
Hitchhiker’s Guide for Explainability in Autoscaling
Floriment Klinaku

Institute of Software Engineering, University of Stuttgart
Stuttgart, Germany

floriment.klinaku@iste.uni-stuttgart.de

Sandro Speth
Institute of Software Engineering, University of Stuttgart

Stuttgart, Germany
sandro.speth@iste.uni-stuttgart.de

Markus Zilch
Institute of Software Engineering, University of Stuttgart

Stuttgart, Germany
markus.zilch@iste.uni-stuttgart.de

Steffen Becker
Institute of Software Engineering, University of Stuttgart

Stuttgart, Germany
steffen.becker@iste.uni-stuttgart.de

ABSTRACT
Cloud-native applications force increasingly powerful and complex
autoscalers to guarantee the applications’ quality of service. For
software engineers with operational tasks understanding the au-
toscalers’ behavior and applying appropriate reconfigurations is
challenging due to their internal mechanisms, inherent distribution,
and decentralized decision-making. Hence, engineers seek appro-
priate explanations. However, engineers’ expectations on feedback
and explanations of autoscalers are unclear. In this paper, through a
workshop with a representative sample of engineers responsible for
operating an autoscaler, we elicit requirements for explainability in
autoscaling. Based on the requirements, we propose an evaluation
scheme for evaluating explainability as a non-functional property
of the autoscaling process and guide software engineers in choos-
ing the best-fitting autoscaler for their scenario. The evaluation
scheme is based on a Goal Question Metric approach and contains
three goals, nine questions to assess explainability, and metrics to
answer these questions. The evaluation scheme should help engi-
neers choose a suitable and explainable autoscaler or guide them
in building their own.

CCS CONCEPTS
• Computer systems organization→ Cloud computing; • Soft-
ware and its engineering→ Software performance; Software us-
ability.

KEYWORDS
Cloud, Elasticity, Explainability, Requirements, Evaluation

ACM Reference Format:
Floriment Klinaku , Sandro Speth , Markus Zilch , and Steffen Becker .
2023. Hitchhiker’s Guide for Explainability in Autoscaling . In Companion
of the 2023 ACM/SPEC International Conference on Performance Engineering
(ICPE ’23 Companion), April 15–19, 2023, Coimbra, Portugal. ACM, New York,
NY, USA, 6 pages. https://doi.org/10.1145/3578245.3584728

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
ICPE ’23 Companion, April 15–19, 2023, Coimbra, Portugal
© 2023 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 979-8-4007-0072-9/23/04. . . $15.00
https://doi.org/10.1145/3578245.3584728

1 INTRODUCTION
Modern applications often follow a microservice-based architec-
tural style built as cloud-native applications to adapt to the con-
stantly changing workload [15]. These self-adaptive systems use
autoscalers to automatically scale the components to guarantee the
applications’ quality of service, e.g., response time, to ensure site
reliability [3]. For example, there are rule-based autoscalers like the
Kubernetes Horizontal PodAutoscaler (HPA) [1], and CAUS [13, 24],
or machine learning-based autoscalers like the framework by Toka
et al. [20]. Autoscalers are configured using policies and parameters
which effectively determine when and how to scale. The behavior
of autoscalers is hard to grasp due to the use of complex models and
techniques internally, such as queuing models, control theoretic
models, or even machine learning models. Furthermore, under-
standing their effect is challenging because of the distribution and
the decentralized decision-making, e.g., each microservice scales
through a different mechanism. For example, one downstream mi-
croservice scales if the average response time is higher than a
certain amount, while the upstream microservice scales if the av-
erage CPU load of the replicas is below a threshold. If, in such
a scenario, autoscalers are poorly configured, their decisions end
up competing and resulting in many contradicting scaling events.
Hence, autoscalers are prone to misconfiguration, which is difficult
to detect, and the understanding of coordinated and conflicting scal-
ing events is challenging in uncertain environments [14, 18]. Thus,
we require self-explanatory autoscalers, which is one of the six
challenges for production-ready autoscaling identified by Straesser
et al. [19]. However, there are no common expectations known of
DevOps engineers for the explainability of such autoscalers. This
leads us to the research question guiding us in our work:

RQ: “Are there common expectations of software engineers with
operational tasks on the explainability of autoscalers?”

In this paper, we present a workshop with engineers from in-
dustry and academia to elicit the requirements and expectations of
engineers on explainable autoscaling. Furthermore, we describe an
evaluation scheme that we built upon the requirements and which
should guide engineers in selecting a fitting explainable autoscaler
or building their own. The evaluation scheme consists of three
goals, nine questions, and three groups of metrics. Therefore, our
contributions are (1) requirements and expectations of engineers
for explainable autoscaling and (2) an evaluation scheme to check
existing autoscalers against their explainability.

277

https://orcid.org/0000-0002-4760-5889
https://orcid.org/0000-0002-9790-3702
https://orcid.org/0009-0001-8631-3168
https://orcid.org/0000-0002-4532-1460
https://orcid.org/0000-0002-4760-5889
https://orcid.org/0000-0002-9790-3702
https://orcid.org/0009-0001-8631-3168
https://orcid.org/0000-0002-4532-1460
https://doi.org/10.1145/3578245.3584728
https://doi.org/10.1145/3578245.3584728

ICPE ’23 Companion, April 15–19, 2023, Coimbra, Portugal Floriment Klinaku, Sandro Speth, Markus Zilch, & Steffen Becker

2 RELATEDWORK
The first related work cluster highlights the problem of autoscaling
and elasticity policies in terms of explainability. However, they
do not go far enough to form requirements and evaluation crite-
ria for explainability in the context of autoscaling. For example,
Straesser et al. [19] identify through experimentation that hav-
ing self-explanatory autoscalers is one of the six challenges for
production-ready autoscaling. They argue that explainability be-
comes a concern for the whole spectrum of autoscaling methods.
From rule-based, where too many rules are present, i.e., the archi-
tectural style of microservices with multiple services and many
rules, to complex queuing-based models and data-driven machine-
learning-based autoscalers. Ghanbari et al. [10] suggest that the
decisions for model-based autoscaling, e.g., queuing-based or ma-
chine learning, are more difficult to understand than decisions in
rule-based systems. The survey from Chen et al. [8] highlights the
large design space for achieving self-aware and self-adaptive auto-
scaling frameworks. Those design decisions affect how the software
engineer interacts with the autoscaling framework.

The second cluster contains work in the area of providing ex-
plainability for self-adaptive systems through concrete architec-
tural proposals and frameworks. Blumreiter et al. [4] propose the
MAB-EX loop (Monitor, Analyse, Build, and Explain) for enabling
explainability for cyber-physical systems in general. In the Mon-
itoring phase, the framework shall collect runtime data relevant
to generating explanations. In the Analyse phase, the framework
determines the need for the explanation either triggered by situa-
tions that need to be explained or by queries from the operator. The
explanation is built, in the Build phase, from a behavioral model of
the system that captures the causal relationships between events
and system reactions. Their solution is generic and may apply to
autoscalers as well. Another instance is the XSA (eXplainable Self-
Adaptations) framework [7] in which authors first define five levels
of explainability inspired from [2] and then construct a framework
that provides explainability up to the fourth level. The difference to
our work is that we focus on better understanding the requirements
for explainability from the perspective of software engineers with
operational tasks in the context of automated management of re-
sources (which can be viewed as a subset of self-adaptive systems)
rather than proposing a concrete solution to achieve explainability.

Explainability as a term is tightly connected with the emergence
and popularity of artificial intelligence methods [11]. In this work,
we view autoscalers for microservice-based applications as black-
box autonomous systems thatmay ormay not usemachine learning-
based models internally. Our work explores the requirements for
explainability at the interface of such systems from the operator’s
viewpoint, which may cause the derivation of requirements for
the internal subsystems that may be AI-based. Hence all the work
in explaining particular machine learning-based methods become
relevant in the solution space.

Finally, we tend to contribute to converging what explainability
entails for autoscalers as a quality attribute and how to quantify
and compare alternatives. This way, we help practitioners to choose
the most self-explainable alternative. Furthermore, it helps research
solutions that do not neglect this quality attribute. In this con-
text, Rosenfeld and Richardson [16] observe that currently, there

are no commonly agreed definitions of explainability. They de-
fine questions to identify the reason why explanations are needed,
who the target is, what interpretation can be generated when the
information should be presented, and how explanations can be
evaluated. Doshi-Velez and Kim [9] define interpretability as the
ability to explain or present something in an understandable way
to a human. They propose a taxonomy of evaluation approaches for
interpretability. Their taxonomy includes functionally-grounded,
human-grounded, and application-grounded evaluations.

3 REQUIREMENTS ENGINEERING
In this section, we describe the questionnaire and workshop we
conducted. Furthermore, we elaborate on the demographics and the
most important results. Then, we describe the requirements which
we elicited based on the questionnaire results. Figure 1 depicts the
entire process. The evaluation scheme is presented in Section 4.

3.1 Method
Our objective stakeholders are software engineers with operational
tasks, e.g., DevOps engineers, researchers in the area of operations,
and operators. Therefore, we decided on a workshop with such engi-
neers of industry and academia to elicit common requirements and
expectations on the explainability of autoscalers. First, we created a
questionnaire consisting of 15 questions (13 content and 2 closing).
The first five questions survey the participant’s demographics, i.e.,
their job, company size, prior experience with autoscalers, and,
optional, the company they are working for. The next four ques-
tions query which autoscalers the participants already have used,
their preferred type (rule-, control-, or ML-based), the metrics the
participants use for autoscaling decisions, and their current process
to debug and understand the autoscaling behavior. In the last four
content-focused questions, the participants could state the explain-
ability questions they want an autoscaler to answer, the kind of
autoscaler’s interface they are looking for, additional metrics than
the ones already stated to understand the autoscaling behavior, and
the occasions they need information from the system, e.g., system
failure. The questionnaire can be found online1.

Second, we developed an example scenario based on the T2-
Project [17] to create a common understanding of the problem as a
basis for the workshop discussions and created the workshop. The
example shows a simple architecture with an autoscaler. The work-
shop was designed for small groups to discuss the explainability of
autoscaling behavior based on this example and took 30 minutes
for each session. If one participant was only available alone, we
discussed it with them. After the discussion, the participants had
to fill out the questionnaire.

Furthermore, we analyzed the thesis by Weiler [21] for require-
ments fitting to explainability in autoscaling. Weiler interviewed
five experienced engineers within a single organization to elicit
requirements for their autoscaling solution both from a business
and technical perspective. Consequently, not all but a few of the
elicited requirements fit in our context.

1https://zenodo.org/record/7564994

278

Hitchhiker’s Guide for Explainability in Autoscaling ICPE ’23 Companion, April 15–19, 2023, Coimbra, Portugal

10 Participants
of industry &

academia

Questionnaire
(15 questions)

Example Scenario

14 RequirementsWorkshop
Discussions

Evaluation Scheme
(3 Goals, 9 Question,
3 Groups of Metrics)

5 Stakeholders inside an organization [18]

Figure 1: Process to elicit requirements and design the evaluation scheme.

3.2 Questionnaire and Workshop Results
For space reasons, we describe only the most relevant results. The
full anonymized results can be found online1.

Demographics: In total, we had ten participants from Germany
and Switzerland, most of them working as DevOps engineers or
software architects. Furthermore, the majority work in big-sized
companies (more than 250 employees), e.g., Microsoft or Mercedes
Benz. The majority actively use and manage autoscalers from time
to time or regularly.

Current usage: Nearly all participants used Kubernetes HPA, and
two additionally used Azure Autoscale and AWS EC2 Autoscale.
Hence, most used rule-based autoscalers, and three participants
also used ML-based autoscalers, of which only one participant
stated an LSTM-based autoscaler. The most popular metrics are
CPU load, response time (latency), RAM load, and the number of
messages in a queue. As a current process to debug and understand
autoscaling behavior, the participants have either no process or
check and compare metrics and HPA events.

Explaining autoscaling behavior: Nearly all of the participants
stated similar explainability questions. In total, they are interested
in why the autoscaler did or did not scale, how much it scaled
and why this amount, and when it scaled. Furthermore, some are
interested in forecast and what-if questions. Regarding the provided
interface, the participants seem to require a mixed set of interfaces,
from graphical over a remote API to a CLI and integration to other
tools, e.g., Grafana. Additionally, the participants are interested
in Service Level Objectives (SLOs), which incorporate business
information, the correlation between scaling and the input values
and their weight, and how the autoscaler came to a decision, esp.
if they were bad decisions. The participants generally state that
they need this information, especially when system failure or SLO
violations occur, and more specific scenarios, e.g., if a huge load is
expected to ensure correct scaling or when the autoscaler decided
to scale too much.

3.3 Elicited Requirements
Based on the questionnaire results and discussions during the work-
shop, we elicited 34 requirements. Due to space, we aggregate some
and focus on the most relevant 11 requirements. All requirements
are available in Zilch’s master’s thesis [24]. Furthermore, we in-
clude three additional requirements, which Weiler [21] elicits by

interviewing experienced engineers in the context of a single or-
ganization. In Table 1, we present the resulting 13 requirements.
The first four requirements describe the representation of metrics’
data, logs, and scaling decisions. Requirements five and six state
that autoscalers should support forecasts, what-if scenarios, and
alternative decisions for past events. Requirement seven covers
system failures, and SLO violations, as engineers especially try to
understand the autoscaler’s behavior and decisions in such cases.
Potential information could be a failure analysis and metrics for
the moment leading to the system failure or SLO violation. Further-
more, autoscalers should detect anomalies in workload and their
scaling decisions (R8) to identify unnormal behavior. Additionally,
they should allow the management and scaling of different com-
ponents (R9). Requirements ten and eleven cover the autoscalers
interfaces to other tools and the engineer. Additionally, autoscalers
should support self-optimizing their scaling rules if thresholds are
suboptimal (R12) and allow exceptions and manual overriding of
the scaling rules for specific time frames or customers (R13). To
fulfill requirement 14, autoscalers should allow a configuration via
SLOs.

4 EVALUATION SCHEME
We devise an evaluation scheme that follows the Goal Question
Metric [6] plan proposed in Zilch’s Master’s thesis [24]. The evalu-
ation scheme contains the three goals (G1) accessibility, (G2) con-
figurability, and (G3) explainability. Explainabaility explicitly has

Description

1 Store input metrics as time series
2 Represent metric’s data visually
3 Present actual and historical information and decisions from a timeline
4 Present logs corresponding to scaling decisions
5 Show forecasts for estimated workloads and answer what-if questions
6 Present alternative decisions it could have made at a given time
7 Incorporate details on system failure and SLO violation
8 Support anomaly detection for workloads and scaling decisions
9 Management and scaling of different components
10 Provide a mix of different interfaces, e.g., GUI, REST, and CLI
11 Provide an interface where the user can ask for explanations
12∗ Support self-optimization of scaling rules
13∗ Allow manual overriding for specific time frames or customers
14∗ Allow configuration via SLOs, e.g., guaranteed response times

Table 1: Most relevant requirements. Additional require-
ments marked with an ∗ are derived from [21]. The require-
ments are written in the form “The autoscaler should . . . ”.

279

ICPE ’23 Companion, April 15–19, 2023, Coimbra, Portugal Floriment Klinaku, Sandro Speth, Markus Zilch, & Steffen Becker

been stated in R11. Also, other requirements (e.g., R2, R4, or R5)
state requirements that aid the engineer in understanding the au-
toscaler better. Configurability is included in the joint evaluation
of explainability because for the software engineer operating the
autoscaler, applying reconfigurations is the ultimate action that
succeeds the understanding of the current workings and perfor-
mance. The Configurability goal is covered in R9, R13, and R14.
Similarly, accessibility is crucial in the interaction of the engineer
and the autoscaler. Requirements R10, R2, R4 cover accessibility.
This goes in hand with the definition of explainability given by
Camili [7] in the context of self-adaptive systems as "... the ability
of the system to make the entire adaptation process transparent
and comprehensible ...". Configurability and accessibility aid the
system’s transparency and comprehension from the software engi-
neer’s point of view. We formulate all the questions as “how well”
questions while we are interested to evaluate the overall quality
of explainability for an autoscaler. For metrics, in addition to re-
quirements that were mentioned in the workshop, we collect other
existing metrics from related work.

4.1 Questions
Explainability. We formulate four questions of interest. The first

question (Q1) is on how well the autoscaler explains its scaling
decisions in relation to the models and constructs it uses. For ex-
ample, a threshold-based autoscaler shall provide explanations in
relation to the set thresholds and the metrics that triggered an ex-
ceed or undercut. The expectation is different for a Reinforcement
Learning-based autoscaler which should include information on the
current rewards and penalties. The second question (Q2) is on how
well the autoscaler provide explanations in relation to the different
type of queries: for example, whether it supports explanations on
only “why” queries or also “what if” queries. The third question
(Q3) determines the quality of explanations related to the environ-
ment: the workload and/or the application/component being scaled.
The last question (Q4) assesses whether visuals have been used
appropriately to aid explainability.

Configurability. For configurability, we devise one question (Q5)
on how well does the autoscaler support reconfigurations. Recon-
figurations, in our context, are changes by the software engineer
through an interface that affect the operation of the autoscaler.
One example of such a reconfiguration is changing the scaling
threshold of the Horizontal Pod Autoscaler [1] by applying a new
configuration through the kubectl command. Straesser et al. [19]
state that keeping the configuration overhead as small as possible
is challenging as many autoscaling approaches offer several pa-
rameters that end-users have to adjust. However, at the same time,
based on the workshop with experts, they would like to have the
right control over the behavior of the autoscaler with appropriate
reconfiguration.

Accessibility. For accessibility, we devise two questions of inter-
est from an evaluation perspective: first, determining how accessible
(Q6) the autoscaler is. For example, the Horizontal Pod Autoscaler
does not have a custom Graphical User Interface. For operational
tasks, it relies on the default Kubernetes dashboard and a Com-
mand Line Interface (CLI) through kubectl. The second question

evaluates the integration with observability tools2 (Q8). Observ-
ability tools such as Prometheus or Grafana are by now standard
components in a cloud environment.

4.2 Metrics
We create three groups of metrics motivated by the taxonomy of
Doshi-Velez et al. [9]: (1) feature-grounded, (2) subjective-human-
grounded, and (3) objective-human-grounded group of metrics. In
evaluating and comparing two autoscaler concerning the posed
questions, one needs to conduct experiments and surveys with
human subjects besides feature comparisons. The first group of
metrics is feature-grounded metrics, whereas the second and the
third are human-grounded metrics. We propose candidate metrics
within such groups, and practitioners could use this as a base, enrich
it with new metrics and refine the existing ones.

MG1: Feature-grounded Group of Metrics. In feature-grounded
metrics, we include various metrics that come from the require-
ments. Feature-grounded metrics could be obtained by reading the
documentation or conducting end-user tests. First, a software en-
gineer can assess whether the autoscaler to evaluate provides or
promises any support for Explainability. In addition, the number of
types of queries supported defines another metric. The categories
for the type of queries may include the following: why, why not,
what if, counterfactual, etc. (R5). These are two example metrics
that aid in addressing question one and question two in metric
group one. For Configurability, an autoscaler may support differ-
ent types of reconfigurations. Based on the requirements, software
engineers may be interested in reconfiguring different aspects of
the autoscaler. One is adjusting model parameters. For example,
they adjust hyperparameters for an ML-based or scaling rules for
a rule-based autoscaler. Another reconfiguration type is adjusting
temporal properties (e.g., cooldowns), which are independent of the
internal models autoscalers use. Reconfigurations may also occur
as changes to a given objective function (R13, R14). In the Acces-
sibility part, we identify the number of interfaces the autoscaler
supports. Interfaces to provide input and receive output include the
command line interface (CLI), the graphical user interface (GUI),
remote application programming interfaces (APIs), conversational
interfaces (e.g., chatbot), and logs (R10). Multiple interfaces are
relevant for different tasks, e.g., understanding scaling behavior
requires a graphical interface, while configuring works best via a
remote API. Finally, we could count the number of observability
tools for which an integration exists or determine the support for
elicited observability tools, e.g., Prometheus (R1-R4).

MG2: Subjective Human-grounded Group of Metrics. For subjec-
tive human-grounded metrics, Zhou et al. [22] identify trust, con-
fidence, and preference as three subjective metrics. These metrics
also apply in our context to quantify the “how well” questions for
Explainability. These metrics reflect the subjective perception of the
software engineer during an experiment or an empirical study and
could be computed independently for questions 1-9. For example,
the trust scale by Hoffmann et al. [12] captures the rating by the
end-user whether the explainable AI system is predictable, reliable,
efficient, and believable. Classical usability scales such as the SUS

2https://openapm.io/landscape

280

https://openapm.io/landscape

Hitchhiker’s Guide for Explainability in Autoscaling ICPE ’23 Companion, April 15–19, 2023, Coimbra, Portugal

Goals Questions Metrics

G1
Ex

pl
ai
na
bi
lit
y

Q1 How well does the autoscaler explain its
decisions in relation to the models and con-
structs it uses?

MG1 Feature-grounded Group of Metrics:
• Presence of explainability method
• Number of supported query types { why, what if, counterfactuals,
... }

• Number of supported configuration modes {Machine-learning
parameters, temporal properties (e.g., cooldowns), objective func-
tion, scaling rules}

• Number of interfaces it supports {CLI, GUI, Remote API, Conver-
sational}

• Number of observability tools an integration exists
MG2 Subjective Human-grounded Group of Metrics

• Trust ([12])
• Confidence
• Preference

MG3 Objective Human-grounded Group of Metrics
• Task performance metrics (Time, Correctness)
• Behavioral and Physiological Metrics

Q2 How well does the autoscaler provide expla-
nations in relation to the different types of
queries?

Q3 How well does the autoscaler provide ex-
planations in relation to the environment
(workload and/or managed/scaled applica-
tion (service))?

Q4 How well does the autoscaler use visuals to
represent metrics, models, and operations?

G2

Q5 How well does the autoscaler support re-
configurations?

G3

Q7 How accessible is the autoscaler in terms of
input and output interfaces it supports?

Q8 How well is the autoscaler integrated to ob-
servability tools?

Table 2: Goals, questions, and metrics of our evaluation scheme. The goals are G1 (Explainability), G2 (Configurability), and G3
(Accessibility).

score [5] could give complementary preference insights for the
system as a whole or for the explainability component specifically.

MG3: Objective Human-grounded Group of Metrics. Objective
human-grounded metrics include all metrics that assess human
performance and can be computed objectively. For example, mea-
suring time for completing a task in a particular operating scenario
determines an objective measure. In addition to time, computing
a correctness score for the solution of the task is another metric
that can be used to evaluate explainability for the autoscaler ob-
jectively. Both time and correctness have been used in various
experiments and empirical studies for evaluating different software
engineering methods, techniques, and tools. In addition to classical
task performance metrics, there are studies that use behavioral and
physiological metrics to assess trust and confidence. For example,
Zhou et al. [23] use Galvanic Skin Response and Blood Volume
Pulse as indicators of user trust.

5 THREATS TO VALIDITY
In this section, we describe threats to the validity of our require-
ments and evaluation scheme. The requirement’s most critical
threat to external validity is the number of engineers participating
in the workshop and their countries. In total, only 10 engineers
from Germany and Switzerland participated, which might not be
representative for the entire population. However, they cover a
good range of different companies, from big to small sizes. There-
fore, their statements and our elicited requirements should be a
good indicator of general expectations for explainable autoscaling.
Furthermore, the workshop scenario and questionnaire might have
led the participants in a specific direction so that other require-
ments, e.g., reusable configuration for multiple components, might

have been overseen, resulting in a threat to construct validity. The
evaluation scheme is a work-in-progress proposal, which we iterate
twice: the initial proposal in Zilch’s thesis [24] and the refinement
in this paper. Although there is a link between the goals, questions,
and metrics to the requirements, we did not evaluate its validity.
However, researchers and practitioners could still use it as a guiding
base to evaluate autoscalers w.r.t. explainability.

6 CONCLUSIONS AND FUTUREWORK
In this paper, we outline a workshop with ten software engineers
with operational duties from industry and academia to elicit their
requirements and expectations on explainable autoscaling frame-
works. We present the most relevant requirements and derive an
evaluation scheme for autoscaling frameworks based on them us-
ing the Goal Question Metrics approach [6]. It consists of three
goals, nine questions, and three groups of metrics to evaluate these
questions. The evaluation scheme should guide DevOps engineers
in selecting the best fitting explainable autoscaling framework for
their purpose or building their own one. However, currently, some
metrics are quite abstract and should be more detailed. In follow-up
work, through a feature-based analysis, we are applying the evalu-
ation scheme to autoscalers that are proposed for the Kubernetes
ecosystem and the most popular cloud-provider autoscalers. The
results of such an analysis, besides aiding in comparing different
alternatives for autoscaling, serve as a validation of the evaluation
scheme and will highlight its potential benefits and limitations.
Furthermore, we are currently working on a tool that allows the
engineer to ask explainability questions for autoscaling, get scaling
events, and the autoscaler’s reasoning for the scaling decisions
visually presented.

281

ICPE ’23 Companion, April 15–19, 2023, Coimbra, Portugal Floriment Klinaku, Sandro Speth, Markus Zilch, & Steffen Becker

REFERENCES
[1] Kubernetes HPA. https://kubernetes.io/docs/tasks/run-application/horizontal-

pod-autoscale/, 2021. [Online; 2022-12-28].
[2] EU Robotics AISBL. Robotics 2020 multi-annual roadmap for robotics in europe,

call 1 ict23–horizon 2020. Initial Release B, 15(01), 2014.
[3] Betsy Beyer, Chris Jones, Jennifer Petoff, and Niall RichardMurphy. Site reliability

engineering: How Google runs production systems. "O’Reilly Media, Inc.", 2016.
[4] Mathias Blumreiter, Joel Greenyer, Francisco Javier Chiyah Garcia, Verena Klös,

Maike Schwammberger, Christoph Sommer, Andreas Vogelsang, and Andreas
Wortmann. Towards Self-Explainable Cyber-Physical Systems. In 22nd ACM/IEEE
International Conference on Model Driven Engineering Languages and Systems
Companion, MODELS Companion 2019, Munich, Germany, September 15-20, 2019,
pages 543–548. IEEE, 2019.

[5] John Brooke et al. SUS-A quick and dirty usability scale. Usability evaluation in
industry, 189(194):4–7, 1996.

[6] Victor R Basili1 Gianluigi Caldiera and H Dieter Rombach. The goal question
metric approach. Encyclopedia of software engineering, pages 528–532, 1994.

[7] Matteo Camilli, RaffaelaMirandola, and Patrizia Scandurra. XSA: eXplainable Self-
Adaptation. In 37th IEEE/ACM International Conference on Automated Software
Engineering, ASE 2022, Rochester, MI, USA, October 10-14, 2022, pages 189:1–189:5.
ACM, 2022.

[8] Tao Chen, Rami Bahsoon, and Xin Yao. A Survey and Taxonomy of Self-Aware
and Self-Adaptive Cloud Autoscaling Systems. ACM Comput. Surv., 51(3):61:1–
61:40, 2018.

[9] Finale Doshi-Velez and Been Kim. Towards A Rigorous Science of Interpretable
Machine Learning. 2017.

[10] Hamoun Ghanbari, Bradley Simmons, Marin Litoiu, and Gabriel Iszlai. Exploring
Alternative Approaches to Implement an Elasticity Policy. In IEEE International
Conference on Cloud Computing, CLOUD 2011, Washington, DC, USA, 4-9 July,
2011, pages 716–723. IEEE Computer Society, 2011.

[11] David Gunning, Mark Stefik, Jaesik Choi, Timothy Miller, Simone Stumpf, and
Guang-Zhong Yang. XAI—Explainable artificial intelligence. Science Robotics,
4(37):eaay7120, 2019.

[12] Robert R. Hoffman, Shane T. Mueller, Gary Klein, and Jordan Litman. Metrics for
Explainable AI: Challenges and Prospects, 2018.

[13] Floriment Klinaku, Markus Frank, and Steffen Becker. CAUS: An Elasticity
Controller for a Containerized Microservice. In Companion of the 2018 ACM/SPEC
International Conference on Performance Engineering, pages 93–98, 2018.

[14] Floriment Klinaku, Martina Rapp, Jörg Henss, and Stephan Rhode. Beauty and
the beast: A case study on performance prototyping of data-intensive container-
ized cloud applications. In Dan Feng, Steffen Becker, Nikolas Herbst, Philipp
Leitner, and Arthur Kang, editors, ICPE ’22: ACM/SPEC International Conference
on Performance Engineering, Bejing, China, April 9 - 13, 2022, Companion Volume,
pages 53–60. ACM, 2022.

[15] Sam Newman. Building Microservices: Designing Fine-Grained Systems. O’Reilly,
2nd edition, 2021.

[16] Avi Rosenfeld and Ariella Richardson. Explainability in Human–Agent Systems.
Autonomous Agents and Multi-Agent Systems, 33(6):673–705, may 2019.

[17] Sandro Speth, Sarah Stieß, and Steffen Becker. A Saga Pattern Microservice
Reference Architecture for an Elastic SLO Violation Analysis. In Companion
Proceedings of 19th IEEE International Conference on Software Architecture (ICSA-C
2022). IEEE, March 2022.

[18] Sandro Speth, Sarah Stieß, and Steffen Becker. A Vision for Explainability of
Coordinated and Conflicting Adaptions in Self-Adaptive Systems. In Proceedings
of 14th Central European Workshop on Services and their Composition (ZEUS 2022),
pages 16–19. CEUR, February 2022.

[19] Martin Straesser, Johannes Grohmann, Jóakim von Kistowski, Simon Eismann,
André Bauer, and Samuel Kounev. Why Is It Not Solved Yet?: Challenges for
Production-Ready Autoscaling. In ICPE ’22: ACM/SPEC International Conference
on Performance Engineering, Bejing, China, April 9 - 13, 2022, pages 105–115. ACM,
2022.

[20] Laszlo Toka, Gergely Dobreff, Balazs Fodor, and Balazs Sonkoly. Adaptive AI-
based auto-scaling for Kubernetes. In 2020 20th IEEE/ACM International Sympo-
sium on Cluster, Cloud and Internet Computing (CCGRID), pages 599–608. IEEE,
July 2020.

[21] Simon Weiler. Automatic resource scaling in cloud applications - Case study in
cooperation with AEB SE, 2021.

[22] Jianlong Zhou, Amir H. Gandomi, Fang Chen, and Andreas Holzinger. Evaluating
the Quality of Machine Learning Explanations: A Survey onMethods and Metrics.
Electronics, 10(5):593, mar 2021.

[23] Jianlong Zhou, Huaiwen Hu, Zhidong Li, Kun Yu, and Fang Chen. Physiolog-
ical Indicators for User Trust in Machine Learning with Influence Enhanced
Fact-Checking. In Lecture Notes in Computer Science, pages 94–113. Springer
International Publishing, 2019.

[24] Markus Zilch. Evaluation of Explainability in Autoscaling Frameworks. Master’s
thesis, University of Stuttgart, September 2022.

282

https://kubernetes.io/docs/tasks/run-application/horizontal-pod-autoscale/
https://kubernetes.io/docs/tasks/run-application/horizontal-pod-autoscale/

	Abstract
	1 Introduction
	2 Related Work
	3 Requirements Engineering
	3.1 Method
	3.2 Questionnaire and Workshop Results
	3.3 Elicited Requirements

	4 Evaluation Scheme
	4.1 Questions
	4.2 Metrics

	5 Threats to Validity
	6 Conclusions and Future Work
	References

