Zhang et al. developed an online program through which
students can upload their programs and submit them for execu-
tion on the Tianhe-2 supercomputer [78]. Through a user interface,
learners can configure the execution and choose whether to collect
profiling data using mpiP [3] or TAU during the execution. Yazici
et al. also mention the use of GEM and TAU within their concept of
using real-life applications when teaching parallel computing [76].
Malakar reports on his experiences in teaching, in which he used
TAU, and HPCToolkit [28], among others, to explain MPI profiling
[43].
This paper does not only present and categorize various professional
performance analysis tools for MPI applications. It also discusses
opportunities and problems in using them in educational scenar-
ios. Here, perspectives and barriers arising from the general use of
professional tools for programming education are described. The
analysis is not limited to a specific tool.

3 PARTS AND TECHNIQUES TO FIND
INEFFICIENT CODE

In order to be able to improve the performance of programs, an
analysis of the code and various measurements during a program’s
run-time must be carried out. The results must then be provided to
users. There are various possibilities for this, which are presented
in the following sections.

3.1 Instrumentation and measurement
Software instrumentationmeans adding extra code to an application
for monitoring a program’s behavior [34]. There are two different
types of instrumentation. First, in static instrumentation, extra code
is added to the application statically. That can be done manually
(e.g., by marking the source code by the user), automatically (by
the compiler), or by linking against pre-instrumented libraries [31].
After static instrumentation, the application is executed with the
added code for collecting corresponding data. This step is called
measurement. Second, in dynamic instrumentation, instrumentation
and measurement occur during run-time. So that the application
does not have to be recompiled, the instrumentation is always
based on the binary code. Therefore, dynamic instrumentation is
also called binary instrumentation, although static instrumentation
can also be based on the binary. Most professional performance
analysis tools support both static instrumentation and dynamic
instrumentation capabilities. For dynamic analysis, most tools use
the Dyninst API [69].
Performance data can be collected through the instrumented code,
either by tracing or profiling. Profiling collects summary statistics
about a program during execution by retrieving performance met-
rics for specific events [62]. In MPI applications, profiling can be
used to measure the number of MPI function calls and their total
duration. Data collection is then triggered by an MPI routine’s start
and end. Profiling can also be based on sampling, where a hardware
interval timer periodically interrupts the execution of the program
to collect data [62]. Tracing is more detailed and represents tem-
poral aspects of the program. A trace is a log of events within the
program [75]. In contrast to profiling, tracing can show when and
where an error or performance problem occurred in the source code.
Tracing can be done by manually instrumenting the source code, it
can also be relying on hardware such as the branch trace store in
recent Intel CPUs, and it can be generated by an instrumentation
set generator [75]. In general, tracing collects larger amounts of
data than profiling, which means that tracing takes more time and
thus can significantly affect the application execution time.

3.2 Debugging
Debugging is the identification of program errors in computer pro-
grams. In parallel applications, debugging is often used to identify
race conditions or deadlocks and find their reasons. In complex HPC
environments and when using low-level programming paradigms,
where the users are responsible for memory management, debug-
ging becomes very challenging [35]. Besides general programming
errors (e.g., access to an array’s non-existing index), debuggers must
also find MPI-specific errors. Such MPI-specific errors, like starting
a non-blocking communication, which cannot be completed before
MPI_Finalize is called, are harder to find by debugging [27].
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3.3 Analysis
Program analysis often includes the search for inefficient code sec-
tions, performance problems, oversubscribed cores, imbalances, or
bottlenecks. Data collected through instrumentation and measure-
ment is stored in trace or profiling files. These can be read and
processed by an analysis process to provide feedback to users sub-
sequently. Here, a distinction is made between run-time analysis
and so-called post-mortem analysis. Most tools are based on post-
mortem analysis of collected data. After the complete execution of
a program, trace and profile files are read and analyzed in a separate
step. Finally, the results are presented to users as feedback. Post-
mortem analysis can take a long time, especially for large programs.
As soon as changes are made to the code or manual instrumenta-
tion annotations, the analysis must be performed again, which has
consequently re-compiling and re-executing the program until all
performance problems are solved.
Performance analysis during run-time in available tools usually
takes place based on dynamic instrumentation (e.g., Paradyn [70],
Dyninst API [69]). Code can be modified at run-time, eliminating
the need for multiple compilations and executions. An analysis
during run-time involves looking for specific properties (e.g., bot-
tlenecks) in programs that can hurt performance. Furthermore, an
automated application tuning can make concrete suggestions for
improvements (e.g., Periscope Tuning Framework [55]). However,
run-time analysis can also take place independently of dynamic
instrumentation by making the analysis results available while the
program is still running.

3.4 Feedback
To best support users in improving their applications or codes,
feedback must be provided from which users can deduce which
problems occur, why they occur, and how they can be solved. This
feedback can be provided in various ways and is visual in nature. For
example, some tools mark parts of the source code where problems
could have occurred (e.g., HPCToolkit [28], ARM DDT [41]). Then,
either users have to findways to improve the flagged code fragments
themselves, or the tools provide suggestions. Other tools show
problems within a graphical representation in human-readable files
(e.g., ARM Performance Reports [42], MAQAO [51]) or Graphical
User Interfaces (GUIs) (e.g., TAU [50], Scalasca [33], Vampir [24]).
Often these files or user interfaces include diagrams, charts, and
timelines represented in two or three dimensions.

4 DEBUGGING TOOLS FOR MPI
APPLICATIONS

The following section presents and differentiates commercial and
open-source tools for debugging parallel MPI programs.
ARMDDT [41] is a commercial debugging tool as part of the ARM
FORGE debug and profile suite. The focus is on tracking memory
errors. Memory accesses are closely tracked, and allocations are
checked for possible errors. For simplifying the debugging process,
array visualization is also provided so that users can track the cur-
rent contents of an array at any time during run-time.
A very similar alternative is TotalView [52]. These two commercial
tools support GPU debugging, and they are very elaborate. Alter-
natively, there are open-source solutions for debugging parallel

applications, which do not support GPU debugging and are not
specialized for debugging memory accesses.
Marmot Umpire Scalable Tool (MUST) [68] extends and scales
the functionality of the run-time checker Marmot [38] and the
correctness checker Umpire [74], and extends its functions for MPI-
specific deadlock analysis [27]. Marmot’s main functions are veri-
fying the correct usage of MPI resources, and the time-out-based
search for deadlocks [26]. Umpire can be used mainly for graph-
based deadlock searches. MUST is an open-source run-time error
detection tool for MPI applications, which was developed to ensure
efficient debugging of parallel programs even within large systems.
The scalability of MUST depends on the attached application’s scal-
ability, and it observes all MPI communication operations, focusing
on detecting deadlocks, datatype matching violations, and incorrect
communication buffer use [54, 68].
Stack Trace Analysis Tool (STAT) [39] is a highly scalable, open-
source debugging tool for parallel MPI applications. Debugging
“extreme-scale applications” is often time-consuming, so STAT re-
duces the problem exploration space from thousands of processes
to a few by sampling stack traces before debugging [6]. It collects
stack traces from all processes and merges them into a compact
form [39]. Processes that exhibit similar behavior are grouped into
equivalence classes. In the STAT GUI, the resulting merged stack
trace is visualized, and based on it, debugging is performed by users.
For example, deadlocks can be detected by visually displaying call
stacks of different processes when all processes are waiting simul-
taneously.
In-Situ Partial (ISP) [59] is an open-source MPI debugger or dy-
namic verifier that, unlike the other tools presented, is based on the
idea of model checking [71]. The entire state space of a program
is verified as a model and checked using safety properties so that,
for example, no deadlock can occur. In contrast to conventional
model checkers, ISP works with the existing program code and
not with special verification languages. GEM [58] can be used as a
graphical user interface for ISP integrated into Eclipse PTP [29]. ISP
also provides a Java GUI for controlling the debugger and analyzing
the results.

5 INSTRUMENTATION AND MEASUREMENT
TOOLS

This section describes tools that can be used independently for a
program’s instrumentation and measurement. These tools produce
files that can be evaluated by analysis and visualization tools.
mpiP [3] is a lightweight profiling library for MPI which collects
statistical information about MPI functions [73]. It generates very
little overhead, as only superficial data is collected and summarized
as a report. This report contains information about the run-time,
the time spent in MPI functions, and various call site statistics.
Dyninst [69] is an API for dynamic binary instrumentation used
by many popular tools, such as Open|SpeedShop [4], TAU [50],
Extrae [65] and STAT [39]. It is based on and uses the functionality
of the tool Paradyn [70], which had its beginnings in 1993 and has
been continuously developed since then. The peculiarity is that
Paradyn has been the first tool that uses dynamic instrumentation
and measurement [46] to find only current performance problems
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in extensive programs. Therefore, it searches for possible bottle-
necks based on typical programming and performance errors. With
the help of the W3 Search Model, a performance consultant guides
the placement and modification of the instrumentation during run-
time[70]. The advantage of dynamic instrumentation is that it does
not introduce a large overhead associated with the typical tracing
process.
Extrae [65] is a pure instrumentation tool for the generation of
trace files for the visualization tool Paraver [13]. It offers different
types of instrumentation. Dynamic instrumentation during run-
time is possible by Dyninst. Mainly, LD_Preload is used to intercept
binaries during load time. Tracing is event-based, e.g., by calling
an MPI function.
Score-P [32, 36] was developed to provide a unified instrumenta-
tion framework whose output can be used by different evaluation
or analysis tools. Developers often have to analyze their programs
with different tools, as each tool offers different functions and views.
This means a high effort if the steps of instrumentation and mea-
surement have to be performed separately for each tool, since each
visualization tool requires different formats for trace and profiling
files. Periscope can store the data collected by instrumentation and
measurement in Open Trace File 2 (OTF2) (provided by Scalasca
[33] and Vampir [24]), CUBE4 (provided by Scalasca and TAU [50]),
or TAU snapshot formats. Additionally, the data can be queried
by an online interface [36]. This allows users to combine several
well-known and comprehensive performance analysis tools with
only one instrumentation and measurement step. Score-P provides,
for example, compiler instrumentation, MPI library interposition,
source code instrumentation via TAU instrumenter, and user in-
strumentation [36].

6 TOOLS FOR PERFORMANCE ANALYSIS,
VISUALIZATION, AND TUNING

The performance analysis, visualization, and tuning tools described
previously do not have their own instrumentation andmeasurement
techniques and analyze existing trace or profiling files. Scalasca
and Vampir used to have their own mechanisms for instrumenta-
tion and measurement. However, these mechanisms have not been
further developed for both. Instead, Score-P is used as a unified
infrastructure. Scalasca [33] is a trace-based performance analysis
software specially designed for large-scale systems. It is the official
successor to KOJAK [7]. A special feature of Scalasca is the detec-
tion of wait states in MPI applications, which can be caused, for
example, by an uneven load distribution [21]. Scalasca requires as
input a so-called summary report in OTF2 format. This is typically
created by the instrumentation framework Score-P. After instru-
mentation, Scalasca’s measurement and analysis nexus configures
and manages the collection of the application’s performance exper-
iments. [79]. Users can choose between a summary analysis report
or event traces automatically given to Scalasca’s trace analyzer to
identify bottlenecks and wait states. So the report generated by
the Scalasca trace analysis is similar to the summary report but
includes identified inefficiency metrics [79]. Analysis reports are
created in CUBE4 format and can be explored with the Cube GUI.
The Cube GUI contains three views of the data, which are called
dimensions of the performance space: metric dimension, program

dimension, and system dimension. Within the metric dimension,
users can select which metric should be analyzed in more detail
(e.g., synchronizations, communications, bytes transferred). The
program dimension shows a call tree of the corresponding executed
functions. The system dimension provides information about in-
volved processes and threads in the form of diagrams.
Vampir [24] is a commercial tool for detailed, visual analysis of
trace files. It uses Score-P’s instrumentation and generates and
visualizes three different types of charts from a trace file. In the
Timeline Charts, events are displayed according to their temporal oc-
currence on a horizontal axis. The individual processes are viewed
separately, and their function calls are displayed visually. Statistical
Charts show a summary of the occurrence of functions, processes,
communication, I/O, and the call tree. They are suitable for gaining
a quick overview of the program’s behavior. Informational Charts
provide a more detailed insight into individual function calls and
their contexts. Functions are assigned to groups by color and dis-
played in a tree structure.
Periscope Tuning Framework (PTF) [55] works on Score-P’s
online access interface. It enables automatic search for performance
problems through iterative online analysis. Measurements are con-
figured, obtained, and evaluated on the fly so that no trace or profil-
ing files have to be stored [23]. Periscope is operated via a graphical
user interface, which is integrated into Eclipse PTP [20]. Users
write their code in Eclipse and can search for properties that have
a negative impact on performance. For example, users can search
for the LateSender property in the program [45]. Score-P’s monitor
looks for scenarios where an MPI_Receive occurs before the cor-
responding MPI_Send so that the receiver has to wait a long time
to receive a message, and corresponding places are marked in the
code. Another special feature for analyzing MPI communication is
that PTF can automatically detect wait patterns.
Paraver [13] uses trace files created by Extrae. It is a flexible paral-
lel program visualization and analysis tool based on an easy-to-use
GUI. The GUI has two main views: The timeline view visualizes
the behavior of an application over time, and the statistics view
(histogram, profiles) extends the analysis with the distribution of
metrics. A special feature that distinguishes Paraver from other
presented tools is the ability to split trace files, save the resulting
individual parts separately, and compare them.
Extra-P [17] is an automatic performance-modeling tool that sup-
ports finding scalability errors. A scalability error means that scal-
ing in a part of the program becomes unexpectedly bad. Extra-P
visualizes them in the form of performance patterns. A performance
model expresses a performance metric of interest (e.g., execution
time, energy consumption) as a function of execution parameters
(e.g., size of the input, number of processors) [17]. It also creates
human-readable models for performance metrics (e.g., floating-
point operations, MPI calls), and these metrics can be assigned as
possible reasons for the scalability of program errors.

7 ALL-IN-ONE TOOLS
The following section presents all-in-one performance analysis so-
lutions that perform instrumentation and measurement, as well as
analyze and evaluate them and provide feedback to users.
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ARM Performance Reports [42] is a commercial tool for produc-
ing HTML reports that summarize and characterize MPI application
performance. It belongs to the ARM Forge Suite and is based on the
underlying profiling mechanism. The feedback report is divided
into three parts: Compute gives information about how much time
the application took in total and how much of that time was spent
in libraries, MPI summarizes the times of the MPI calls, and I/O
shows the times spent in file system I/O. Furthermore, different
Breakdown submenus are listed, where the spent time for CPU,
MPI, or I/O, is more exactly subdivided and visualized. This way,
bottlenecks, and performance issues can be detected and identified.
Intel Trace Analyzer and Collector (ITAC) [15] is part of the
Intel oneApi Base & HPC Toolkit and analyzes MPI programs re-
garding their correctness and possible bottlenecks, buffer overlaps,
and deadlocks. In addition, the program behavior can be visualized
within a GUI to identify communication hot spots and improve
efficiency [15]. The diagrams display how much time applications
spend within MPI functions, OpenMP functions, and serial code.
All these parts can be analyzed separately. Typical MPI LateSender
or wait at barrier problems are automatically identified and visual-
ized in the GUI, and their reasons can be analyzed within an event
timeline.
Open|SpeedShop [4] consists of a plugin organized infrastructure.
Each program component is implemented as a plugin so that each
functionality can be used independently and coherently. Moreover,
Open|SpeedShop can be flexibly extended by new plugins. Program-
mers can include all plugins of Open|Speedshop when developing
new tools for performance analysis. That simplifies the develop-
ment of new analysis tools or provides alternative instrumentation
options. A collector plugin coordinates binary instrumentation
based on DPCL/Dyninst and collects data. This is then passed to a
data abstraction layer for storage in a SQL database. A view plugin
queries the data there, and the panel plugin represents the data in a
GUI [60]. The analysis of programs takes place as so-called “experi-
ments”. The type of experiment chosen decides in what way the
instrumentation will be performed (e.g., different types of tracing
and sampling). Open|Speedshop provides two different mechanisms
to introduce performance instrumentation into application bina-
ries: offline (data collector is loaded at link time) or online (insert
data collection into running binary) in combination with a tree-
based aggregation network based on MRNet [61]. Typically, offline
instrumented data is displayed post-mortem. Online data can be
displayed and analyzed in Open|Speedshop’s GUI during run-time.
The GUI provides a stats panel where users can filter for all executed
functions, statements, linked objects, and loops. These elements
are displayed, including the CPU time they took, and can be sorted,
for example, by the percent of CPU time taken. At the same time,
users can display the area of code within a source panel that has
taken up a lot of CPU time. A small graphical representation can
generate different charts of the CPU time used. Further informa-
tion, e.g., which process had the most MPI library time, where the
most expensive call to MPI_Wait occurred or information about
load balancing can be retrieved as well.
Tuning and Analysis Utilities (TAU) [50] is one of the most
comprehensive tools for analyzing parallel applications. TAU of-
fers many ways to instrument applications within one API. Instru-
mentation is possibly source-based through manual source code

annotations, preprocessor-based through automatically created an-
notations, and compiler-based by optimizing and re-instrumenting
the source code. In addition, TAU supports wrapper library-based
instrumentation for tracking MPI calls, binary instrumentation via
DyninstAPI, interpreter-based instrumentation, component-based
instrumentation, virtual-machine-based instrumentation, multi-
level instrumentation, and selective instrumentation [63]. As an
alternative to TAU’s own instrumentation API, files can be instru-
mented by Score-P too. TAU supports both, various tracing and
profiling methods that users can consciously control [63]. TAU’s
visualization tool is called “ParaProf”. In addition to 2D visualiza-
tions that visualize the called functions of the individual threads or
processes in a timeline, ParaProf offers a 3D environment that users
can operate and control intuitively. A special feature is that within
the 3D environment, all cluster nodes can be viewed as a model. The
utilization of the nodes is encoded in color. In addition, different 3D
models show the communication load of the nodes to each other.
With TAUoverSupermon and TAUmon, research approaches exist for
the implementation of an online version of the TAU analysis tool.
They are focused on the problem that the amount of data increases
immeasurably, especially through I/O, due to the ever-increasing
level of parallelization in large-scale systems [40, 49]. These online
features have not yet been integrated into the official version of
TAU.
ModularAssemblyQualityAnalyzer andOptimizer (MAQAO)
[51] combines static and dynamic analysis based on binary files
and focuses on core performance optimization. MAQAO has three
main modules. First, LProf, a sampling-based profiler that collects a
list of loops and functions during execution. Second, CQA, a static
analyzer that assesses the quality of code. Third, ONE View, which
aggregates the results from LProf and CQA and makes a report as
HTML-File [72]. MAQAO is well suited to identify time-consuming
functions and loops and detect load balancing issues.
HPCToolkit [28] avoids the instrumentation step and combines
a profile execution (“hpcrun”) with a binary analysis (“hpcstruct”)
instead. “hpcrun” is an asynchronous sampling method using hard-
ware performance counters. This type of profile execution has a
low overhead of 1%-5% [28]. In order to find the reasons for bot-
tlenecks more quickly, calling-contect-sensitive measurements are
associated with source code structures in a binary analysis (“hpc-
struct”). To combine performance data and structure information,
“hpcprof” overlays call path profiles and traces with program struc-
ture and correlates the result with source code. The results are
written into a database that can be explored via “hpcviewer”, a
GUI that presents profiles or traces. The GUI is divided into three
sections. First, the source pane with the source code. Second, the
navigation pane, which represents the application as a hierarchical
tree-based structure for displaying the performance data. Third, the
metric pane, in which the concrete metrics of individual samples are
displayed [44]. A line of code is associated with a part of the tree
structure and several sample metrics. By clicking on a line of code,
the associated structures are highlighted, so that code fragments
with poor performance become apparent, and users can identify
their reasons more quickly. Moreover, HPCToolkit highlights code
areas where inefficiencies and anomalies occurred automatically
during sampling.
Caliper [9, 12] differs from the other tools mentioned because it
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can integrate performance profiling capabilities directly into an
HPC application and make them available whenever the applica-
tion is executed [10]. The tool is based on the idea of focusing not
only on the performance data of an individual program run but
on the comparison between different executions and on different
HPC systems by profiling and collecting data at each execution of
the program. For this purpose, the performance profiling library is
integrated into the application, and measurement is controlled, for
example, by command line options [11]. Developers must manually
extend the application’s code through commands to enable profil-
ing at desired locations. The data can be saved as a human-readable
report, a .hatched file for the Python library Hatched, or a .cali file.
The .cali files can be stored locally or online in a SQL database and
analyzed with the web-based visualization tool SPOT, which mainly
provides users with diagrams to compare different program runs.

8 EDUCATIONAL TOOLS FOR PARALLEL
PROGRAMMINGWITH MPI

At many educational institutions, the theory of parallel program-
ming is taught as a priority, while practical work with real high-
performance systems is addressed little. Students program, for ex-
ample, with MPI on a single computer or even their laptop. This
is either due to the lack of resources or the complexity of using
computing clusters. This approach does not allow learners to see
benefits and advantages of parallel programming, nor does it allow
them to gain experience with HPC environments and computer
clusters. Experience reports and studies conclude that the context
of realistic scenarios is essential for learning parallel programming
and understanding its benefits [19, 30, 77]. To reduce this gap be-
tween theory and practice, simulation tools are increasingly being
implemented to simulate or virtualize different infrastructures of
clusters [14, 56, 64, 66, 77]. Gusev et al. presented a prototype of a
cloud-based e-learning and benchmarking platform for students to
try out predefined algorithmswith different predefined implementa-
tions and compare them in terms of speed, speedups, and efficiency
[25]. ParaLib [67] is a library of parallel algorithms that compares
the computational complexity of different algorithms and parallel
programming languages with respect to a standard programming
problem [22]. The execution time and the speedup of computa-
tional efficiency are displayed for each experiment. System for
AUtomated Code Evaluation (SAUCE) [5] is a web-based tool
with the main function to assess parallel programming tasks in
an automated way so that learners get immediate feedback about
whether the task was solved correctly.

9 USE OF PROFESSIONAL PERFORMANCE
ANALYSIS TOOLS IN EDUCATIONAL
SCENARIOS

Although some tools have already been developed for specific
use in programming education with MPI, none focus on a similar
performance analysis as the presented professional tools. Educa-
tional tools are often limited to standard problems, such as matrix
multiplications or sorting algorithms, which students can analyze
[57, 66, 67]. Several researches pointed out that it is essential for
students’ understanding and acceptance of parallel programming to
show them authentic scenarios of HPCwith large problems on large

machines and not to limit themselves exclusively to small standard
problems [30, 43]. Joiner et al. also highlight the importance of
performance analysis in this context [30]. The professional tools
presented can analyze any application, whether a matrix multipli-
cation or a large simulation. The authors have also found out that
it is important to teach how speedup can be achieved by parallel
programming at the beginning of a parallel programming course.
This is particularly effective if the speedup is visually presented
to students. The described professional tools for the visualization
of the performance of MPI applications can not only visualize the
speedup but also offer visualizations of process communication,
processor memory, I/O, and performance issues or bottlenecks. On
the one hand, this can contribute to a far-reaching understand-
ing, but on the other hand, the professional tools are aimed at
experienced developers and can quickly overwhelm beginners. In
practice, professional tools are mainly used for quick analysis of
large applications and allow developers to spend less time tuning
their application and more time focusing on underlying science
[21]. In educational scenarios, the focus is on learners recognizing,
understanding, and avoiding their errors in the future.
In the past, much research has been done about the use of profes-
sional tools in programming education [19, 43, 76, 78]. The tool
TAU was used most frequently for this purpose. However, in all sce-
narios described, the tools were not used until the end of a course,
after the learners had been given a comprehensive knowledge of in-
strumentation and measurement. This contradicts the idea of Joiner
et al. to integrate visual feedback of applications at the beginning
of a course.
The tools presented in this paper often require instrumentation of
code. The manual code instrumentation is associated with a high
effort that grows proportionally with the size of the application.
Deep knowledge is required, as potentially inefficient code areas
must be manually annotated. Automated instrumentation requires
only user execution and not manual development of instrumenta-
tion code. However, the process can still take a long time, and users
must perform the instrumentation still by themselves, especially for
the instrumentation-only tools (mpiP, Caliper, Extrea, and Score-P).
Decisions about various sampling, tracing, and profiling methods
must be made by users and require appropriate knowledge. Even in
tools where a binary analysis takes place, and the measurement can
be controlled entirely in a GUI (e.g., Open|Speedshop), various pro-
cedures have to be selected manually [4]. Depending on the size of
the application’s code, instrumentation and measurement can take
several hours or even days. Programming lectures are limited in
time, and long waiting times negatively affect learners’ motivation.
Malakar used TAU and HPCToolkit within the teaching of parallel
computing and reports long waiting times explicitly when loading
and displaying profiling data from the network, as the university
did not provide a proper computing cluster but only used various
computer labs as architecture [43]. In the course evaluation, the
learners criticized these waiting times. Joiner et al. also emphasize
that it is particularly effective if the speedup of an application is
apparent to students during run-time rather than post-mortem [30].
To ensure immediate as well as straightforward feedback, online
tools that provide immediate visual feedback at run-time should be
used for educational scenarios. In the literature, the term "online
tool" is often used when tools use dynamic/binary instrumentation
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so that users can intervene in the process while the program is
running or retrieve data during this time [8, 21]. Tools like Caliper
or HPCToolkit support storing the collected data in an online data-
base. Score-P provides an online interface through which requests
can be sent. Just Open|SpeedShop does not only write the data
collected by the binary analysis to a database, but can also visual-
ize it within a real-time GUI, allowing users to track in real-time
what is happening in their running program. However, the tool
provides only minimal diagrams and plots of a program’s behavior
and performance and focuses more on flagging code that leads to
performance problems. An online tool that visualizes the utiliza-
tion of the nodes in real-time, for example, can be very suitable for
obtaining simple and rapid feedback. Users observe the program’s
behavior immediately after they have started their program. This
does not only contribute significantly to a better understanding.
Users also see at first glance if, for example, one of the nodes is
completely overloaded while all the others have only a low work-
load. They can stop the execution of their application at that point
and improve the code.

10 CONCLUSION AND FUTUREWORK
There is a wide range of performance analysis tools for MPI appli-
cations. They support different methods for instrumentation and
measurement and offer partly different possibilities for the visualiza-
tion of a program’s behavior and the performance of an application
in two or three dimensions. Using these tools in programming edu-
cation could significantly contribute to a better understanding and
help learners write, from the beginning, efficient code that exploits
the full potential of large computational clusters. However, it turned
out that the presented professional tools are too complex, and all
require prior knowledge in instrumentation and measurement. In
addition, most tools do not provide immediate online feedback dur-
ing run-time, which is essential for maintaining learner motivation.
In order to support the education of parallel programming with
MPI in the future, an online tool can be developed that supports
the performance analysis of MPI applications but does not require
any instrumentation or measurement steps, which must be carried
out by learners, and can be used intuitively even by beginners.

REFERENCES
[1] 1998. GNU gprof - The GNU profiler. https://ftp.gnu.org/old-gnu/Manuals/gprof-

2.9.1/html_mono/gprof.html. Accessed: 2022-11-16.
[2] 2000-2022. Valgrind. https://valgrind.org. Accessed: 2022-11-16.
[3] 2020. mpiP 3.5. https://github.com/LLNL/mpiP. Accessed: 2022-11-04.
[4] 2022. Open|Speedshop. https://openspeedshop.org. Accessed: 2022-10-26.
[5] 2022. SAUCE - System for AUtomated Code Evaluation. https://github.com/

moschlar/SAUCE. Accessed: 2022-11-02.
[6] Dorian C. Arnold, Dong H. Ahn, Bronis R. de Supinski, Gregory L. Lee, Barton P.

Miller, and Martin Schulz. 2007. Stack Trace Analysis for Large Scale Debugging.
In 21th International Parallel and Distributed Processing Symposium (IPDPS 2007).
IEEE, 1–10. https://doi.org/10.1109/IPDPS.2007.370254

[7] Juelich Supercomputing Centre at Forschungszentrum Juelich and Innovative
Computing Laboratory at the University of Tennessee. 2022. KOJAK. https:
//icl.utk.edu/kojak/index.html. Accessed: 2022-10-24.

[8] Jean-Baptiste Besnard, Marc Pérache, and William Jalby. 2013. Event Stream-
ing for Online Performance Measurements Reduction. In 42nd International
Conference on Parallel Processing (ICPP 2013). IEEE Computer Society, 985–994.
https://doi.org/10.1109/ICPP.2013.117

[9] David Boehme. 2015-2021. Caliper: A Performance Analysis Toolbox in a Library.
http://software.llnl.gov/Caliper/. Accessed: 2022-10-20.

[10] David Boehme. 2020. Tool Time: Caliper - A Performance Analysis Toolbox
in a Library. https://pop-coe.eu/blog/tool-time-caliper-a-performance-analysis-
toolbox-in-a-library.

[11] David Böhme, Pascal Aschwanden, Olga Pearce, Kenneth Weiss, and Matthew P.
LeGendre. 2021. Ubiquitous Performance Analysis. In High Performance Comput-
ing - 36th International Conference (ISC High Performance 2021) (Lecture Notes in
Computer Science, Vol. 12728). Springer, 431–449. https://doi.org/10.1007/978-3-
030-78713-4_23

[12] David Böhme, Todd Gamblin, David Beckingsale, Peer-Timo Bremer, Alfredo
Giménez, Matthew P. LeGendre, Olga Pearce, and Martin Schulz. 2016. Caliper:
performance introspection for HPC software stacks. In Proceedings of the Interna-
tional Conference for High Performance Computing, Networking, Storage and Analy-
sis (SC 2016). IEEE Computer Society, 550–560. https://doi.org/10.1109/SC.2016.46

[13] BSC. 2022. Paraver. https://tools.bsc.es/paraver. Accessed: 2022-10-24.
[14] Henri Casanova, Arnaud Legrand,Martin Quinson, and Frédéric Suter. 2018. SMPI

Courseware: Teaching Distributed-Memory Computing with MPI in Simulation.
In 2018 IEEE/ACM Workshop on Education for High- Performance Computing
(EduHPC@SC 2018). IEEE, 21–30. https://doi.org/10.1109/EduHPC.2018.00006

[15] Intel Corporation. [n.d.]. Intel Trace Analyzer and Collector (ITAC).
https://www.intel.com/content/www/us/en/developer/tools/oneapi/trace-
analyzer.html#gs.ijzdvr. Accessed: 2022-11-18.

[16] Association Curricula. 2013. Computer Science Curricula 2013: Curriculum
Guidelines for Undergraduate Degree Programs in Computer Science. (2013).
https://doi.org/10.1145/2534860

[17] Technische Universtiaet Darmstadt and ETH Zurich. 2020. Extra-P. https://
github.com/extra-p/extrap. Accessed: 2022-10-24.

[18] Constantinos T. Delistavrou and Konstantinos G. Margaritis. 2010. Survey of
Software Environments for Parallel Distributed Processing: Parallel Programming
Education on Real Life Target Systems Using Production Oriented Software Tools.
In 14th Panhellenic Conference on Informatics (PCI 2010). IEEE Computer Society,
231–236. https://doi.org/10.1109/PCI.2010.26

[19] Constantinos T. Delistavrou and Konstantinos G. Margaritis. 2011. Towards an
Integrated Teaching Environment for Parallel Programming. In 15th Panhellenic
Conference on Informatics (PCI 2011). IEEE Computer Society, 3–7. https://doi.
org/10.1109/PCI.2011.16

[20] Eclipse Foundation. 2022. Eclipse Parallel Tools Platform (PTP). https://www.
eclipse.org/ptp/. Accessed: 2022-11-16.

[21] Markus Geimer, Felix Wolf, Brian J. N. Wylie, Erika Ábrahám, Daniel Becker,
and Bernd Mohr. 2010. The Scalasca performance toolset architecture. Concurr.
Comput. Pract. Exp. 22, 6 (2010), 702–719. https://doi.org/10.1002/cpe.1556

[22] Victor Gergel, Evgeny Kozinov, Alexey Linev, and Anton Shtanyuk. 2016. Edu-
cational and Research Systems for Evaluating the Efficiency of Parallel Compu-
tations. In Algorithms and Architectures for Parallel Processing (ICA3PP 2016)
(Lecture Notes in Computer Science, Vol. 10049). Springer, 278–290. https:
//doi.org/10.1007/978-3-319-49956-7_22

[23] Michael Gerndt, Ventsislav Petkov, and Yuri Oleynik. 2010. Performance analysis
with Periscope. https://www.vi-hps.org/cms/upload/material/tw10/vi-hps-tw10-
Periscope_Overview.pdf. Accessed: 2022-10-24.

[24] GWT-TUD GmbH. 2022. Vampir. https://vampir.eu. Accessed: 2022-10-24.
[25] Marjan Gusev, Sasko Ristov, Goran Velkoski, and Bisera Ivanovska. 2014. E-

learning and Benchmarking Platform for Parallel and Distributed Computing. Int.
J. Emerg. Technol. Learn. 9, 2 (2014), 17–21. https://doi.org/10.3991/ijet.v9i2.3215

[26] Tobias Hilbrich. 2014. Runtime MPI Correctness Checking with a Scalable Tools
Infrastructure. Ph. D. Dissertation. Dresden University of Technology. https:
//nbn-resolving.org/urn:nbn:de:bsz:14-qucosa-175472

[27] Tobias Hilbrich, Joachim Protze, Martin Schulz, Bronis R. de Supinski, and
Matthias S. Müller. 2012. MPI runtime error detection with MUST: advances in
deadlock detection. In SC Conference on High Performance Computing Networking,
Storage and Analysis (SC 2012). IEEE/ACM, 30. https://doi.org/10.1109/SC.2012.79

[28] Rice University Houston. 2000-2022. HPCToolkit. http://hpctoolkit.org/index.
html. Accessed: 2022-10-24.

[29] Alan Humphrey, Christopher Derrick, Ganesh Gopalakrishnan, and Beth Tibbitts.
2010. GEM: Graphical Explorer of MPI Programs. In 39th International Conference
on Parallel Processing (ICPP Workshops 2010). IEEE Computer Society, 161–168.
https://doi.org/10.1109/ICPPW.2010.33

[30] David A. Joiner, Paul Gray, Thomas Murphy, and Charles Peck. 2006. Teaching
parallel computing to science faculty: best practices and common pitfalls. In
Proceedings of the ACM SIGPLAN Symposium on Principles and Practice of Parallel
Programming (PPOPP 2006). ACM, 239–246. https://doi.org/10.1145/1122971.
1123007

[31] Forschungszentrum Juelich. [n.d.]. Score-P, scalable performance measurement
infrastructure for parallel codes. https://scorepci.pages.jsc.fz-juelich.de/scorep-
pipelines/docs/scorep-6.0/html/index.html. Accessed: 2022-10-16.

[32] Forschungszentrum Juelich. [n.d.]. Score-P, Scalable performance measurement
infrastructure for parallel codes. https://scorepci.pages.jsc.fz-juelich.de/scorep-
pipelines/docs/scorep-6.0/html/index.html. Accessed: 2022-10-20.

[33] Forschungszentrum Juelich and Technische Universitaet Darmstadt. 2022.
Scalasca. https://www.scalasca.orgl. Accessed: 2022-10-24.

[34] Torsten Kempf, Kingshuk Karuri, and Lei Gao. 2008. Software Instrumentation.
InWiley Encyclopedia of Computer Science and Engineering. John Wiley & Sons,
Inc. https://doi.org/10.1002/9780470050118.ecse386

367

https://ftp.gnu.org/old-gnu/Manuals/gprof-2.9.1/html_mono/gprof.html
https://ftp.gnu.org/old-gnu/Manuals/gprof-2.9.1/html_mono/gprof.html
https://valgrind.org
https://github.com/LLNL/mpiP
https://openspeedshop.org
https://github.com/moschlar/SAUCE
https://github.com/moschlar/SAUCE
https://doi.org/10.1109/IPDPS.2007.370254
https://icl.utk.edu/kojak/index.html
https://icl.utk.edu/kojak/index.html
https://doi.org/10.1109/ICPP.2013.117
http://software.llnl.gov/Caliper/
https://doi.org/10.1007/978-3-030-78713-4_23
https://doi.org/10.1007/978-3-030-78713-4_23
https://doi.org/10.1109/SC.2016.46
https://tools.bsc.es/paraver
https://doi.org/10.1109/EduHPC.2018.00006
https://www.intel.com/content/www/us/en/developer/tools/oneapi/trace-analyzer.html#gs.ijzdvr
https://www.intel.com/content/www/us/en/developer/tools/oneapi/trace-analyzer.html#gs.ijzdvr
https://doi.org/10.1145/2534860
https://github.com/extra-p/extrap
https://github.com/extra-p/extrap
https://doi.org/10.1109/PCI.2010.26
https://doi.org/10.1109/PCI.2011.16
https://doi.org/10.1109/PCI.2011.16
https://www.eclipse.org/ptp/
https://www.eclipse.org/ptp/
https://doi.org/10.1002/cpe.1556
https://doi.org/10.1007/978-3-319-49956-7_22
https://doi.org/10.1007/978-3-319-49956-7_22
https://www.vi-hps.org/cms/upload/material/tw10/vi-hps-tw10-Periscope_Overview.pdf
https://www.vi-hps.org/cms/upload/material/tw10/vi-hps-tw10-Periscope_Overview.pdf
https://vampir.eu
https://doi.org/10.3991/ijet.v9i2.3215
https://nbn-resolving.org/urn:nbn:de:bsz:14-qucosa-175472
https://nbn-resolving.org/urn:nbn:de:bsz:14-qucosa-175472
https://doi.org/10.1109/SC.2012.79
http://hpctoolkit.org/index.html
http://hpctoolkit.org/index.html
https://doi.org/10.1109/ICPPW.2010.33
https://doi.org/10.1145/1122971.1123007
https://doi.org/10.1145/1122971.1123007
https://scorepci.pages.jsc.fz-juelich.de/scorep-pipelines/docs/scorep-6.0/html/index.html
https://scorepci.pages.jsc.fz-juelich.de/scorep-pipelines/docs/scorep-6.0/html/index.html
https://scorepci.pages.jsc.fz-juelich.de/scorep-pipelines/docs/scorep-6.0/html/index.html
https://scorepci.pages.jsc.fz-juelich.de/scorep-pipelines/docs/scorep-6.0/html/index.html
https://www.scalasca.orgl
https://doi.org/10.1002/9780470050118.ecse386


ICPE ’23 Companion, April 15–19, 2023, Coimbra, Portugal. Anna-Lena Roth and Tim Süß

[35] Michael Knobloch and Bernd Mohr. 2020. Tools for GPU Computing - Debugging
and Performance Analysis of Heterogenous HPC Applications. Supercomput.
Front. Innov. 7, 1 (2020), 91–111. https://doi.org/10.14529/jsfi200105

[36] Andreas Knüpfer, Christian Rössel, Dieter an Mey, Scott Biersdorff, Kai Diethelm,
Dominic Eschweiler, Markus Geimer, Michael Gerndt, Daniel Lorenz, Allen D.
Malony, Wolfgang E. Nagel, Yury Oleynik, Peter Philippen, Pavel Saviankou, Dirk
Schmidl, Sameer Shende, Ronny Tschüter, MichaelWagner, BertWesarg, and Felix
Wolf. 2011. Score-P: A Joint Performance Measurement Run- Time Infrastructure
for Periscope, Scalasca, TAU, and Vampir. In Tools for High Performance Computing
2011 - Proceedings of the 5th International Workshop on Parallel Tools for High
Performance Computing. Springer, 79–91. https://doi.org/10.1007/978-3-642-
31476-6_7

[37] Eileen T. Kraemer and John T. Stasko. 1993. The Visualization of Parallel Systems:
An Overview. J. Parallel Distributed Comput. 18, 2 (1993), 105–117. https:
//doi.org/10.1006/jpdc.1993.1050

[38] B. Krammer, K. Bidmon, M.S. Müller, and M.M. Resch. 2004. MARMOT: An
MPI analysis and checking tool. In Parallel Computing. Advances in Parallel
Computing, Vol. 13. North-Holland, 493–500. https://doi.org/10.1016/S0927-
5452(04)80063-7

[39] Lawrence Livermore National Laboratory. [n.d.]. STAT: Stack Trace Analysis
Tool. https://hpc.llnl.gov/software/development-environment-software/stat-
stack-trace-analysis-tool. Accessed: 2022-10-20.

[40] Chee Wai Lee, Allen D. Malony, and Alan Morris. 2010. TAUmon: Scalable
Online Performance Data Analysis in TAU. In Euro-Par 2010 Parallel Processing
Workshops - HeteroPar, HPCC, HiBB, CoreGrid, UCHPC, HPCF, PROPER, CCPI,
VHPC (Lecture Notes in Computer Science, Vol. 6586). Springer, 493–499. https:
//doi.org/10.1007/978-3-642-21878-1_61

[41] ArmLimited. 2022. ARMDDT, TheNumberOneDebugger for C, C++ and Fortran,
Threaded and Parallel Code. https://www.arm.com/products/development-tools/
server-and-hpc/forge/ddt. Accessed: 2022-10-20.

[42] Arm Limited. 2022. ARM Performance Reports. https://developer.arm.com/tools-
and-software/server-and-hpc/debug-and-profile/arm-forge/arm-performance-
reports. Accessed: 2022-10-20.

[43] Preeti Malakar. 2019. Experiences of Teaching Parallel Computing to Under-
graduates and Post-Graduates. In 26th International Conference on High Perfor-
mance Computing, Data and Analytics Workshop (HiPCW 2019). IEEE, 40–47.
https://doi.org/10.1109/HiPCW.2019.00020

[44] John Mellor-Crummey, Nathan R. Tallent, Mike Fagan, and Jan Odegard. 2007.
Application performance profiling on the Cray XD1 using HPCToolkit. In Proc.
of the Cray User’s Group.

[45] Robert Mijakovic, Michael Firbach, and Michael Gerndt. 2016. An architecture for
flexible auto-tuning: The Periscope Tuning Framework 2.0. In 2nd International
Conference on Green High Performance Computing (ICGHPC 2016). IEEE, 1–9.
https://doi.org/10.1109/ICGHPC.2016.7508066

[46] Barton P. Miller, Mark D. Callaghan, Jonathan M. Cargille, Jeffrey K.
Hollingsworth, R. Bruce Irvin, Karen L. Karavanic, Krishna Kunchithapadam,
and Tia Newhall. 1995. The Paradyn Parallel Performance Measurement Tool.
Computer 28, 11 (1995), 37–46. https://doi.org/10.1109/2.471178

[47] Bernd Mohr. 2014. Scalable parallel performance measurement and analysis tools
- state-of-the-art and future challenges. Supercomput. Front. Innov. 1, 2 (2014),
108–123. https://doi.org/10.14529/jsfi140207

[48] Shirley Moore, David Cronk, Kevin S. London, and Jack J. Dongarra. 2001. Review
of Performance Analysis Tools for MPI Parallel Programs. In Recent Advances in
Parallel Virtual Machine and Message Passing Interface, 8th European PVM/MPI
Users’ Group Meeting (Lecture Notes in Computer Science, Vol. 2131). Springer,
241–248. https://doi.org/10.1007/3-540-45417-9_34

[49] Aroon Nataraj, Matthew J. Sottile, Alan Morris, Allen D. Malony, and Sameer
Shende. 2007. TAUoverSupermon : Low-Overhead Online Parallel Performance
Monitoring. In Euro-Par 2007, Parallel Processing, 13th International Euro-Par
Conference (Lecture Notes in Computer Science, Vol. 4641). Springer, 85–96. https:
//doi.org/10.1007/978-3-540-74466-5_11

[50] Department of Computer and Information Science University of Oregon. 1997-
2020. TAU, Tuning and Analysis Utilities. http://www.tau.uoregon.edu. Accessed:
2022-10-24.

[51] University of Versailles St Quentin. 2004-2021. Maqao (Modular Assembly Quality
Analyzer and Optimizer). http://http://www.maqao.org. Accessed: 2022-10-26.

[52] Inc. Perforce Software. 2022. TotalView HPC Debugging Software. https://
totalview.io/products/totalview. Accessed: 2022-10-20.

[53] Sushil K. Prasad, Almadena Yu. Chtchelkanova, Sajal K. Das, Frank Dehne, Mo-
hamed G. Gouda, Anshul Gupta, Joseph F. JáJá, Krishna Kant, Anita La Salle,
Richard LeBlanc, Manish Lumsdaine, David A. Padua, Manish Parashar, Viktor K.
Prasanna, Yves Robert, Arnold L. Rosenberg, Sartaj Sahni, Behrooz A. Shirazi,
Alan Sussman, Charles C. Weems, and Jie Wu. 2011. NSF/IEEE-TCPP curriculum
initiative on parallel and distributed computing: core topics for undergradu-
ates. In Proceedings of the 42nd ACM technical symposium on Computer science
education (SIGCSE 2011). ACM, 617–618. https://doi.org/10.1145/1953163.1953336

[54] Joachim Protze, Tobias Hilbrich, Martin Schulz, Bronis R. de Supinski, Wolfgang E.
Nagel, and Matthias S. Müller. 2014. MPI Runtime Error Detection with MUST:

A Scalable and Crash-Safe Approach. In 43rd International Conference on Parallel
Processing Workshops, (ICPPW 2014). IEEE Computer Society, 206–215. https:
//doi.org/10.1109/ICPPW.2014.37

[55] Readex. 2020. Periscope Tuning Framework. https://www.readex.eu/index.php/
periscope-tuning-framework/p. Accessed: 2022-10-24.

[56] Sasko Ristov, Marjan Gusev, Blagoj Atanasovski, and Nenad Anchev. 2013. Using
EDUCache Simulator for the Computer Architecture and Organization Course.
Int. J. Eng. Pedagog. 3, 3 (2013), 47–56. https://doi.org/10.3991/ijep.v3i3.2784

[57] Sasko Ristov, Marjan Gusev, and Goran Velkoski. 2014. Cloud E-learning and
Benchmarking Platform for the Parallel and Distributed Computing Course. In
2014 IEEE Global Engineering Education Conference (EDUCON 2014). IEEE, 645–651.
https://doi.org/10.1109/EDUCON.2014.6826161

[58] Utah School of Computing. [n.d.]. GEM - Graphical Explorer of MPI Programs.
http://formalverification.cs.utah.edu/GEM/. Accessed: 2022-11-04.

[59] Utah School of Computing. [n.d.]. ISP (In-situ Partial Order): a dynamic verifier
for MPI Programs. http://formalverification.cs.utah.edu/ISP-release/. Accessed:
2022-11-04.

[60] Martin Schulz, Jim Galarowicz, Don Maghrak, William Hachfeld, David Montoya,
and Scott Cranford. 2008. Open | SpeedShop: An open source infrastructure
for parallel performance analysis. Sci. Program. 16, 2-3 (2008), 105–121. https:
//doi.org/10.3233/SPR-2008-0256

[61] Martin Schulz, Jim Galarowicz, Don Maghrak, William Hachfeld, David Montoya,
and Scott Cranford. 2009. Analyzing the performance of Scientific Applications
with Open|SpeedShop. In Parallel Computational Fluid Dynamics. 151–159.

[62] Sameer Shende. 1999. Profiling and tracing in linux. In In Proceedings of Extreme
Linux Workshop.

[63] Sameer Shende and Allen D. Malony. 2006. The Tau Parallel Performance System.
Int. J. High Perform. Comput. Appl. 20, 2 (2006), 287–311. https://doi.org/10.1177/
1094342006064482

[64] Elizabeth Shoop, Richard A. Brown, Eric Biggers, Malcolm Kane, Devry Lin, and
Maura Warner. 2012. Virtual clusters for parallel and distributed education. In
Proceedings of the 43rd ACM technical symposium on Computer science education
(SIGCSE 2012). ACM, 517–522. https://doi.org/10.1145/2157136.2157287

[65] BSC Tools. 2022. Extrae. https://tools.bsc.es/extrae. Accessed: 2022-10-20.
[66] Lobachevsky University. 2022. ParaLab. https://hpc-education.unn.ru/en/

trainings/teachware/paralab. Accessed: 2022-11-02.
[67] Lobachevsky University. 2022. ParaLib – Parallel Computational Methods Library.

https://hpc-education.unn.ru/en/trainings/teachware/paralib. Accessed: 2022-
11-02.

[68] RTWH Aachen University. 2022. MUST - MPI Runtime Correctness Analysis.
https://itc.rwth-aachen.de/must/. Accessed: 2022-10-20.

[69] University of Wisconsin University of Maryland. 2019. Dyninst. https://www.
dyninst.org. Accessed: 2022-10-20.

[70] Computer Sciences Department University of Wisconsin. 2020. Paradyn. http:
//www.paradyn.org/overview/screen-shots.html. Accessed: 2022-10-20.

[71] Sarvani S. Vakkalanka, Subodh Sharma, Ganesh Gopalakrishnan, and Robert M.
Kirby. 2008. ISP: a tool for model checking MPI programs. In Proceedings of the
13th ACM SIGPLAN Symposium on Principles and Practice of Parallel Programming
(PPOPP 2008). ACM, 285–286. https://doi.org/10.1145/1345206.1345258

[72] Cédric Valensi, William Jalby, Mathieu Tribalat, Emmanuel Oseret, Salah Ibnamar,
and Kevin Camus. 2019. Using MAQAO to Analyse and Optimise an Application.
In 2019 IEEE 27th International Symposium on Modeling, Analysis, and Simulation
of Computer and Telecommunication Systems (MASCOTS 2019). 423–424. https:
//doi.org/10.1109/MASCOTS.2019.00052

[73] Jeffrey Vetter and Chris Chambreau. 2014. mpiP: Lightweight, Scalable
MPI Profiling. http://gec.di.uminho.pt/Discip/MInf/cpd1415/PCP/MPI/mpiP_
%20Lightweight,%20Scalable%20MPI%20Profiling.pdf. Accessed: 2022-11-04.

[74] Jeffrey S. Vetter and Bronis R. de Supinski. 2000. Dynamic Software Testing
of MPI Applications with Umpire. In Proceedings Supercomputing 2000. IEEE
Computer Society, 51. https://doi.org/10.1109/SC.2000.10055

[75] Jack Whitham. 2016. Profiling versus Tracing. https://www.jwhitham.org/2016/
02/profiling-versus-tracing.html. Accessed: 2022-10-17.

[76] Ali Yazici, Alok Mishra, and Ziya Karakaya. 2016. Teaching Parallel Computing
Concepts Using Real-Life Applications*. International Journal of Engineering
Education 32 (03 2016), 772–781.

[77] Gonzalo Zarza, Diego Lugones, Daniel Franco, and Emilio Luque. 2012. An
Innovative Teaching Strategy to Understand High-Performance Systems through
Performance Evaluation. In Proceedings of the International Conference on Compu-
tational Science (ICCS 2012) (Procedia Computer Science, Vol. 9). Elsevier, 1733–1742.
https://doi.org/10.1016/j.procs.2012.04.191

[78] Yuxiao Zhang, Jiang Li, Di Wu, and Yunfei Du. 2018. Improving Student Skills
on Parallel Programming via Code Evaluation and Feedback Debugging. In IEEE
International Conference on Teaching, Assessment, and Learning for Engineering
(TALE 2018). IEEE, 1069–1073. https://doi.org/10.1109/TALE.2018.8615351

[79] Ilya Zhukov, Christian Feld, Markus Geimer, Bernd Mohr, Michael Knobloch,
and Pavel Saviankou. 2015. Scalasca v2: Back to the Future. In Tools for High
Performance Computing 2014. Springer International Publishing, 1–24. https:
//doi.org/10.1007/978-3-319-16012-2_1

368

https://doi.org/10.14529/jsfi200105
https://doi.org/10.1007/978-3-642-31476-6_7
https://doi.org/10.1007/978-3-642-31476-6_7
https://doi.org/10.1006/jpdc.1993.1050
https://doi.org/10.1006/jpdc.1993.1050
https://doi.org/10.1016/S0927-5452(04)80063-7
https://doi.org/10.1016/S0927-5452(04)80063-7
https://hpc.llnl.gov/software/development-environment-software/stat-stack-trace-analysis-tool
https://hpc.llnl.gov/software/development-environment-software/stat-stack-trace-analysis-tool
https://doi.org/10.1007/978-3-642-21878-1_61
https://doi.org/10.1007/978-3-642-21878-1_61
https://www.arm.com/products/development-tools/server-and-hpc/forge/ddt
https://www.arm.com/products/development-tools/server-and-hpc/forge/ddt
https://developer.arm.com/tools-and-software/server-and-hpc/debug-and-profile/arm-forge/arm-performance-reports
https://developer.arm.com/tools-and-software/server-and-hpc/debug-and-profile/arm-forge/arm-performance-reports
https://developer.arm.com/tools-and-software/server-and-hpc/debug-and-profile/arm-forge/arm-performance-reports
https://doi.org/10.1109/HiPCW.2019.00020
https://doi.org/10.1109/ICGHPC.2016.7508066
https://doi.org/10.1109/2.471178
https://doi.org/10.14529/jsfi140207
https://doi.org/10.1007/3-540-45417-9_34
https://doi.org/10.1007/978-3-540-74466-5_11
https://doi.org/10.1007/978-3-540-74466-5_11
http://www.tau.uoregon.edu
http://http://www.maqao.org
https://totalview.io/products/totalview
https://totalview.io/products/totalview
https://doi.org/10.1145/1953163.1953336
https://doi.org/10.1109/ICPPW.2014.37
https://doi.org/10.1109/ICPPW.2014.37
https://www.readex.eu/index.php/periscope-tuning-framework/p
https://www.readex.eu/index.php/periscope-tuning-framework/p
https://doi.org/10.3991/ijep.v3i3.2784
https://doi.org/10.1109/EDUCON.2014.6826161
http://formalverification.cs.utah.edu/GEM/
http://formalverification.cs.utah.edu/ISP-release/
https://doi.org/10.3233/SPR-2008-0256
https://doi.org/10.3233/SPR-2008-0256
https://doi.org/10.1177/1094342006064482
https://doi.org/10.1177/1094342006064482
https://doi.org/10.1145/2157136.2157287
https://tools.bsc.es/extrae
https://hpc-education.unn.ru/en/trainings/teachware/paralab
https://hpc-education.unn.ru/en/trainings/teachware/paralab
https://hpc-education.unn.ru/en/trainings/teachware/paralib
https://itc.rwth-aachen.de/must/
https://www.dyninst.org
https://www.dyninst.org
http://www.paradyn.org/overview/screen-shots.html
http://www.paradyn.org/overview/screen-shots.html
https://doi.org/10.1145/1345206.1345258
https://doi.org/10.1109/MASCOTS.2019.00052
https://doi.org/10.1109/MASCOTS.2019.00052
http://gec.di.uminho.pt/Discip/MInf/cpd1415/PCP/MPI/mpiP_%20Lightweight,%20Scalable%20MPI%20Profiling.pdf
http://gec.di.uminho.pt/Discip/MInf/cpd1415/PCP/MPI/mpiP_%20Lightweight,%20Scalable%20MPI%20Profiling.pdf
https://doi.org/10.1109/SC.2000.10055
https://www.jwhitham.org/2016/02/profiling-versus-tracing.html
https://www.jwhitham.org/2016/02/profiling-versus-tracing.html
https://doi.org/10.1016/j.procs.2012.04.191
https://doi.org/10.1109/TALE.2018.8615351
https://doi.org/10.1007/978-3-319-16012-2_1
https://doi.org/10.1007/978-3-319-16012-2_1

	Abstract
	1 Introduction
	2 Related work
	3 Parts and techniques to find inefficient code
	3.1 Instrumentation and measurement
	3.2 Debugging
	3.3 Analysis
	3.4 Feedback

	4 Debugging tools for MPI applications
	5 Instrumentation and measurement tools
	6 Tools for performance analysis, visualization, and tuning
	7 All-in-one tools
	8 Educational tools for parallel programming with MPI
	9 Use of professional performance analysis tools in educational scenarios
	10 Conclusion and future work
	References



