
Early Progress on Enhancing Existing Software Engineering
Courses to Cultivate Performance Awareness
André Benjamin Bondi

Stevens Institute of Technology
Hoboken, New Jersey, USA

Software Performance and Scalability Consulting LLC
Red Bank, New Jersey, USA
andrebbondi@gmail.com

Lu Xiao
Stevens Institute of Technology
Hoboken, New Jersey, USA

lxiao6@stevens.edu

ABSTRACT
Software engineering and computer science courses are frequently
focused on particular areas in a way that neglects such cross-cutting
quality attributes as performance, reliability, and security. We will
describe the progress we have made developing enhancements to
some of our existing software engineering courses to draw atten-
tion and even lay the foundations of an awareness of performance
considerations in the software development life cycle. In doing
so, we wish to make performance considerations integral to the
software engineering mindset while avoiding the need to remove
current material from our existing courses. This work is part of an
NSF-funded project for undergraduate curriculum development.

CCS CONCEPTS
• Software and its engineering → Software organization and
properties; Software performance; • Social and professional
topics → Software engineering education.

KEYWORDS
Performance engineering. Software engineering curriculum devel-
opment.
ACM Reference Format:
André Benjamin Bondi and Lu Xiao. 2023. Early Progress on Enhancing
Existing Software Engineering Courses to Cultivate Performance Awareness.
In Companion of the 2023 ACM/SPEC International Conference on Performance
Engineering (ICPE ’23 Companion), April 15–19, 2023, Coimbra, Portugal.
ACM, New York, NY, USA, 5 pages. https://doi.org/10.1145/3578245.3584352

1 INTRODUCTION
In the first author’s industrial experience, and in that of other au-
thors, e.g., [20], the performance of a software system is often an
afterthought rather than a quality attribute to be considered at
every stage of a software development life cycle. The importance of
an understanding of performance concerns among all stakeholders
is underscored by a study by Bass et al [3], which indicated that per-
formance failures were the single largest cause of software project

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
ICPE ’23 Companion, April 15–19, 2023, Coimbra, Portugal
© 2023 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 979-8-4007-0072-9/23/04. . . $15.00
https://doi.org/10.1145/3578245.3584352

cancellations. It is for these reasons that we feel it is important to
cultivate performance awareness among students taking software
engineering and computer science courses.

In our various roles as an industrial practitioner of software per-
formance engineering and as students and instructors of computer
science and software engineering courses, we have observed that
performance awareness is far from ubiquitous, and that perfor-
mance concerns and means of addressing them receive little if any
attention in standard courses and texts.

The goal of our project is to show how performance concerns
and concepts can be incorporated into standard courses without
taking large amounts of class time and homework time away from
the courses’ core subject matter. For example, we have augmented
course material on testing concurrent programming with explana-
tions of how performance measurement can be used to diagnose
concurrent programming problems. Working with colleagues in
engineering education development (Dr. Gail Baxter) and sociology
(Dr. Yu Tao), we plan to evaluate how our course enhancements
have increased performance awareness by comparing course sec-
tions who hear about them with those who do not.

2 RELATION TO PREVIOUS WORK
Bondi and Saremi [8] describe how they augmented an existing
course on functional testing and quality assurance with material on
resource usage measurement, web response time measurement, and
performance requirements. We describe augmentations to other
aspects of the course in a subsequent section.

Some textbooks on operating systems [9] and computer network-
ing have a considerable performance component [5]. Somerville
[22] briefly mentions performance concerns as they relate to testing
and to the impact of performance requirements on architecture.

Many books on performance engineering place a stronger empha-
sis on performance measurement [18] and analysis and modeling
[15][13], its application to specific system problems [11][17][19],
and the role of performance engineering in the software develop-
ment life cycle [6] than we would have time to do in any or all of
the software engineering courses we explore here. The material
we propose to add to the standard courses might pique students’
interest in learning about performance in depth, but it will not give
the students the same breadth or depth of performance knowledge
as a course based on any one of these books. 1

1The operating systems class taught by Prof. Peter Denning at Purdue University in
the late 1970s and early 1980s was an inspiring example to the first author. Apart
from devoting a few lectures at the end of the course to operational analysis and basic
queueing network models, Prof. Denning drew attention to the effects on performance

345

https://orcid.org/0000-0003-0709-2078
https://orcid.org/0000-0002-3202-3077
https://doi.org/10.1145/3578245.3584352
https://doi.org/10.1145/3578245.3584352

ICPE ’23 Companion, April 15–19, 2023, Coimbra, Portugal André Benjamin Bondi & Lu Xiao

3 ADDING PERFORMANCE CONTENT TO
EXISTING COURSES AT STEVENS

3.1 Objectives and Constraints
When adding performance content to existing courses, we need to
ensure that the new material fits into the instructor’s existing nar-
rative flow while not detracting from the usual topics of the course.
At the same time, we must ensure that the performance content is
not oversimplified. Moreover, we need to reinforce the performance
content by providing exercises that augment the homework assign-
ments that support the usual goals of a given course. In the present
project, we are examining ways to do this for four courses, two of
which are dual senior/first year graduate courses, and two of which
are senior-level or junior-level undergraduate courses. The titles
of these four courses are Testing and Quality Assurance, Software
Metrics, Model-Based Design, and Object-Oriented Development.

Unlike courses in the social and natural sciences, most computer
science and software engineering courses do not stress probabil-
ity, statistics, or the analysis and presentation of quantitative data.
Because we cannot take too much class time away from the in-
tended topics of our courses, we either have to rely on students’
prior training in quantitative disciplines or give firm and detailed
guidance about how quantitative data should be presented in their
homework assignments. This is consistent with the sentiments ex-
pressed in discussion groups at the First International Workshop on
Teaching Performance Analysis of Computer Systems, part of the
Performance 2021 conference. Videos of these discussions may be
found here: https://www.performance2021.deib.polimi.it/teapacs/ .

3.2 A Course on Functional Testing and Quality
Assurance

Because the authors taught this course in the semester preceding
the present workshop, it was the first on which we focused our
enhancement efforts. All programming exercises in this course are
done in Python. This enables the class to use a vast number of
libraries and software tools without charge.

In [8], we described the extension of a course on functional test-
ing and quality assurance with the use of JMeter to drive web loads
and the use of native resource usage measurements on their lap-
tops to discern how an application actually works. In the present
course enhancements, we also show the students how to build a
performance test plan from performance requirements and basic
performance models such as those described in [10] and [6]. This
material was preceded by a lecture on using functional require-
ments as the basis of functional test plans. These two practices are
mutually reinforcing. Indeed, one could augment each functional
requirement with a corresponding performance requirement and a
set of workload requirements to build a performance test plan.

Among the other performance-related topics we cover in this
course are:

• The planning of performance tests to establish whether a
refactoring effort has improved or degraded performance,

of scheduling rules, context switching, the use of semaphores instead of locks, concur-
rent programming principles, and page replacement algorithms. Thus, students were
taught to make connections between overall system performance and the performance
of various aspects of operating system implementation[9][12].

thus mitigating the risk that the refactoring could degrade
performance,

• The opportunity to identify the existence of serious perfor-
mance issues if unit tests in single user mode take longer
than desired, using standard timestamp libraries,

• Using a discrete time Markov chain model to drive load tests
on web sites [7]. This technique builds on the concept of
functional tests that are driven by state machines. These can
be used to track code coverage [16],

• The use of orthogonal array testing (OATS) to reduce the
number of test cases, and hence the execution time of inte-
gration or unit testing during builds,

• The use of Python timestamp libraries to measure the execu-
tion times of the various stages of a build, so that students
understand which steps take the longest and how the steps
might be optimised.

Notice that each of these performance topics ties back to at least one
existing course topic, e.g., functional testing, configuration man-
agement, or requirements-driven testing. Thus, the performance
topics reinforce the teaching of the original concepts in the testing
course.

3.3 Model-Based Software Engineering
This is a senior-level course. The textbook is [20]. The course pro-
vides a survey of the role of UML in software design. The course
already has substantial performance content, including basic queue-
ing network models, the utilization law, the forced flow law, Little’s
Law, and bottleneck analysis as described in [10]. It also contains
lectures on discrete time and discrete event simulation and the use
of execution graphs with time estimates to estimate code execu-
tion times [21]. Performance awareness might be enhanced by the
addition of topics such as the performance characteristics of user
interfaces and the use of swim lanes in UML sequence charts to
coarsely identify potential foci of overload. A senior completing
this course in its present form would have some awareness of per-
formance in systems. The Stevens software engineering course on
object-oriented development is a prerequisite for this course. We
consider it next.

3.4 A Course on Object-Oriented Development
This is a Java-based undergraduate course. It covers object classes,
inheritance, exception handling, and elementary data structures. It
describes the differences between linked lists, arrays, strings, trees,
stacks, and queues. The costs of insertions, deletions, searching,
and sorting on these are described using big-Oh notation, as in a
typical undergraduate data structures course.

There are several opportunities for making the students aware
of performance considerations in this course. For example,

• We can assign hypothetical processing and I/O costs to ba-
sic operations and then show how these can be mapped to
resource utilization. Similarly, we can examine the spatial
costs of the various algorithms and implementation choices
and show how these would map to memory consumption.
This will reinforce student awareness of the resource usage
attributable to algorithmic choice and implementation.

346

Early Progress on Enhancing Existing Software Engineering Courses to Cultivate Performance Awareness ICPE ’23 Companion, April 15–19, 2023, Coimbra, Portugal

• We would assign the students to implement a simple numeri-
cal algorithm such as Gaussian elimination in Java code, and
then have them measure the elapsed time to solve a very
large system of linear equations using interpreted Java code,
compiled Java code, Java code running under JIT compila-
tion, and a package from a numerical library implemented
in compiled C code.

• Wewould have the students explore how repeated insertions,
creations, and deletions of objects could precipitate Java
garbage collection, which can degrade the performance of
an application.

• Similarly, one could use rudimentary models to examine the
performance trade-offs between using persistent objects that
are kept in a pool of constant size and transient objects that
are only kept for as long as they are needed. One could also
discuss the operational risks of repeated object creation and
deletion, such as memory leaks resulting from the failure to
destroy objects when no longer needed. For example, mem-
ory occupancy could expand to the point where it could
cause object pool exhaustion, extra paging, garbage collec-
tion, poor locality of reference, and security problems such
as violating addressing restrictions. Recursions that do not
terminate could cause run time stack overflows leading to
a system crash. If the students are running code in a linux
environment, we could ask them to track the occupancy of
the swap space using a program that has been deliberately
salted with a memory leak.

3.5 A Course on Software Metrics
This course is primarily concerned with metrics quantifying code
complexity, maintainability, software reliability, and how they can
be used to estimate development effort. Early in the course, the
point is made that it is important to choose measurements and
metrics that are informative about the questions at hand and that
tell an actionable story. This is an important element of performance
awareness. Among the opportunities for cultivating performance
awareness are:

• The response times of individual transactions and use cases
under light and heavy loads could be examined, and perhaps
related to code complexity metrics.

• The results of code execution profiling could be compared
with execution graphs to see if the code segments where the
program is spending its time can be related to cyclomatic
complexity, the presence of bugs, and the cost of exception
handling.

• The Return on Investment (ROI) of addressing performance
issues in real-life software projects. In our prior work [27, 28],
we measured the “return” of fixing performance issues as
the improvement factor of the performance metrics, such as
response time and throughput, as well as the “investment”
as indicated by the number of discussions among developers
before they address the performance issues. We will design
an assignment for students to practice the ROI analysis on
selected, real-life performance issues to understand the “eco-
nomics” behind managing performance issues in software
projects.

• The effect of code size on performance and resource usage
and the sizes of the code and data segments could influence
memory occupancy, paging behavior, and cache hit ratios.
These could also be impacted by measures of modularity,
function call frequency, and run-time stack activity. Before
incorporating this in to the course, one would have to de-
termine whether the level of detail required is excessively
burdensome to the students.

4 GENERAL OBSERVATIONS
4.1 Data Presentation and Analysis
The presentation, communication, and interpretation of measure-
ment data are essential elements of performance awareness. During
our pilot efforts, we have noticed that quality of data presentation
among students is far from uniform. To prevent this, we should
explain sound data presentation practices to our students, including
conventions for displaying plots, and require that students adhere
to them. Examples of good data presentation and visualization prac-
tice can be found in [24] and [14]. Among the problems students
need to be trained to avoid are:

• Graphs that have axes with no labels and curves with no
legends.

• The absence of data point markers from plots. This prevents
us from seeing deviations from fitted curves and from deter-
mining how the points are distributed along the X axis.

4.2 Choosing Meaningful, Informative
Performance Metrics

One of the necessary conditions for performance awareness is the
ability to determine whether a metric or measurement is infor-
mative about questions at hand or questions that might arise. In
addition, students need to be aware that performance concerns can
be associated with more than one metric. For example, a student
who is performance aware should understand that processing is not
always the cause of high response times, and that high response
times could be attributed to excessive I/O, wasteful bandwidth us-
age, or software bottlenecks.

4.3 Requiring Students to Generate
Performance Measurements of Their Own
Code and AI-Generated Code

It is well known that many students began using chatGPT to prepare
programming and essay assignments within days of the applica-
tion’s release [2]. This concern is also discussed in [25] and [4]. The
implications of this for evaluating students’ work are outside the
scope of this paper. Still, whether the programs students submit
are their own or automatically generated, we can require them to
measure their execution times and, if run on a laptop, their resource
usages, for various sets of input parameters and input files that
could be generated at random or chosen by the instructor. At the
time of writing, we are not aware of chatGPT or copilot being able
to generate performance measurements of running programs, in-
cluding those created by students. Students might be able to learn
something from an exercise in which they have to measure pro-
grams generated by an AI tool as well as each other’s programs

347

ICPE ’23 Companion, April 15–19, 2023, Coimbra, Portugal André Benjamin Bondi & Lu Xiao

intended to accomplish the same task. Since measurements will
typically be run on students’ own machines, they might not be easy
to fake. This requires further investigation.

5 NEXT STEPS
We will now discuss the next steps in our longer-term plan that are
not elaborated in the previous sections. These include opportunities
to incorporate performance topics in additional courses in our
software engineering program, the plan to evaluate the effectiveness
of the learning outcomes of the proposed curriculum changes, as
well as the plan to disseminate the results of this project to increase
the broader impacts in the community.

5.1 Homework Assignments to Stimulate
Awareness

Homework assignments containing performance content are neces-
sary to reinforce students’ awareness of performance issues. These
must be tailored to the principal subject matter of each course.

• In any of the courses with substantial programming content,
with the possible exception of the course on software metrics,
one could require students to insert calls to functions that
deliberately slow programs down, and have the students
compare the resource usage and execution times with and
without these degrading calls.2

• In the course on functional testing, we require students to
measure and compare the execution times of programs when
reading and processing very small, moderate, and very large
files in identical formats. We also require the students to com-
pare the performance and resource usage of test harnesses
with and without mutation test cases [1].

• In the course on object-oriented development, examples of
refactoring might include the substitution of one sorting
algorithm by another and the interchanging of the nesting
order of loops in a numerical computation. We might also
consider the possibility of students running their own pro-
grams through a tool to detect performance antipatterns,
such as that proposed in [23], but this might entail mak-
ing load generation tools available to students and enabling
them to generate loads in a way that does not compromise
any systems they do not own.

• Performance-related homework assignments in the course
on model-driven design could include exercises on the basic
queueing laws and their application to the planning of simu-
lations and the analyses of their outputs. In particular, the
Response Time Law for closed queueing networks could be
used to show how long think times can drive down simulated
throughputs.

5.2 Other Curriculum Additions
In each of the courses mentioned in the previous subsection, we
focus on specific topics about software performance, such as choice
of testing techniques, the specific modeling technique, and detailed
design choices to ensure software performance. Because these top-
ics are specific to each course, students will not gain a holistic

2This idea is inspired by a comment by one of the WEPPE2023 referees.

experience of how they should care for performance during the
entire life-cycle of a project, from inception to project delivery, as
well as during following-up maintenance. Thus, we are planning on
further curriculum additions to the project-based courses so that
students can practice using software performance methods as an
integral part of the development life-cycle in their own projects.
Specifically, during their last two semesters, our undergraduate
students take a sequence of two senior level design courses, where
they propose, design, implement, test, and deliver a project of their
own choosing. In the current setting of the course project, students
mostly emphasize the functionality of their projects, without be-
ing asked to explicitly plan, design, and manage its performance.
We plan to add more probing requirements in the different mile-
stones of the project so that students would be guided to consider
the performance of the project more systematically and formally.
The objective is to let the students connect the “dots” they learned
from their prior courses into “lines” through this two-semester-long
course project.

5.3 Evaluation of Learning Outcomes
We plan to evaluate the proposed curriculum materials using both
objective and subjective measures; and iteratively improve the cur-
riculum materials based on the evaluation results.

On the one hand, we plan to evaluate the outcomes of each
course based on students’ subjective input. That is, we plan to
provide an entering survey and an exiting survey to students in
each course. The survey aims at collecting subjective evaluations of
the course materials from students. For example, for the Software
Testing course, we may ask the student to evaluate on a scale from
1 to 5 how well prepared are they in conducting certain testing
tasks that relate to software performance. The survey questions
will be customized based on the topics covered in the course. To
specifically evaluate the effectiveness of the proposed curriculum
materials, we plan to conduct the survey with the class that took
the original course (i.e. before the proposed curriculum materials
were incorporated), and also the class that actually take the updated
course (i.e. after implementing the proposed curriculum materials).
The effectiveness of the course materials will be measured based
on the improvement made by comparing the baseline class vs. the
target class.

On the other hand, we also plan to evaluate students’ learn-
ing outcomes based on objective measures, through quizzes and
assignments. For example,

• We could ask the students to compute resource utilizations
given service time and throughput without mentioning the
utilization law, and compute attainable throughput given
the response time, think time, and number of load drivers,
or given the demand on the most heavily loaded resource.

• We could ask the students to draft response time require-
ments for different kinds of applications.

Tasks like these will be designed to test students’ knowledge of
relevant performance topics that we aim to cover. The effectiveness
of the curriculum materials will be measured by comparing the
scores of students in the baseline class vs. the target class.

We will develop improvement plans based on the above subjec-
tive and objective evaluation results.

348

Early Progress on Enhancing Existing Software Engineering Courses to Cultivate Performance Awareness ICPE ’23 Companion, April 15–19, 2023, Coimbra, Portugal

5.4 Dissemination of Results
Our overarching goal is to increase the impact of this project on
the broader community in software engineering and performance
engineering. We plan to focus on the following activities for this
goal:

• Making the curriculum modules we create in this project
available in a public repository to benefit the broader com-
munity. This was suggested by our advisory board prior to
the commencement of the project.

• Holding workshops to inform and engage instructors in
software engineering, computer science, and performance
engineering, to facilitate its adoption elsewhere, and to ob-
tain feedback and suggestions from them on how to improve
our work.

6 CONCLUSIONS
The goal of our research is to show how existing undergraduate
courses in software engineering could be enhanced to promote
the cultivation of performance-aware software engineers. We have
presented an outline for adding performance topics to four courses,
and have explored the possibilities of doing so in detail in our se-
nior/graduate level course on functional testing and configuration
management. While doing so, we have identified the need to pro-
vide firm guidance to students on the graphical presentation of
performance measurement data. A data presentation standard is
necessary for communicating performance insights and concerns
to a variety of stakeholders in the software development life cycle.
We have also outlined how we might evaluate the effectiveness of
our curriculum enhancements, so that we and others can see how
to improve them.

ACKNOWLEDGMENTS
This work is supported by NSF grant #2142531. The goals of this
project were first described publicly at an invited panel discussion
hosted by the Computer Measurement Group at CMGIMPACT2022
[26]. The original funding applicant and principal investigator for
this project was Ye Yang, who is now at Amazon Web Services. We
thank her for initiating this project and for guiding the research
proposal process from its inception to its funding. The second
author is now the principal investigator. We would also like to
thank the referees for their useful comments.

We would like to especially thank the members of this project’s
advisory board for their valuable comments. The members are Alex
Podelko, Connie U. Smith, Kishor Trivedi, Igor Trubin, and Gregg
Vesonder.

REFERENCES
[1] Domenico Amalfitano, Ana C.R. Paiva, Alexis Inquel, Luís Pinto, Anna Rita

Fasolino, and René Just. 2022. How do Java mutation tools differ? Commun. ACM
65, 12 (2022), 74–89.

[2] Laura Meckler and Pranshu Verma. 2022 (accessed December 28th, 2022). Teach-
ers are on alert for inevitable cheating after release of ChatGPT. The Washington
Post (2022 (accessed December 28th, 2022)). https://www.washingtonpost.com/
education/2022/12/28/chatbot-cheating-ai-chatbotgpt-teachers/

[3] Len Bass, Robert Nord, WilliamWood, and David Zubrow. 2007. Risk Themes Dis-
covered through Architecture Evaluations. In 2007 Working IEEE/IFIP Conference
on Software Architecture (WICSA’07). 1–1. https://doi.org/10.1109/WICSA.2007.37

[4] E. Berger. 2022. Coping with copilot. https://blog.sigplan.org/2022/08/18/coping-
with-copilot/

[5] Dimitri Bertsekas and Robert Gallager. 1987. Data Networks (2nd ed.). Prentice
Hall.

[6] A. B. Bondi. 2014. Foundations of Software and System Performance Engineering:
Process, Performance Modeling, Requirements, Testing, Scalability, and Practice.
Addison-Wesley.

[7] Andre B. Bondi and Apeni Lotha. 2019. Building a representative, effective model
to randomly generate valid sequences of web page visits for load testing. In
CMG/IMPACT 2019. Computer Measurement Group.

[8] Andre B. Bondi and Razieh L. Saremi. 2021. Experience with Teaching Perfor-
mance Measurement and Testing in a Course on Functional Testing. In ICPE ’21:
ACM/SPEC International Conference on Performance Engineering, April 19-21, 2021,
Companion Volume. ACM, 115–120.

[9] E. G. Coffman and P. J. Denning. 1973. Operating Systems Theory. Prentice Hall.
[10] P. J. Denning and J. P. Buzen. 1978. The Operational Analysis of Queueing

Network Models. Comput. Surveys 10, 3 (1978), 335–261.
[11] Neil Gunther. 2000. The Practical Performance Analyst. iUniverse Inc.
[12] A. N. Habermann. 1975. Introduction to Operating System Design. SRA.
[13] Mor Harchol-Balter. 2013. Performance Modeling and Design of Computer Systems:

Queuing Theory in Action. Cambridge University Press.
[14] Darell Huff. 1975. How to Lie with Statistics. Penguin.
[15] Raj Jain. 1991. The Art of Computer Systems Performance Analysis: Techniques for

Experimental Design, Measurement, Simulation, and Modeling. Wiley.
[16] Paul C Jorgensen. 2018. Software testing: a craftsman’s approach. CRC Press.
[17] Edward D. Lazowska, John Zahorjan, G. Scott Graham, and Kenneth C. Sevcik.

1984. Quantitative System Performance, Computer System Analysis Using Queuing
Network Models. Prentice Hall.

[18] D. J. Lilja. 2000. Measuring Computer Performance: A Practitioner’s Guide. Cam-
bridge University Press.

[19] Daniel A. Menasce and Virgilio A. F. Almeida. 2002. Capacity Planning for Web
Services: Metrics, Models, and Methods. Prentice Hall.

[20] C.U. Smith and L.G. Williams. 2001. Performance Solutions: A Practical Guide to
Creating Responsive, Scalable Software. Addison-Wesley. https://books.google.
com/books?id=X5VlQgAACAAJ

[21] Connie U. Smith. 1986. Independent general principles for constructing respon-
sive software systems. ACM Transactions on Computer Systems 4 (1986), 1–31.

[22] Ian Somerville. 2016. Software Engineering (tenth ed.). Pearson.
[23] Catia Trubiani, Alexander Bran, André van Hoorn, Alberto Avritzer, and Holger

Knoche. 2018. Exploiting load testing and profiling for performance antipattern
detection. Information and Software Technology 95 (2018), 329–345.

[24] E.R. Tufte. 2001. The Visual Display of Quantitative Information. Graphics Press.
[25] Matt Walsh. 2003. The End of Programming. CACM 66 (2003), 34–35. https:

//dl.acm.org/doi/10.1145/3570220
[26] Ye Yang and André B. Bondi (moderators). 2022. Roadmap for Cul-

tivating Performance-Aware Software Engineers. Panel discussion.
https://www.cmg.org/2022/02/panel-roadmap-for-cultivating-performance-
aware-software-engineers/

[27] Yutong Zhao, Lu Xiao, Andre B Bondi, Bihuan Chen, and Yang Liu. 2022. A Large-
Scale Empirical Study of Real-LifePerformance Issues in Open Source Projects.
IEEE Transactions on Software Engineering (2022).

[28] Yutong Zhao, Lu Xiao, Xiao Wang, Lei Sun, Bihuan Chen, Yang Liu, and Andre B
Bondi. 2020. How are performance issues caused and resolved?-an empirical
study from a design perspective. In Proceedings of the ACM/SPEC International
Conference on Performance Engineering. 181–192.

349

https://www.washingtonpost.com/education/2022/12/28/chatbot-cheating-ai-chatbotgpt-teachers/
https://www.washingtonpost.com/education/2022/12/28/chatbot-cheating-ai-chatbotgpt-teachers/
https://doi.org/10.1109/WICSA.2007.37
https://blog.sigplan.org/2022/08/18/coping-with-copilot/
https://blog.sigplan.org/2022/08/18/coping-with-copilot/
https://books.google.com/books?id=X5VlQgAACAAJ
https://books.google.com/books?id=X5VlQgAACAAJ
https://dl.acm.org/doi/10.1145/3570220
https://dl.acm.org/doi/10.1145/3570220
https://www.cmg.org/2022/02/panel-roadmap-for-cultivating-performance-aware-software-engineers/
https://www.cmg.org/2022/02/panel-roadmap-for-cultivating-performance-aware-software-engineers/

	Abstract
	1 Introduction
	2 Relation to Previous Work
	3 Adding Performance Content to Existing Courses at Stevens
	3.1 Objectives and Constraints
	3.2 A Course on Functional Testing and Quality Assurance
	3.3 Model-Based Software Engineering
	3.4 A Course on Object-Oriented Development
	3.5 A Course on Software Metrics

	4 General Observations
	4.1 Data Presentation and Analysis
	4.2 Choosing Meaningful, Informative Performance Metrics
	4.3 Requiring Students to Generate Performance Measurements of Their Own Code and AI-Generated Code

	5 Next Steps
	5.1 Homework Assignments to Stimulate Awareness
	5.2 Other Curriculum Additions
	5.3 Evaluation of Learning Outcomes
	5.4 Dissemination of Results

	6 Conclusions
	Acknowledgments
	References

