
Theory and Practice in Performance Evaluation Courses: The
Challenge of Online Teaching

Andrea Marin
marin@unive.it

Università Ca’ Foscari Venezia
Venice, Venice, Italy

ABSTRACT
This paper reports the experience gained over several years of
teaching the course entitled Software performance and scalability
at the University Ca’ Foscari of Venice. The course is taken by
perspective computer scientists and is taught at the master’s level.
It covers the topics of modeling and assessment of the performance
properties of software systems.

In this paper, we will also devote attention to the challenge of
online teaching due to the pandemic conditions.

Finally, we propose some auspices for the community to col-
lect material for structured courses on performance and reliability
evaluation topics.

CCS CONCEPTS
• Computing methodologies→Modeling and simulation; •
Applied computing → Education.

KEYWORDS
Education, Performance Evaluation Course, Software Performance
ACM Reference Format:
AndreaMarin. 2023. Theory and Practice in Performance Evaluation Courses:
The Challenge of Online Teaching. In Companion of the 2023 ACM/SPEC
International Conference on Performance Engineering (ICPE ’23 Companion),
April 15–19, 2023, Coimbra, Portugal. ACM, New York, NY, USA, 4 pages.
https://doi.org/10.1145/3578245.3584353

1 INTRODUCTION
For the last decade, the Master’s programme in Computer Science
at the University Ca’ Foscari of Venice, Italy, has offered a course en-
titled Software Performance and Scalibility. This course has replaced
an excellent methodological course entitled Performance Evaluation.
Why was this change considered necessary?

The answer of this question is based on the specific experience
of this University. From students’ point view, a methodological
course on performance evaluation theory and methodology was
mathematically very dense and, on the other hand, they have the
misconception that the massive availability of resources at low
price makes the problem of analyzing the quantitative aspects of

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
ICPE ’23 Companion, April 15–19, 2023, Coimbra, Portugal
© 2023 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 979-8-4007-0072-9/23/04. . . $15.00
https://doi.org/10.1145/3578245.3584353

computer systems (hardware of software) unnecessary. We can
simplify this misconception with this question: why should I learn
a lot of Math when, if needed, I can buy more computational power,
storage, bandwidth etc. for a very low price?

Researchers in the area of quantitative analysis of computer
systems have many answers to this question, and we are not go-
ing to recall them here, but they are not always easy to show in
an educational context. Students hardly implement systems with
performance issues during their Bachelor’s or Master’s programme.

This is often due to the fact that effort and the resources required
to develop such systems are high, and hardly fit in a short study
program that includes also many other subjects.

The group working on performance related topics at the Univer-
sity of Venice has then decided to take some measures: first, the
application field has been restricted to software design and analysis.
Second, the course has included a laboratory part that addresses the
topic of benchmarking. Third, some methodological aspects have
been removed from the topics (this has been probably the hardest
part!) making a distinction between the students who will decide
to continue their training at a PhD level (and hence will have to
become ‘specialists’ in the field and will need deeper knowledge of
the field), and those who aim to use the results produced by this
area of research in their professional practice.

To make a possibly unfair comparison, the courses on Artificial
Intelligence (AI) are often designed in this way. The training pro-
grams on AI can easily show applications of very efficient learning
algorithms without going into the very details of their design leav-
ing the mathematical and algorithmic insights to the students that
decide to work in the area.

The measures succeeded in rising students’ interest in perfor-
mance modeling topics and facilitated the participation of compa-
nies to the educational process.

However, with the restrictions imposed by the pandemic, the
lab part of the course has faced some issues. The physical space
where the machines dedicated to the benchmarking part was not
accessible, andwe had to findways to replace this crucial experience
for the success of the course.

In this paper, we discuss this experience with a view of what
remains, in our opinion, critical for the design of successful courses
on performance evaluation topics.

The structure of the paper is as follows. In Section 2, we describe
the organization of course. This description will be commented in
Section 3 with some examples. Section 4 discusses the measures for
overcoming the problems posed by the online teaching required by
the Covid-19 restriction rules.

351

https://doi.org/10.1145/3578245.3584353
https://doi.org/10.1145/3578245.3584353

ICPE ’23 Companion, April 15–19, 2023, Coimbra, Portugal Andrea Marin

2 COURSE DESCRIPTION
The course Software Performance and Scalability consists of 6 credits
corresponding to 48 hours including lab and frontal lessons.

The overall effort required to the student is estimated in 150
hours.

The textbooks adopted are:

• Performance Modelling and Design of Computer Systems:
Queueing Theory in Action by Mor Harchol-Balter [4];

• Systems Benchmarking: For Scientists and Engineers by
Samuel Kounev and Klaus-Dieter Lange [7].

The course is thought to provide an introductory answer to three
groups of questions:

(1) How do we schedule jobs? What is the impact on the system
performance of our choice?

(2) What happens when our software system coordinates sev-
eral components? How do we study the performance and
scalability of these systems?

(3) How do we dispatch requests in a distributed systems? What
is the impact on the system performance of our choice?

In brief, the topics addressed to answer these quesions are the
following.

To answer the first question, we introduce queueing theory and
show the results on M/M/1, M/M/m, M/M/∞, M/G/1, M/G/1/PS,
M/G/1/LCFPR, Erlang queues. We discuss the Shortest-Remaining-
Processing-Time (SRPT) scheduling and the age-based scheduling
with two level processor sharing.

The second question requires us to introduce queueing networks.
We only address single class networks and classical bottleneck
analysis. In this context, we show Jackson and Gordon-Newell’s
product-form results and the Mean Value Analysis.

The third and last question is introduced with the classical com-
parison between a shared queue with𝑚 processors (M/M/𝑚) and a
random dispatcher to𝑚 independent queues. We show the round-
robin dispatcher and discuss its performance. Finally, we present
join-the-shortest queue and join-the-idle-queue without their math-
ematical analysis.

To see how the lab is organized, we briefly describe a typical
project. Students have been asked to implement a web app that
had to compile a C++ source file sent by a form and return the
results of the compilation in a sandbox. The goal is to propose a
scheduling discipline to handle the pending requests with the idea of
minimizing the expected response time. Then, they had to establish
the scalability properties of their application and benchmark it to
validate the results. The choice of the compiling task is due to the
fact that it is easy to create source files with variable compiling
times especially with a smart use of the C++ template system.

Regarding the tools used during the course, we adopt Java Mod-
elling Tools1 (JMT) [1] for the analysis of queueing networks and
Tsung for the benchmarking experiments2.

1https://jmt.sourceforge.net
2http://tsung.erlang-projects.org

3 OBSERVATIONS ON THE EXPERIENCE
3.1 Comments on the topics
In a recent work [2], De Nitto Personè describes the experiences
of courses on performance modeling around the world. In this
contribution, she emphasizes an interesting question about the role
of University in preparing students not only to the economical and
technological skills but also to a correct, scientific, approach to
reasoning and problem solving.

We believe that this trade off is the crucial point that courses on
performance evaluation topics have to address. The risk of resulting
too abstract and with mathematical knowledge difficult to spend
in the ‘real-world’ is concrete. This has been observed also in an
interesting recent keynote speech [6]. But, on the other hand, a
practical, problem-driven approach motivates the students.

We believe that the correct balance between these needs depends
on many factors. First of all, our performance modeling courses are
part of a much wider study program that differs from others in the
mathematical and statistical skills developed by the students and
for the complementary courses of the programs.

It should be clear that this reasoning does not intend to under-
mine the importance of analytical modeling which is pivotal in the
work of practitioners of performance engineering as noted, e.g.,
in [10, 11], but it aims at make us think about the correct balance
between a problem-driven approach and a methodological one.

Example 3.1. The decision of not addressing the problem of
workload characterization in the course of Software Performance
and Scalibility is due to the fact that there exists a parallel course
on time series analysis where, among the examples, the teacher
studies some traces of workload measurements.

Example 3.2. The mathematical skills of students are such that
many proofs require them a lot of efforts to be understood.What are
the contribution of these proofs in the preparation of the students?
Can these skills be reached in other courses?

Consider, for example, the Pollaczek–Khinchine formula for the
stationary probabilities of the M/G/1. These are given in terms
of probability generating function of the stationary queue length
distribution. The definition of this transform requires to express the
distribution of the service timewith its Laplace transform. Although
there are several ways to prove the results, they all carry a huge
complexity for the students of our Master’s programme.

Conversely, if we limit our analysis to a mean value reasoning,
we need to address the inspection paradox which is much more
accessible.

Is the balance between efforts and rewards of proving the formula
for the detailed state probabilities positive?

Example 3.3. There are some subjects that we love more than
other in our field. These are difficult to reconsider. Personally, I
have been working for many years on product-form theory [5]
and I do really love this field. The traditional presentation of this
subject begins with Burke’s theorem and continues with Jackson
and Gordon-Newell theorems. If there is time, one concludes with
BCMP theorem. What is the problem of this approach? The proofs
of these results based on the analysis of the global balance equa-
tions are mainly algebraic (with the exception of Burke’s theorem
that is more elegant). Any attempt to simplify them requires us

352

https://jmt.sourceforge.net
http://tsung.erlang-projects.org

Theory and Practice in Performance Evaluation Courses: The Challenge of Online Teaching ICPE ’23 Companion, April 15–19, 2023, Coimbra, Portugal

to introduce new notions that will be used essentially just to this
aim (local balance, quasi-reversibility, Reversed Compound Agent
Theorem (RCAT)). Is it worth to show the proofs of product-form
results? We have decided to state the results without proofs.

However, some principles are necessary and we cannot ignore
them. For example, we should be sure that all students understand
that there is not a linear relation between the system load factor
and most performance metrics like the expected response time. The
lab experiences really help to translate the mathematical notions
into skills. For example, students are usually really surprised to
observe the reduction on the expected response time of their bench-
marking experiments when they add a core to their computations
by increasing the level of parallelism of their application.

3.2 Comments on the tools and model library
In our experience, the successful realization of a performance eval-
uation course greatly depends on the availability of user-friendly
tools. JMT and Tsung are, in our experience, among the most us-
able tools. Similarly to the considerations proposed in the previous
section, we do not want students to implement their own MVA
algorithm but our aim is that they can use and interpret the results
provided by JMT with awareness.

Unfortunately, we know that the development and maintenance
of tools is extremely demanding in terms of resources. Moreover,
many tools are mainly thought for academics or researchers. Stu-
dents may have difficulty to use such tools during a course. Another
important aspect is the documentation and portability of the tools.

However, in our experience, the comparison of the results of a
tool with the measurements done by the benchmarking experience
is extremely educational for the students.

A last difficulty is the availability of ´stable models’ for some
systems such as those presented in [8]. Some interesting research
papers can be presented in a course as a case study (see, e.g., [3])
but the examples are not many. The models should be sufficiently
simple to be understood by students of an introductory course and
general to characterize a popular class of systems. It could be an
interesting task to collect the case studies presented in the courses
of performance evaluation to form a shared library.

3.3 Comments on the lab experience
The implementation of a lab part of the course has been extremely
important both to increase the interest of the students in the subject
and to allow them to understand some principles with a hand-on
experience.

In our course, we set up a lab with dismissed machines from
our datacenter and we created a LAN isolated from the rest of the
department. In this way, students can deploy their applications and
make tests without worrying about traffic interference, security
etc. They can even work with the BIOS, e.g., to enable/disable
hyperthreading.

Example 3.4. A successful example of the importance of the
lab is how the groups have tried to manage the queue of pending
programs to compile. They soon discovered that a FCFS policy was
far from being optimal. The group that provided the solution with
the fastest scheduling has tried to implement a SRTP with a guess
on the compiling time based on previous statistics of similar source

files previously compiled. The idea was justified by the observation
that in a real online service of this type users would probably
compile a source file many times after a few lines of code added or
modified. Hence, the compiling time should not change much in
the majority of the cases.

The lab part is very important in the development of the stu-
dents’ skills, but it requires a lot of time. In fact, not all the topics
recommended by Smith in [9] are covered by this course and prob-
ably at least 9 credits would be necessary to maintain the lab part.
However, we noticed that our students have a hard time to under-
stand theory of performance without an appropriate observation
of the main principles on real systems.

4 THE EXPERIENCE OF ONLINE TEACHING
During the first lockdown of 2020, the course of Software Perfor-
mance and Scalability had just begun. The following two editions
faced restrictions on the amount of students that could fit in a room
and hence the lab was not accessible.

We used the datacenter of the University to reserve some virtual
machines and changed the project into a task of assessing the
performance of a certain database.We paid attention to avoid shared
resources and to allow students to use testing machines physically
close to the system under test. However, we noticed that there
have been more difficulties in carrying out the tasks with respect
to the physical labs. This was due to several factors, such as the
difficulty in synchronizing the presence of the teacher/tutor with
all groups. Moreover, students seem to have an easier time to work
with physical machines rather than in the cloud.

Beside these problems, we realized that the possibility of con-
ducting experiments of benchmarking in the cloud can be extremely
interesting if well prepared. It could be interesting to have an ap-
plication shared for all groups and just focus on its performance
modeling and evaluation.

We think that it could be interesting o have such an environment
shared among the communities teaching performance modeling
and analysis of software architectures. In a certain sense, this could
mean to keep the best part of the negative experience of the online
teaching during the pandemic.

5 CONCLUSIONS
We reported some considerations on the experience of teaching the
course of Software Performance and Scalability at the University Ca’
Foscari of Venice. We discussed the balance between a model-driven
and problem-driven approach to the didactic of the course.We share
with the view of [9] the necessity of having, as community, a set
of real-world case studies to present in the courses. Possibly, these
should teach generally valid lessons and use standard approaches
rather than ad-hoc ones. Moreover, we believe that this wish could
be extended also to a lab environment where students can develop
practical skills. A successful case study, in a different domain, is
Katharà3 where labs of networking can be done. With such a tool,
labs of benchmarking could be done on physical labs or on the
cloud with a nice variety of scenarios.

3https://www.kathara.org

353

https://www.kathara.org

ICPE ’23 Companion, April 15–19, 2023, Coimbra, Portugal Andrea Marin

REFERENCES
[1] Marco Bertoli, Giuliano Casale, and Giuseppe Serazzi. 2009. JMT: performance

engineering tools for systemmodeling. ACMSIGMETRICS Performance Evaluation
Review 36, 4 (2009), 10–15.

[2] Vittoria de Nitto Persone. 2020. Teaching Performance Modeling in the era of
millennials. CoRR abs/2001.08949 (2020). https://arxiv.org/abs/2001.08949

[3] Abhishek Dubey, Rajat Mehrotra, Sherif Abdelwahed, and Asser N. Tantawi. 2009.
Performance modeling of distributed multi-tier enterprise systems. SIGMETRICS
Perform. Evaluation Rev. 37, 2 (2009), 9–11.

[4] Mor Harcol-Balter. 2013. Performance Modeling and Design of Computer Systems:
Queueing Theory in Action. Cambridge University Press.

[5] Peter G. Harrison and Andrea Marin. 2014. Product-Forms in Multi-Way Syn-
chronizations. Comput. J. 57, 11 (2014), 1693–1710.

[6] Boudewijn R. Haverkort. 2021. Performance Evaluation: Model-Driven or
Problem-Driven?. In Quantitative Evaluation of Systems - 18th International Con-
ference, QEST 2021, Paris, France, August 23-27, 2021, Proceedings (Lecture Notes in

Computer Science, Vol. 12846). Springer, 3–11.
[7] Samuel Kounev and Klaus-Dieter Lange. 2021. Systems Benchmarking: For Scien-

tists and Engineers. Springer.
[8] Daniel A. Menascè and Virgilio A. F. Almeida. 2005. Capacity planning for web

performance: metrics, models and methods. Prentice Hall Iberia.
[9] Connie U. Smith. 2021. Software Performance Engineering Education: What

Topics Should be Covered?. In ICPE ’21: ACM/SPEC International Conference on
Performance Engineering, Companion Volume, WEPPE Workshop. 131–132.

[10] Y. C. Tay. 2019. Lessons from Teaching Analytical Performance Modeling. In ICPE
’19: ACM/SPEC International Conference on Performance Engineering, Companion
Volume, WEPPE Workshop. 79–84.

[11] Y. C. Tay. 2021. The Role of Analytical Models in the Engineering and Sci-
ence of Computer Systems. In ICPE ’21: ACM/SPEC International Conference on
Performance Engineering, Companion Volume, WEPPE Workshop. 107.

354

https://arxiv.org/abs/2001.08949

	Abstract
	1 Introduction
	2 Course description
	3 Observations on the experience
	3.1 Comments on the topics
	3.2 Comments on the tools and model library
	3.3 Comments on the lab experience

	4 The experience of online teaching
	5 Conclusions
	References

