
Using eBPF for Database Workload Tracing: An Explorative Study
Jörg Domaschka

∗

Simon Volpert
∗

joerg.domaschka@uni-ulm.de

simon.volpert@uni-ulm.de

Ulm University, Ulm

Germany

Kevin Maier

Georg Eisenhart

kevin.maier@uni-ulm.de

georg.eisenhart@uni-ulm.de

Ulm University, Ulm

Germany

Daniel Seybold

daniel.seybold@benchant.com

benchANT GmbH

Ulm, Germany

ABSTRACT
Database management systems (DBMS) are crucial architectural

components of any modern distributed software system. Yet, ensur-

ing a smooth, high-performant operation of a DBMS is a black art

that requires tweaking many knobs and is heavily dependent on the

experienced workload. Misconfigurations at production systems

have an heavy impact on the overall delivered service quality and

hence, should be avoided at all costs. Replaying production work-

load on test and staging systems to estimate the ideal configuration

are a valid approach. Yet, this requires traces from the production

systems.

While many DBMS’s have built-in support to capture such traces

these have a non-negligible impact on performance. eBPF is a Linux

kernel feature claiming to enable low-overhead observability and

application tracing. In this paper, we evaluate different eBPF-based

approaches to DBMS workload tracing for PostgreSQL and MySQL.

The results show that using eBPF causes lower overhead than the

built-in mechanisms. Hence, eBPF can be a viable baseline for build-

ing a generic tracing framework. Yet, our current results also show

that additional optimisation and fine-tuning is needed to further

lower the performance overhead.

CCS CONCEPTS
•General and reference→Performance; •Computingmethod-
ologies → Modeling methodologies.

KEYWORDS
DBMS, eBPF, Benchmarking, Cloud

ACM Reference Format:
Jörg Domaschka, Simon Volpert, Kevin Maier, Georg Eisenhart, and Daniel

Seybold. 2023. Using eBPF for Database Workload Tracing: An Explorative

Study. In Companion of the 2023 ACM/SPEC International Conference on
Performance Engineering (ICPE ’23 Companion), April 15–19, 2023, Coimbra,
Portugal. ACM, New York, NY, USA, 7 pages. https://doi.org/10.1145/357824

5.3584313

∗
All authors contributed equally to this research.

This work is licensed under a Creative Commons Attribution-

ShareAlike International 4.0 License.

ICPE ’23 Companion, April 15–19, 2023, Coimbra, Portugal
© 2023 Copyright held by the owner/author(s).

ACM ISBN 979-8-4007-0072-9/23/04.

https://doi.org/10.1145/3578245.3584313

1 INTRODUCTION
The importance and prevalence of Database Management Sys-

tems (DBMS) is ubiquitous. Acting as a backbone of many modern

distributed systems they directly impact performance as well as

reliability and thus user experience. Consequently, the assessment

of performance under various conditions has always been a widely

regarded research topic [18] and continues to the present day [3].

Yet, this research is not limited to mere performance engineering,

but covers of many different aspects of databases including non-

functional ones such as availability and consistency [5].

Most methods for analysing DBMS need some kind of work-

load that can be enacted on a target DBMS server. Basically, this

workload can either be generated synthetically or traced from an

actual real workload. While there are some well known and highly

regarded synthetic benchmark and workload generator tools avail-

able [19], they impose the challenge to model production workload

on benchmark parameters. What is more, this modelling will fail,

if circumstances require to reproduce a real production workload.

In these cases, replaying real workload traces is the only possible

approach. While such traces can conceptually be manually crafted,

this is seldom a realistic option due to time and effort required, but

also because changes in workload cannot be captured easily. Alter-

natively, a workload trace needs to be gathered from production

systems leaving the question of how to acquire such a trace.

Most, if not all production grade DBMS come with support for

workload tracing. Yet, this tracing feature is supposed to cause

massive overhead and is usually not recommended for running

in production [12]. Hence, if traces are collected at all, they span

relatively short time spans and cannot be used for continuous moni-

toring, validation, and optimisation. In this paper, we shall evaluate

to what extent Extended Berkeley Packet Filter (eBPF) can be used

for gathering workload traces from different DBMS. eBPF is a Linux

kernel feature that has been gaining attention in both academia

and industry promising low-overhead instrumentation capabilities.

Furthermore, it is decoupled from the actual DBMS technology and

thus widely applicable. Consequently, this leads to the following

research questions:

RQ1 Can DBMS be instrumented (using eBPF) in order to trace

occurring workload?

RQ2 How big is the impact of such an (eBPF) instrumentation

on the overall performance?

RQ3 How does the eBPF impact compare to native DBMS trac-

ing?

While answering these questions our contribution is an anal-

ysis of eBPF measurement overhead for two distinct workloads.

These workloads are executed on recent releases of MySQL and

311

https://orcid.org/0000-0002-5451-3480
https://orcid.org/0000-0002-4896-7830
https://orcid.org/0000-0002-4548-8797
https://orcid.org/0000-0001-5070-5410
https://orcid.org/0000-0002-7973-5485
https://doi.org/10.1145/3578245.3584313
https://doi.org/10.1145/3578245.3584313
https://creativecommons.org/licenses/by-sa/4.0/
https://creativecommons.org/licenses/by-sa/4.0/
https://creativecommons.org/licenses/by-sa/4.0/
https://doi.org/10.1145/3578245.3584313


ICPE ’23 Companion, April 15–19, 2023, Coimbra, Portugal Jörg Domaschka, Simon Volpert, Kevin Maier, Georg Eisenhart, & Daniel Seybold

PostgreSQL. We further compare those results to their respective

native tracing capabilities.

The remainder of this paper is structured as follows. We intro-

duce important aspects of eBPF in Section 2. Subsequently, we

describe the implementation of our eBPF based tracing tool in Sec-

tion 3. This is followed by an evaluation of the results by presenting

the measurement scenarios, environment and results in Section 4.

Section 5 then puts our findings in contrast to those found in related

research. Finally, we conclude the paper.

2 BACKGROUND
The origins of eBPF lie in the initial implementation Berkeley Packet

Filter (BPF) [16]. The idea behind this technology was the execution

of arbitrary package filter expressions which are passed to the

kernel in order to be interpreted there. This enabled users to filter

packets without transporting every packet from the kernel to user

space and back. The initial BPF was implemented as a minimal and

very limited Virtual Machine (VM).

eBPF extends this by following up on the concept of VM and

significantly improving its capabilities. Beyond the mere executing

of functions on package events, it is now possible to observe and

manipulate further sources like Performance Monitoring Coun-

ters (PMCs), tracepoints, kernel and user functions. These event

sources are not necessarily part of eBPF, but eBPF tooling enables

approachable exploitation of those. The typical lifecycle of an eBPF

program is visualised in Figure 1 as presented by Gregg [8].

2.1 The eBPF Lifecycle

verifier

BPF

maps

uprobes

kprobes

tracepoints

perf_events

BPF

bytecode

statistics

per-event

data

(i) generate

(ii)
load

(iii)
perf output

(iii)
async read

𝐾𝑒𝑟𝑛𝑒𝑙𝑈𝑠𝑒𝑟

Figure 1: eBPF internals and typical lifecycle according to [8]

The lifecycle of an eBPF program usually begins with (i) byte-
code for the BPF kernel VM. There is an increasing set of tools for

generating such bytecode. These include for instance bcc
1
, libbpf

2
,

1
https://github.com/iovisor/bcc

2
https://github.com/libbpf/libbpf

and aya
3
. Upon generation, the bytecode is (ii) loaded into the ker-

nel for a verification step before it is passed to the actual BPF VM.

Finally, any resulting data needs to be transferred back from kernel

to user space. While multiple eBPF-based tools only report metrics

or findings upon program exit, results can also be transferred to

user space at any time, e.g., via (iii) perf_output and (iii) async
read.

2.2 Linux Profiling Subsystem
The Linux Kernel itself offers vast performance instrumentation

within both the kernel and the user space. These instrumentations

can be retrieved system-wide, as well as per process and it is thus

possible to target specific workloads and applications. Tools for

reading such instrumentation are manifold. Yet, they all leverage

the same underlying instrumentation by using the Linux profiling

subsystem.

The profiling subsystem of Linux is called perf_events. It is
also known as Performance Counters for Linux (PCL), Linux Per-

formance Events (LPE) and PMC. It supports a multitude of events

to be worked with. These events are issued by several mechanisms,

particularly: (a) counter, (b) tracepoints, (c) kprobes, (d) uprobes
and (e) User Statically-Defined Tracing (USDT) [9]. They can be

divided into the two distinct categories static and dynamic. Static in-

strumentation happens before compile time and cannot be changed

without recompilation. It can be applied to both the kernel and

user-space applications. Dynamic instrumentation, however, offers

the possibility to attach probes at runtime to arbitrary function calls.

The previously mentioned instrumentation points are briefly de-

scribed in the following paragraphs, accompanied with an overview

table in Table 1:

a. (Hardware) Counters represent counts of CPU specific events

instrumented by the kernel. Whenever the CPU issues such an

event, the counter is incremented. This typically occurs in hard-

ware and is considered to be very lightweight. The available static

counters are highly dependant on the CPU manufacturer, as well

as its production line and generation. Those are also available as

tracepoints.

b. Tracepoints are static kernel instrumentations [23]. They are

defined and implemented by the kernel developers and issue an

event once a specific call occurs. These signals can be hooked into

and thus traced. The events are well documented and range from

power management over networking aspects towards filesystem

and virtualisation.

c. kprobes relate to tracepoints, bit significantly differ in terms

of dynamic instrumentation [11]. Compared to tracepoints they

allow dynamically hooking into any arbitrary kernel function call.

This significantly increases tracing possibilities. However, the API

is rather unstable since it depends on kernel function names. These

are not guaranteed to be stable across releases.

d. uprobes are very similar to kprobes regarding their possibili-

ties and downsides. These dynamic probes allow hooking into any

arbitrary user space application function. Depending on available

debug symbols or details of the application to trace, they are a very

3
https://github.com/aya-rs/aya

312

https://github.com/iovisor/bcc
https://github.com/libbpf/libbpf
https://github.com/aya-rs/aya


Using eBPF for Database Workload Tracing: An Explorative Study ICPE ’23 Companion, April 15–19, 2023, Coimbra, Portugal

Table 1: Linux performance instrumentation overview

static dynamic userspace kernelspace

counter ✓ ✗ ✗ ✓

tracepoint ✓ ✗ ✗ ✓

kprobe ✗ ✓ ✗ ✓

uprobe ✗ ✓ ✓ ✗

USDT ✓ ✗ ✓ ✗

powerful tool to add instrumentation to software in post, without

altering or even having access to its source code [6].

(e). USDT relate to uprobes like tracepoints relate to kprobes.

Directly compared to uprobes these represent static pre-defined

tracepoints within applications. This implies, that they need to be

included within the application’s source code. There are libraries

and bindings for many programming languages and frameworks

available to conveniently integrate them into a codebase. To make

use of them, they usually need be enabled at compile time.

3 EXPERIMENT DESIGN
In this section, we discuss the design of our experiments. These are

supposed to evaluate the capabilities of eBPF tracing for capturing

DBMS workloads. Besides, the overhead of such tracing shall be

compared to native tracing capabilities of the respective DBMS. In

the first subjection, we introduce basic challenges we face with

our goals. Then, we briefly sketch the implementation of the tracer

tool we built for the sake of this experiment. Doing so, we also

discuss essential technical details and highlight the benefits, but

also limitations. This is followed by a description of the actual

experiment conduction. We present a workflow and the involved

entities that take part in the experiments. We further elaborate on

the reasons why we chose to implement it that way.

3.1 Approach and Implementation
Probe Selection. As described in Section 2 both kinds of user

space probes (uprobes and USDT) allow observing an application

at runtime. Amongst others, they allow capturing function invo-

cations including parameters and execution time. Depending of

the availability and implementation either static USDT probes or

dynamic uprobes may be beneficial to achieve the users intent. In

our case, we clearly focus on uprobes. This is due to the fact that

we want to be as independent of the DBMS developers, source

code availability and pre-existing static instrumentation as possible.

Furthermore, MySQL has stopped supporting USDT probes which

additionally consolidated this decision.

Generally speaking, using uprobes mode requires attaching a

uprobe for the query start and an uretprobe for the query end

function that is responsible for handling incoming queries. These

probes are attached using the libbcc library. When a function call

is detected, the start timestamp and its arguments can be anal-

ysed. When the end of the function gets detected, the execution

time of the function can be calculated. Finally, together with their

timestamp and duration, the queries can be logged to a file.

More specifically, in order to satisfy our requirements, the func-

tions traced with uprobes need to be the functions responsible for

SQL query dispatching. MySQL and PostgreSQL both implement

such functions, conveniently with the full database query available

as arguments. This can be extended to support additional DBMS

by finding an appropriate user function to attach a uprobe to.

Baseline Tool. For our evaluation we extend the already existing

tool dbslower4. Originally, dbslower was built to detect slow data-

base queries to find possible bottlenecks within the workload. In its

present release state, the tool is capable of tracing specific queries

on MySQL and PostgreSQL relational databases. When use the

term ANTtrail in the remainder of this paper to refer to “dbslower”

including our own extensions.

Tool Extension. As the tool was initially limited to only show

the first 256 chars of the query, the char array that the queries are

stored in was extended and to support this change the struct con-

taining the data is now stored in a BPF_PERCPU_ARRAY instead

of a BPF_HASH. Furthermore, we added support for PostgreSQL

uprobes. We added the capability to enable the tracing and logging

of any query to a file in order to replay it later. Moreover, we have

removed any kind of filters to make sure to also trace faster queries.

Support for further DBMS can be realised by adding further

DBMS specific uprobes. The support for tracing PostgreSQL queries

with uprobes was added this way.

Limitations. MySQL and PostgreSQL queries that create queries

internally like triggers or recursive SQL, are currently not supported

due their internal function invocation structure being different. For

these queries, only the submitted query is traced. The internally

created queries can be traced by attaching an additional uprobe

and uretprobe to the user function that is responsible for them, but

they cannot be simply replayed, as they depend on the initial query,

e.g. by referencing OLD.value in the case of triggers.

In contrast, queries submitted with the Node.js, Python and

JDBC drivers, as well as with the MySQL and PostgreSQL shell,

are traced correctly. The overhead of the tool could potentially be

reduced, e.g. by filtering empty queries as early as possible in the C

program. As the filter that does this for MySQL also filters queries

within transactions it was removed and empty queries are currently

filtered before they are printed.

3.2 Experiment workflow
In any scenario, a single cloud-hosted virtual machine is used to

run the workload generator and a further cloud-hosted virtual ma-

chine is used to operate a single-node DBMS instance with default

configuration. In all cases the widely-used Yahoo! Cloud Serving

Benchmark [2] as workload generator is used for issuing the work-

load. Every experiment is conducted as a simple workflow. Figure 2

illustrates this workflow in its actual implementation including

every involved component.

The workload generator takes a specific (i) workload configura-

tion as input. This (ii) workload is executed against the database.

While the workload is running, the database tracer is executed in

4
https://github.com/iovisor/bcc/blob/v0.26.0/tools/dbslower.py

313



ICPE ’23 Companion, April 15–19, 2023, Coimbra, Portugal Jörg Domaschka, Simon Volpert, Kevin Maier, Georg Eisenhart, & Daniel Seybold

Database

Tracer

Database

Workload

Generator

Operating SystemOS

Node bNode a

(ii)
workload

@
(iv)

trace.log

@
(i)

workload.conf

(iii)
trace

Figure 2: Database tracing architecture

parallel to (iii) trace the current workload. While doing so, it (iv)
logs the trace to a file.

In order to reliably enact this workflow, the benchmark pro-

cess is executed by benchANT
5
[22], a Benchmarking-as-a-Service

platform that builds upon the Mowgli framework [21]. This frame-

work enables the creation of declarative workflows that yield repro-

ducible experimentation results. The benchANT platform takes care

of holistically managing the experiment from resource provisioning

and benchmark execution to data processing and visualisation.

4 EVALUATION
This section describes the experiment setup to measure the per-

formance overhead of the database tracing for multiple scenarios.

First, we introduce the five tracing scenarios, second we provide

the technical details for the experiments, and finally, we conclude

with discussing the obtained results.

4.1 Tracing Scenarios
We evaluate the performance overhead for four different tracing

scenarios against the baseline DBMS performance with the goal

to identify the performance overhead using DBMS-specific tracing

capabilities versus eBPF based tracing. For the eBPF tracing we

analyse three different tracing scenarios to iteratively analyse the

performance overheadwith increasing processing steps.We assume,

5
https://benchant.com

Table 2: Evaluation Environment

PostgresSQL MySQL YCSB

cloud AWS EC2

region eu-central-1

instance m5.large m5.large c5.4xlarge

storage type GP2

OS Ubuntu 20.04

version 13.9 8.0.30 0.17.0

that each step increases the performance impact. In particular, our

evaluation uses the following tracing scenarios:

Baseline measures the DBMS performance without any trac-

ing in place.

DBMS-Native measures the performance with native DBMS

specific tracing capabilities enabled. For MySQL the native

logging is enabled by activating the General Query Log
6
, for

PostgreSQL by setting log_statement = ’all’
EBPF-Active detects the queries with ANTtrail, but does not

perform any any further processing.

EBPF-Process processes the queries using ANTtrail, but does

not persist the captured traces.

EBPF-Persist processes the queries using ANTtrail and per-

sists the queries into a text file.

The implementation for the three different eBPF scenarios using

ANTtrail is publicly available
7
.

4.2 Evaluation Environment
All experiments are conducted through the benchANT platform to

ensure a deterministic and reproducible evaluation process together

with comprehensive result data [22]. Table 2 provides an overview

of the technical details for running the used versions of PostgreSQL,

MySQL and YCSB. In depth details can be found in the resulting

data sets
8
.

Since the benchmarks are executed in the cloud, a certain volatil-

ity in the cloud resource performance needs to be taken into account.

In earlier work, we could show that three repetitions of DBMS per-

formance benchmarks provide sufficiently stable results if the cloud

environment is sufficiently stable [10]. Further, Scheuner has evalu-

ated that AWS EC2 IaaS services do have the required stable cloud

resource performance [20]. Therefore, we execute each scenario

three times on that cloud platform and report the average together

with the standard deviation for each reported performance metric.

We evaluate the performance overhead for the defined tracing

scenario under two workloads generated by the YCSB as described

in Table 3. For each of the runs, we measure both throughput and

latency in intervals of 10 seconds. Any further computations for e.g.

median and mean are based on these roundabout 540 data points

per configuration (3 runs à 30 minutes with 10 second intervals).

6
https://dev.mysql.com/doc/refman/8.0/en/query-log.html

7
https://github.com/benchANT/dbms-tracing-overhead/tree/main/code

8
https://github.com/benchANT/dbms-tracing-overhead/tree/main/results/ycsb

314

https://benchant.com
https://dev.mysql.com/doc/refman/8.0/en/query-log.html
https://github.com/benchANT/dbms-tracing-overhead/tree/main/code
https://github.com/benchANT/dbms-tracing-overhead/tree/main/results/ycsb


Using eBPF for Database Workload Tracing: An Explorative Study ICPE ’23 Companion, April 15–19, 2023, Coimbra, Portugal

Table 3: Workloads

read-heavy write-heavy

YCSB instances 1

threads 50

inital data size 10 GB

write proportion 0.1 0.9

read proportion 0.9 0.1

runtime 30 minutes

4.3 Results
We have visualised every possible manifestation resulting from the

combination of workload type as described in Table 3 and DBMS

type as described in Table 2 as a boxplot in Figure 3. Each subplot

presents the DBMS throughput as operations per second on its y-

axis, whereas eachmeasurement scenario as described in Section 4.1

is represented on the respective x-axis. These further share their

colour encoding among all initially mentioned manifestations.

Furthermore, these visualisations are presented in tabular form

as seen Table 4 and Table 5. Each table is separated in two overar-

ching columns along their workload type. These are further subdi-

vided into specific metrics aligned to all scenarios. We present both

the median and the mean throughput to make sure that these are

not too distant from each other. To quickly grasp the performance

degradation, we additionally calculate the performance loss induced

by each tracing method in percent. In order to highlight the degra-

dation even more, we have colour coded the median throughput

loss to quickly spot the worst impact.

4.3.1 DBMS-native Tracing. Focusing on only the degradation in-

duced by DBMS native tracing, we can see that this highly depends

on both the workload type and the database implementation. For

MySQL, the impact on read-heavy workloads (14.2%) is way higher,
than the impact on a write heavy workload (8.6%). One has to

consider though, that the throughput of read-heavy workload is

roughly three times as high as in the write-heavy case. Interestingly

though, it is the other way around for PostgreSQL and generally

speaking much worse. Here, the degradation for a read-heavy work-

load (21.6%) is much lower that for a write-heavy workload (63.5%).
The latter is exceptionally high and a convincing reason to not en-

able its tracing in production. Considering these experiments, we

can clearly see that general statements regarding native tracing

performance impact cannot be easily made and that any extrap-

olations may hardly be possible. In order to be certain about the

native tracing impact, measurements are necessary since it is highly

dependant on the workload and the DBMS in use.

4.3.2 eBPF Tracing. The most interesting following comparison is

the impact of an eBPF basedmeasurement in contrast to the baseline

throughput, but also to the DBMS native one. As we can see there

is always an impact on the baseline performance. It ranges from

3.6% to 16.5%. Notably though, the impact is always less or equal

than the impact induced by DBMS native tracing. Especially the

huge performance impact in the write-heavy PostgreSQL scenario

(63.5%) can be reduced to (12.6%). While still being a noticeable

impact this is a significant improvement.

4.3.3 eBPF Overhead. As described in Section 4.1, we performed

measurements for an increasing amount of work performed by

eBPF. We assumed, that the performance impact is much lower

when only triggering on query events (EBPF-Active) and should

increase upon processing these events (EBPF-Processing) and finally

stronger increase upon persisting (EBPF-Persist) those. Yet, the

performance impact of the EBPF-Active scenario was either higher

or similar to the EBPF-Persist scenario. We can not coherently

argue, why this is so. The eBPF buffer polling mechanism can for

instance have an impact here, though, we cannot prove that yet.

Other causes are possible as well. A detailed investigation of this

aspect is ongoing work.

To summarise, we can show, that eBPF based profiling to derive

database traces can yield better performance compared to their

native counterpart. The performance degradation is either similar or

less. However, it is still not negligible. We expect that this overhead

can be further reduced as has been shown by other authors who

identified a high potential for optimisation and best practices for

these kind of tools [14].

4.4 Evaluation Summary
In this section, we answer the research questions from the intro-

duction based on the results of the evaluation.

RQ1. For the case of PostgreSQL and MySQL an instrumentation

with eBPF using uprobes is possible. There is no technical constraint

that hinders following the same approach for other DBMS be they

relational or NoSQL. Yet, all uprobe instrumentation is specific

for a distinct release of a DBMS. Hence, supporting new DBMS or

new versions of PostgreSQL and MySQL requires additional effort.

In ongoing work we evaluate further approaches for eBPF-based

tracing in order to lower the limitations of our current approach.

RQ2. Surprising for us the impact generated with eBPF-based

workload tracing is not stable across different workloads and we see

a wide range of different overheads. Less surprising, the overhead

also depends on the DBMS technology to be traced.

RQ3. In all cases under investigation, the eBPF-based approach

is able to compete with the DBMS-native tracing and in two cases

it clearly outperforms the DBMS-native approach. Yet, measuring

the overhead also yields some results as doing more work in the

eBPF handling not necessarily induces more overhead.

5 RELATEDWORK
Since eBPF makes leveraging of uprobes and USDT probes ap-

proachable, fellow researchers investigated its possibilities for user

space application tracing. Their potential due imposing compar-

atively low overhead has been clear since more than a decade as

determined by Keniston et al. [12]. A survey conducted by Gebai et

al. extends those findings for most more recent implementations [7].

The overhead of an arbitrary eBPF application however, cannot

be generalised and highly depends on the manifold use cases. More

specifically, Levin states, that an often overlooked fact is that the

overheads of metrics collection is a function of the type, number,

and instrumentation for the collected metrics. Nevertheless he built

the eBPF based observability tool “ViperProbe” with defined critical

metrics for monitoring compute systems. He finds the performance

315



ICPE ’23 Companion, April 15–19, 2023, Coimbra, Portugal Jörg Domaschka, Simon Volpert, Kevin Maier, Georg Eisenhart, & Daniel Seybold

B
a
se

li
n
e

D
B

M
S
-N

a
ti

v
e

E
B

P
F
-A

ct
iv

e

E
B

P
F
-P

ro
ce

ss

E
B

P
F
-P

e
rs

is
t

Scenario

B
a
se

li
n
e

D
B

M
S
-N

a
ti

v
e

E
B

P
F
-A

ct
iv

e

E
B

P
F
-P

ro
ce

ss

E
B

P
F
-P

e
rs

is
t

Scenario

B
a
se

li
n
e

D
B

M
S
-N

a
ti

v
e

E
B

P
F
-A

ct
iv

e

E
B

P
F
-P

ro
ce

ss

E
B

P
F
-P

e
rs

is
t

Scenario

B
a
se

li
n
e

D
B

M
S
-N

a
ti

v
e

E
B

P
F
-A

ct
iv

e

E
B

P
F
-P

ro
ce

ss

E
B

P
F
-P

e
rs

is
t

Scenario

0

1,000

2,000

3,000

4,000

5,000

6,000

7,000

8,000

T
h

ro
u

g
h

p
u

t 
in

 o
p

/s

read-heavy MYSQL

0

2,000

4,000

6,000

8,000

10,000

12,000

T
h

ro
u

g
h

p
u

t 
in

 o
p

/s

read-heavy POSTGRESQL

0

500

1,000

1,500

2,000

2,500

T
h

ro
u

g
h

p
u

t 
in

 o
p

/s

write-heavy MYSQL

0

1,000

2,000

3,000

4,000

5,000

6,000

7,000

T
h

ro
u

g
h

p
u

t 
in

 o
p

/s

write-heavy POSTGRESQL

Baseline

DBMS-Native

EBPF-Active

EBPF-Process

EBPF-Persist

scenario

Figure 3: Throughput for each combination of workload and database type for each distinct measurement scenario

Table 4: Degradation for tracing a workload on MYSQL

type read-heavy write-heavy

variable

Δ% median

throughput

median

throughput

mean

throughput

Δ% mean

throughput

Δ% median

throughput

median

throughput

mean

throughput

Δ% mean

throughput

scenario

Baseline 0.0 6432.00 6384.03 0.0 0.0 2127.40 2102.87 0.0

DBMS-Native 14.2 5518.80 5456.49 14.5 8.6 1945.50 1999.43 4.9

EBPF-Persist 3.6 6200.65 6070.62 4.9 9.4 1928.00 1988.55 5.4

EBPF-Process 2.5 6268.65 6162.64 3.5 2.7 2070.45 2059.28 2.1

EBPF-Active 9.2 5839.10 5921.38 7.2 8.5 1946.15 1936.57 7.9

Table 5: Degradation for tracing a workload on POSTGRESQL

type read-heavy write-heavy

variable

Δ% median

throughput

median

throughput

mean

throughput

Δ% mean

throughput

Δ% median

throughput

median

throughput

mean

throughput

Δ% mean

throughput

scenario

Baseline 0.0 11546.90 10076.10 0.0 0.0 6149.80 6109.23 0.0

DBMS-Native 21.6 9057.00 9080.74 9.9 63.5 2245.75 2180.93 64.3

EBPF-Persist 16.4 9656.45 9405.72 6.7 12.6 5374.05 5347.53 12.5

EBPF-Process 19.2 9331.80 9209.57 8.6 10.7 5490.00 5413.67 11.4

EBPF-Active 18.1 9460.30 9297.67 7.7 7.9 5666.45 5620.40 8.0

impact when collecting all configured metrics to be between 10-

15% [15]. Within the same domain but with some improvements,

Amaral et al. developed “MicroLens”. They determined a similar per-

formance impact with it being 18% across multiple nodes and 9% on

a single host [1]. Furthermore Krahn et al. also experienced a similar

impact with their tool named “TEEMon” for Redis
9
, MongoDB

10

and Nginx
11

[13].

9
https://redis.io/

10
https://www.mongodb.com/

11
https://www.nginx.com/

Apart from the more generic metric collection for the purpose

of monitoring, literature also provides insights for tracing specific

applications. Nisbet et al. determined the impact of various profiling

tools for a java application. He found that this impact with 3.6% is

rather low for the bcc-java implementation that leverages eBPF [17].

In earlier work, we sketched how workload traces from pro-

duction systems can be clustered, modified, mixed and scaled to

perform load testing and what-if analysis [4].

316

https://redis.io/
https://www.mongodb.com/
https://www.nginx.com/


Using eBPF for Database Workload Tracing: An Explorative Study ICPE ’23 Companion, April 15–19, 2023, Coimbra, Portugal

6 CONCLUSION
We can conclude, that eBPF has the potential to improve the already

existing tracing capabilities DBMS have to offer. Our experiments

show, that such an approach either has a similar or a lower impact

on database performance.We can further see, that this impact highly

depends on the applied workload and is very specific to the database

implementation itself. In some cases the performance impact is so

low, it may be usable in production. Judging that however, is the

responsibility of database operators, though we can provide the

means and a method to file that decision. Traces and insights gained

hereby can help those operators to improve overall performance,

troubleshoot issues or generally observe workload.

From an academic point of view, the generation of real world

database traces can be very valuable. Only few datasets exist, and

the availability of a low performance impact and non-intrusive

tracing tool might help to improve this situation.

Nevertheless, chances are, that the performance penalty induced

by eBPF tracing might improve in the future. One the one hand, the

implementation of our tooling is certainly not perfect. Furthermore,

fellow researchers have shown developmentmethods, best practices

and optimisation, that potentially lower performance bottlenecks

caused by eBPF.

Within this work we focused on the usage of user space tracing

with uprobes and USDT. Kernel instrumentation with tracepoints

and kprobes might be another promising direction to pursue and

possibly gain performance benefits. Especially analysing network

packets and possibly offloading this to network interface cards

supporting this may be of interest.

These optimisations, as well as the implementation for further

DBMS including NoSQL based ones will be our next steps. More-

over an investigation on alternative instrumentation points may be

valuable here.

Acknowledgements
Research leading to this work has received funding from the Ger-

man Federal Ministry for Economic Affairs and Climate Action

under grant 03EFPBW217, BaaS.

REFERENCES
[1] Marcelo Amaral, Tatsuhiro Chiba, Scott Trent, Takeshi Yoshimura, and Sun-

yanan Choochotkaew. 2022. MicroLens: A Performance Analysis Framework

for Microservices Using Hidden Metrics With BPF. In 2022 IEEE 15th Interna-
tional Conference on Cloud Computing (CLOUD). 2022 IEEE 15th International

Conference on Cloud Computing (CLOUD). (July 2022), 230–240. doi: 10.1109

/CLOUD55607.2022.00043.

[2] Brian F. Cooper, Adam Silberstein, Erwin Tam, Raghu Ramakrishnan, and Rus-

sell Sears. 2010. Benchmarking cloud serving systems with ycsb. In Proceedings
of the 1st ACM Symposium on Cloud Computing (SoCC ’10). Association for Com-

puting Machinery, Indianapolis, Indiana, USA, 143–154. isbn: 9781450300360.

doi: 10.1145/1807128.1807152.

[3] Shaleen Deep, Anja Gruenheid, Kruthi Nagaraj, Hiro Naito, Jeff Naughton, and

Stratis Viglas. 2021. DIAMetrics: Benchmarking Query Engines at Scale. ACM
SIGMOD Record, 50, 1, (June 17, 2021), 24–31. doi: 10.1145/3471485.3471492.

[4] Jörg Domaschka, Mark Leznik, Daniel Seybold, Simon Eismann, Johannes

Grohmann, and Samuel Kounev. 2021. Buzzy: Towards Realistic DBMS Bench-

marking via Tailored, Representative, Synthetic Workloads: Vision Paper. In

Companion of the ACM/SPEC International Conference on Performance Engineer-
ing (ICPE ’21). Association for Computing Machinery, New York, NY, USA,

(Apr. 19, 2021), 175–178. isbn: 978-1-4503-8331-8. doi: 10.1145/3447545.3451175.

[5] Jörg Domaschka, Simon Volpert, and Daniel Seybold. 2020. Hathi: An MCDM-

basedApproach to Capacity Planning for Cloud-hostedDBMS. In 2020 IEEE/ACM
13th International Conference on Utility and Cloud Computing (UCC). 2020

IEEE/ACM 13th International Conference on Utility and Cloud Computing

(UCC). (Dec. 2020), 143–154. doi: 10.1109/UCC48980.2020.00033.

[6] Srikar Dronamraju. 2022. Uprobe-tracer: Uprobe-based Event Tracing — The

Linux Kernel documentation. Accessed: 2023-02-27. Retrieved Feb. 27, 2023

from https://docs.kernel.org/trace/uprobetracer.html.

[7] Mohamad Gebai and Michel R. Dagenais. 2018. Survey and Analysis of Kernel

and Userspace Tracers on Linux: Design, Implementation, and Overhead. ACM
Computing Surveys, 51, 2, (Mar. 12, 2018), 26:1–26:33. doi: 10.1145/3158644.

[8] Brendan Gregg. 2022. Linux eBPF Tracing Tools. Retrieved Sept. 9, 2022 from

https://www.brendangregg.com/ebpf.html.

[9] Brendan Gregg. 2020. Systems Performance: Enterprise and the Cloud. (Sec-
ond ed.).Addison-Wesley Professional Computing Series. Addison-Wesley, Boston.

isbn: 978-0-13-682015-4.

[10] Johannes Grohmann, Daniel Seybold, Simon Eismann, Mark Leznik, Samuel

Kounev, and Jörg Domaschka. 2020. Baloo: measuring and modeling the per-

formance configurations of distributed DBMS. In 28th International Symposium
on Modeling, Analysis, and Simulation of Computer and Telecommunication
Systems, MASCOTS 2020, Nice, France, November 17-19, 2020. IEEE, 1–8. doi:
10.1109/MASCOTS50786.2020.9285960.

[11] Masami Hiramatsu. [n. d.] Kprobe-based Event Tracing — The Linux Kernel

documentation. Accessed: 2023-02-27. (). Retrieved Feb. 27, 2023 from https://d

ocs.kernel.org/trace/kprobetrace.html.

[12] Jim Keniston, Ananth Mavinakayanahalli, Vara Prasad, and Prasanna Pan-

chamukhi. 2007. Ptrace, Utrace, Uprobes: Lightweight, Dynamic Tracing of

User Apps. In Proceedings of the 2007 Linux Symposium.

[13] Robert Krahn, Donald Dragoti, Franz Gregor, Do Le Quoc, Valerio Schiavoni,

Pascal Felber, Clenimar Souza, Andrey Brito, and Christof Fetzer. 2020. TEEMon:

A continuous performance monitoring framework for TEEs. In Proceedings of
the 21st International Middleware Conference. Middleware ’20: 21st International

Middleware Conference. ACM, Delft Netherlands, (Dec. 7, 2020), 178–192. isbn:

978-1-4503-8153-6. doi: 10.1145/3423211.3425677.

[14] Hsuan-Chi Kuo, Kai-Hsun Chen, Yicheng Lu, Dan Williams, Sibin Mohan, and

Tianyin Xu. 2022. Verified programs can party: optimizing kernel extensions

via post-verification merging. In Proceedings of the Seventeenth European Con-
ference on Computer Systems. EuroSys ’22: Seventeenth European Conference

on Computer Systems. ACM, Rennes France, (Mar. 28, 2022), 283–299. isbn:

978-1-4503-9162-7. doi: 10.1145/3492321.3519562.

[15] Joshua Levin. 2020. ViperProbe: Using eBPF Metrics to Improve Microservice

Observability. Honors Thesis. (2020). https://cs.brown.edu/research/pubs/thes

es/ugrad/2020/levin.joshua.pdf.

[16] Steven McCanne and Van Jacobson. 1993. The BSD packet filter: a new ar-

chitecture for user-level packet capture. In Proceedings of the USENIX Winter
1993 Conference Proceedings on USENIX Winter 1993 Conference Proceedings
(USENIX’93). USENIX Association, USA, (Jan. 25, 1993), 2.

[17] Andy Nisbet, Nuno Miguel Nobre, Graham Riley, and Mikel Luján. 2019. Pro-

filing and Tracing Support for Java Applications. In Proceedings of the 2019
ACM/SPEC International Conference on Performance Engineering. ICPE ’19:

Tenth ACM/SPEC International Conference on Performance Engineering. ACM,

Mumbai India, (Apr. 4, 2019), 119–126. isbn: 978-1-4503-6239-9. doi: 10.1145/3

297663.3309677.

[18] Rasha Osman and William J. Knottenbelt. 2012. Database system performance

evaluation models: A survey. Performance Evaluation, 69, 10, (Oct. 1, 2012),
471–493. doi: 10.1016/j.peva.2012.05.006.

[19] Vincent Reniers, Dimitri Van Landuyt, Ansar Rafique, and Wouter Joosen. 2017.

On the State of NoSQL Benchmarks. In Proceedings of the 8th ACM/SPEC on
International Conference on Performance Engineering Companion. ICPE ’17:

ACM/SPEC International Conference on Performance Engineering. ACM,

L’Aquila Italy, (Apr. 18, 2017), 107–112. isbn: 978-1-4503-4899-7. doi: 10 .1

145/3053600.3053622.

[20] Joel Scheuner and Philipp Leitner. 2018. Estimating cloud application perfor-

mance based on micro-benchmark profiling. In 2018 IEEE 11th International
Conference on Cloud Computing (CLOUD), 90–97. doi: 10.1109/CLOUD.2018.00
019.

[21] Daniel Seybold. 2021. An Automation-Based Approach for Reproducible Evalua-
tions of Distributed DBMS on Elastic Infrastructures. Ph.D. Dissertation. Univer-
sität Ulm, (May 14, 2021). isbn: 9781757899956. doi: 10.18725/OPARU-37368.

[22] Daniel Seybold and Jörg Domaschka. 2021. Benchmarking-as-a-service for

cloud-hosted dbms. In Proceedings of the 22nd International Middleware Confer-
ence: Demos and Posters (Middleware ’21). Association for Computing Machin-

ery, Virtual Event, Canada, 12–13. isbn: 9781450391542. doi: 10.1145/3491086

.3492473.

[23] Theodore Ts’o. 2022. Event Tracing — The Linux Kernel documentation. Ac-

cessed: 2023-02-27. Retrieved Feb. 27, 2023 from https://docs.kernel.org/trace/e

vents.html.

317

https://doi.org/10.1109/CLOUD55607.2022.00043
https://doi.org/10.1109/CLOUD55607.2022.00043
https://doi.org/10.1145/1807128.1807152
https://doi.org/10.1145/3471485.3471492
https://doi.org/10.1145/3447545.3451175
https://doi.org/10.1109/UCC48980.2020.00033
https://docs.kernel.org/trace/uprobetracer.html
https://doi.org/10.1145/3158644
https://www.brendangregg.com/ebpf.html
https://doi.org/10.1109/MASCOTS50786.2020.9285960
https://docs.kernel.org/trace/kprobetrace.html
https://docs.kernel.org/trace/kprobetrace.html
https://doi.org/10.1145/3423211.3425677
https://doi.org/10.1145/3492321.3519562
https://cs.brown.edu/research/pubs/theses/ugrad/2020/levin.joshua.pdf
https://cs.brown.edu/research/pubs/theses/ugrad/2020/levin.joshua.pdf
https://doi.org/10.1145/3297663.3309677
https://doi.org/10.1145/3297663.3309677
https://doi.org/10.1016/j.peva.2012.05.006
https://doi.org/10.1145/3053600.3053622
https://doi.org/10.1145/3053600.3053622
https://doi.org/10.1109/CLOUD.2018.00019
https://doi.org/10.1109/CLOUD.2018.00019
https://doi.org/10.18725/OPARU-37368
https://doi.org/10.1145/3491086.3492473
https://doi.org/10.1145/3491086.3492473
https://docs.kernel.org/trace/events.html
https://docs.kernel.org/trace/events.html

	Abstract
	1 Introduction
	2 Background
	2.1 The eBPF Lifecycle
	2.2 Linux Profiling Subsystem

	3 Experiment Design
	3.1 Approach and Implementation
	3.2 Experiment workflow

	4 Evaluation
	4.1 Tracing Scenarios
	4.2 Evaluation Environment
	4.3 Results
	4.4 Evaluation Summary

	5 Related Work
	6 Conclusion



