
Quantitative Analysis of Software Designs: Teaching Design and
Experiences

Alireza Hakamian
University of Stuttgart
Stuttgart, Germany

mir-alireza.hakamian@iste.uni-stuttgart.de

Steffen Becker
University of Stuttgart
Stuttgart, Germany

steffen.becker@iste.uni-stuttgart.de

ABSTRACT
Context. The Software Quality and Architecture group (SQA) at the
University of Stuttgart offers the Quantitative Analysis of Software
Designs (QASD) course for master students. The goal is to give
students the necessary skill to evaluate architecture alternatives of
software systems quantitatively. The course offers a combination of
required theoretical skills, such as applying stochastic processes and
practical exercises using suitable tools. The challenge. is providing
teaching materials that balance necessary theoretical knowledge
and appropriate tooling that can be used in practice. As a solution,
the course is designed so that one-third is about the formalisms
behind quantitative analysis, including stochastic processes and
queuing theory. One-third is modeling languages, such as queuing
networks, UML, and UML profiles, including MARTE. The other
one-third uses tooling to model and analyze example systems. Dur-
ing Corona, we provided students with an e-learning module with
pre-recorded videos, online quizzes at the end of every chapter,
and a virtual machine that pre-installed all the required tooling for
the exercise sheets. Final-remarks. In the past two years, students’
feedback was often positive regarding the balance between theory
and tooling. However, it has to be emphasized that the number
of students participating in the course has always been no more
than ten. Hence, the student feedback has not been collected by the
universities’ survey.

CCS CONCEPTS
• Software and its engineering→ Software design engineer-
ing; Software design tradeoffs.

KEYWORDS
teaching, software engineering, quality analysis, UML profiles, for-
mal methods

ACM Reference Format:
Alireza Hakamian and Steffen Becker. 2023. Quantitative Analysis of Soft-
ware Designs: Teaching Design and Experiences. In Companion of the 2023
ACM/SPEC International Conference on Performance Engineering (ICPE ’23
Companion), April 15–19, 2023, Coimbra, Portugal.ACM, New York, NY, USA,
4 pages. https://doi.org/10.1145/3578245.3584357

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
ICPE ’23 Companion, April 15–19, 2023, Coimbra, Portugal
© 2023 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 979-8-4007-0072-9/23/04. . . $15.00
https://doi.org/10.1145/3578245.3584357

1 INTRODUCTION
Quality prediction of software systems during the development
phase has proven to be cost-effective in the long term. Hence, a
required skill for future software engineers. The Software Quality
and Architecture (SQA) group at the University of Stuttgart offers
Quantitative Analysis of Software Design (QASD) aiming to provide
students with the required skills for (1) quality prediction, includ-
ing performance, reliability, and safety, and (2) quality trade-off
analysis.

The main challenge is to provide a balance between theoretical
skills and Software Engineering (SE) practices. Quality prediction
requires creating analytical models and solving them, which re-
quires theoretical skills, such as knowledge of stochastic processes.
On the other hand, in practice, development teams often prefer to
work with high-level languages such as Unified Modeling Language
(UML) [8] to describe the system’s behavior and structure.

This paper aims to provide insight into the QASD course orga-
nization, including lectures, exercises, online videos, quizzes, and
the final exam. Furthermore, the paper discusses the rationale be-
hind the teaching designs and experiences of conducting the course
during the pandemic.

The course teaches existing methods and related tooling for
predicting software design performance, reliability, and safety. The
course is organized into 11 chapters. To balance between theories
and SE practice, one-third of the chapters describe formalisms, such
as Markov processes, and the other third include SE practices for
performance and reliability modeling through Stereotyping. The
remaining is about using tooling to create and solve models that
capture the qualities of the system. Furthermore, we explain how
analytical models can be generated from quality annotated models.
Although, not in detail.

During the corona pandemic, we adopted the flipped classroom
model and decided to organize the course on an e-learning platform
provided by the university. To support students in dealing with
installation issues of tools, we provided a virtual machine with
all the required tools. Furthermore, we offered a few online Q&A
sessions and video recordings for all lecture contents. One reason
for video recording is that teaching in a synchronous online session
is often exhausting for students, mainly when it goes beyond 45
minutes. Hence, students can watch the videos at their own pace. In
addition to Q&A sessions, we had synchronous online sessions for
all exercises where we discuss possible solutions. We could not run
a standard university survey to get feedback as the number of par-
ticipants has been consistently no more than ten. However, through
discussions, students were happy about the balance between theory
and application in SE.

341

https://orcid.org/0000-0001-9899-0062
https://orcid.org/0000-0002-4532-1460
https://doi.org/10.1145/3578245.3584357
https://doi.org/10.1145/3578245.3584357

ICPE ’23 Companion, April 15–19, 2023, Coimbra, Portugal Alireza Hakamian and Steffen Becker

2 OVERVIEW OF QASD COURSE
This section gives an overview of the course organization concern-
ing the content.

2.1 Literature
Three main books cover a large extent of the lecture materials,
including Model-based software performance analysis [5], the Palla-
dio approach inmodeling and simulating software architectures [10]
and the application of Queuing networks and Markov chain in per-
formance evaluation [4]. Moreover, the literature contains, e.g.,
websites for tools such as PRISM [7] and specifications of standards
such as UML.

2.2 Lectures
The lecture contains 11 chapters, each with its own dedicated exer-
cise sheet. The following gives an overview of each chapter.

(1) Introduction gives motivation to how the course improves
students’ skills and how the course is organized

(2) Modeling where the content centers around describing soft-
ware system architecture through UML. The aim is to refresh
students’ memory on the representation of architecture mod-
els such as component, sequence, and activity diagrams

(3) UML Profiles discuss SPT and MARTE, which are means
to annotate UML models for quality predictions

(4) Discrete-time Markov chain (DTMC) is the first chapter
concentrating on formalism required for reliability analysis

(5) Continuous-time Markov chain (CTMC) offers the theo-
retical background required for performance analysis

(6) Queues and Queuing Network discusses how queues are
built on top of CTMC for performance analysis

(7) Running Example presents an end-to-end example for
performance and reliability analysis. The goal is to manually
transform UML models to queuing network and DTMC to
perform performance and reliability analysis

(8) Palladio Component Model (PCM) chapter presents a
model-driven approach for designing architectural models
and Performance prediction using simulation

(9) Safety lecture gives an overview of quantitative and qual-
itative hazard identification and analysis methods, such as
Fault-tree

(10) Real-Time Systems presents means for verifying system
properties that include timing guarantees

(11) Trade-off Analysis In the last chapter, we discuss meth-
ods for analyzing optimal design alternatives concerning
software systems that must satisfy more than one quality
attributes that conflict with each other such as performance,
reliability, and cost

The following Section describes the exercises and presents an
end-to-end example, illustrating theoretical learning and software
engineering practices together for software system quality predic-
tion.

2.3 Exercises: End-to-End Example
Students are supposed to form a group of two to three members and
work together. The seventh exercise sheet is the running example

aiming to assess learning materials for UML modeling, profiles,
queuing network, DTMC, and CTMC. The task presents an imagi-
nary e-commerce web application modeled with a sequence and
deployment diagrams that are annotated with performance charac-
teristics through MARTE.

Figure 1 illustrates interactions among three components, Order-
Managment, Inventory and Database. Furthermore, the figure shows
annotations that enrich the model with performance characteristics
using the MARTE profile. Figure 2 illustrates the deployment view
of the web application annotated with the MARTE profile.

sd

:OrderManagement

availableItems

:Inventory

checkAvailability(items)

:Database

availableItems

queryDB(items)

«PaRunTInstance»
{instance = om}

«PaRunTInstance»
{instance = inv}

«PaRunTInstance»
{instance = db}

«GaWorkloadEvent»
{open(intArrTime=

exp(0.2,sec))}
«PaStep»

{hostDemand=exp(1,WU)}
«PaStep»

{hostDemand=exp(1,WU)}

«GaPerformanceContext»

Figure 1: Sequence Diagram

«device»
Middleware Server

«artifact»
OrderManagement.jar

«device»
Middleware Server

«artifact»
Inventory.jar

«executionEnvironment»
MySql

«device»
CPU

«device»
CPU

1

1

«GaExecHost»
{processingRate=

(0.65WU,sec)}

«GaExecHost»
{processingRate=

(0.277WU,sec)}

Figure 2: Deployment Diagram

The exercise asks students to use Jsimgraph from Java Modeling
and Tools (JMT) [3] to draw a queuing model that reflects the UML
diagrams and, through both simulation, and analytical solution
predict the utilization of the Middleware and Database servers.

Figure 3 shows the resulting queuing network. According to
the annotations, The mean arrival rate to the system is _ = 0.2,
and the mean service rate that the servers offer are ` = 0.69 and
` = 0.227, respectively. After simulating the model, the utilization
of Middleware server is 29%, and Database server is 79%. Because

342

Quantitative Analysis of Software Designs: Teaching Design and Experiences ICPE ’23 Companion, April 15–19, 2023, Coimbra, Portugal

of the high utilization of the database server, we ask students to
design and simulate two alternative designs, including (1) adding
a new powerful processor that reduces the mean service time to
2.7 seconds, which means the mean service rate is 1

` = 0.37, and
(2) adding cache to Middleware server, which according to the mea-
surements only 20% of requests results in cache hits. The design
alternative one shows utilization is reduced to 53% while the cache
option leads to 57% utilization of the database server.

Source Completed

Figure 3: Queuing Network

Furthermore, the exercise asks to conduct reliability analysis
using PRISM [7] tool and DTMC formalism. The task informs stu-
dents that the failure probability of Middleware server is 0.5% in all
cases, and the database fails with the probability of 0.2% in all cases.
Figure4 illustrates the state space of modeled DTMC in PRISM. The
reliability property reads as what is the probability that the model
reaches the failed state in the steady state. The property looks simi-
lar to P=? [𝐹 𝑠𝑡𝑎𝑡𝑒 = 𝑓 𝑎𝑖𝑙𝑒𝑑]. Intuitively, the question asks with
what probability the requests from OrderManagment component
fail. Through model-checking, the result is 0.699%. Repeating the
task of adding a new processor with a failure rate of 0.0028 yields
a 0.77% probability of reaching failed state, and with cache, the
probability of failure on demand is 0.65%.

Often it is interesting for students to see how the use of for-
malisms together with modeling techniques developed in SE and
tooling support software engineers in quantitatively evaluating
different alternatives of software designs. The results from this
exercise are used for alternative analysis in the last chapter. The
final chapter introduces the analytic hierarchy process (AHP) to
allow students to find which of the design alternatives are optimal
concerning which quality is more important.

2.4 Exam
While we had one instance of a written exam, we decided to switch
to an oral exam. The main reason is that the number of students
is too few to justify creating, supervising, and correcting written
exams. In the exam, the focus is more on SE rather than exercising
theoretical background. Whenever needed, we provide definitions
of required theories and statistical concepts. The aim is to check
if students learned how to use them to assess the quality and not
whether they remembered definitions.

The following Section discusses the course organization, influ-
enced by the Corona pandemic.

Middle
ware Database Finished

Failed

Init

0.005
0.002

0.995 0.998

Figure 4: DTMC

3 ONLINE TEACHING EXPERIENCE
We decided to switch to the flipped classroom model such that
more time is dedicated to Q&A and exercising lecture materials
rather than teaching. For the teaching part, we provided students
with video recordings and organized the course on University’s
e-learning platform.

3.1 E-Learning Module and Quizzes
The decision was to make short videos of no more than 20 minutes
to prevent loss of attention. For each chapter, some Quizzes need to
be passed by students to unlock the next chapter’s recordings. We
held weekly exercises where one group presented and discussed the
solution. We held Q&A round online based on the general topics.
For example, after completing UML modeling and the profiles, we
offered an online Q&A session.

3.2 Virtual Machine
Supporting students in dealing with tool installation issues in an
online course is challenging. We decided to compile a virtual ma-
chine with already installed needed tools for exercises, including
Papyrus [9], PRISM [7], JMT [3], PCM [1], Octave [6], and UP-
PAAL [2].

3.3 Learning Track Issue
Often an important activity during learning for students is com-
municating with each other. One of the main reasons is that they
know how differently they understood the topic relative to other
students. Sometimes, a topic may be complex, and students with
less communication with others assume the difficulty is only for
them. That often results in overwhelming thoughts and reduces
their learning progress. While, in general, this is an issue with
no easy workaround, we think that pushing students to work as
a group and discuss their solution could increase the chance of
communication among them.

4 CONCLUSION
This paper summarizes QASD teaching design and experiences.
The course aims to teach students the necessary skills for both
quality prediction and quality trade-off analysis. Consequently, the

343

ICPE ’23 Companion, April 15–19, 2023, Coimbra, Portugal Alireza Hakamian and Steffen Becker

design of the lecture includes a balance of (1) formalisms and the-
ories behind quantitative analysis, (2) modeling languages such
as UML, and (3) tooling support for modeling and analysis activ-
ities. The paper presents and solves an end-to-end example from
QASD exercise aiming to assess learning materials, including UML
modeling and annotations, DTMC, CTMC, queuing network, and
related tooling. Furthermore, the paper discusses the changes in
the lecture settings during the pandemic, including the e-learning
module with recorded videos and quizzes and supporting students
regarding tooling by providing them with a virtual machine with
all installed tools.

REFERENCES
[1] Steffen Becker, Heiko Koziolek, and Ralf H. Reussner. 2009. The Palladio compo-

nent model for model-driven performance prediction. J. Syst. Softw. 82, 1 (2009),
3–22. https://doi.org/10.1016/j.jss.2008.03.066

[2] Gerd Behrmann, Alexandre David, Kim Guldstrand Larsen, John Håkansson,
Paul Pettersson, Wang Yi, and Martijn Hendriks. 2006. UPPAAL 4.0. In Third
International Conference on the Quantitative Evaluation of Systems (QEST 2006),
11-14 September 2006, Riverside, California, USA. IEEE Computer Society, 125–126.
https://doi.org/10.1109/QEST.2006.59

[3] Marco Bertoli, Giuliano Casale, and Giuseppe Serazzi. 2009. JMT: performance
engineering tools for system modeling. SIGMETRICS Perform. Evaluation Rev. 36,
4 (2009), 10–15. https://doi.org/10.1145/1530873.1530877

[4] Gunter Bolch, Stefan Greiner, Hermann de Meer, and Kishor S. Trivedi. 2006.
Queueing Networks and Markov Chains - Modeling and Performance Evaluation
with Computer Science Applications, Second Edition. Wiley. http://eu.wiley.com/
WileyCDA/WileyTitle/productCd-0471565253.html

[5] Vittorio Cortellessa, Antinisca Di Marco, and Paola Inverardi. 2011. Model-Based
Software Performance Analysis. Springer. https://doi.org/10.1007/978-3-642-
13621-4

[6] GNU Octave. 2023. GNU Octave Scientific Programming Language. https:
//octave.org/

[7] Marta Z. Kwiatkowska, Gethin Norman, and David Parker. 2002. PRISM: Proba-
bilistic Symbolic Model Checker. In Computer Performance Evaluation, Modelling
Techniques and Tools 12th International Conference, TOOLS 2002, London, UK, April
14-17, 2002, Proceedings (Lecture Notes in Computer Science, Vol. 2324), Tony Field,
Peter G. Harrison, Jeremy T. Bradley, and Uli Harder (Eds.). Springer, 200–204.
https://doi.org/10.1007/3-540-46029-2_13

[8] OMG Standards Development Organization. 2023. Unified Modeling Language
Specification. https://www.omg.org/spec/UML/2.5.1/About-UML/

[9] Papyrus. 2023. Eclipse Papyrus Modeling Environment. https://www.eclipse.
org/papyrus/

[10] Ralf H Reussner, Steffen Becker, Jens Happe, Robert Heinrich, and Anne Koziolek.
2016. Modeling and simulating software architectures: The Palladio approach. MIT
Press.

344

https://doi.org/10.1016/j.jss.2008.03.066
https://doi.org/10.1109/QEST.2006.59
https://doi.org/10.1145/1530873.1530877
http://eu.wiley.com/WileyCDA/WileyTitle/productCd-0471565253.html
http://eu.wiley.com/WileyCDA/WileyTitle/productCd-0471565253.html
https://doi.org/10.1007/978-3-642-13621-4
https://doi.org/10.1007/978-3-642-13621-4
https://octave.org/
https://octave.org/
https://doi.org/10.1007/3-540-46029-2_13
https://www.omg.org/spec/UML/2.5.1/About-UML/
https://www.eclipse.org/papyrus/
https://www.eclipse.org/papyrus/

	Abstract
	1 Introduction
	2 Overview of QASD Course
	2.1 Literature
	2.2 Lectures
	2.3 Exercises: End-to-End Example
	2.4 Exam

	3 Online Teaching Experience
	3.1 E-Learning Module and Quizzes
	3.2 Virtual Machine
	3.3 Learning Track Issue

	4 Conclusion
	References

