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ABSTRACT
Cloud computing has become the major computational paradigm
for the deployment of all kind of applications, ranging from mobile
apps to complex AI algorithms. On the other side, the rapid growth
of IoT market has led to the need of processing the data produced
by smart devices using their embedded resources. The computing
continuum paradigm aims at solving the issues related to the deploy-
ment of applications across edge-to-cloud cyber-infrastructures.

This work considers in-memory data protection to enhance se-
curity over the compute continua and proposes a solution for the
development of distributed applications that handles security in
a transparent way for the developer. The proposed framework
has been evaluated using an ML application that classifies health
data using a pre-trained model. The results show that securing
in-memory data incurs no additional effort at development time
and the overheads introduced by the encryption mechanisms do
not compromise the scalability of the application.

CCS CONCEPTS
• Computer systems organization → Embedded systems; Re-
dundancy; Robotics; • Networks → Network reliability.
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1 INTRODUCTION
Artificial Intelligence (AI) and edge computing have emerged as
major trends in the ICT industry. AI aims at providing machines
with problem-solving and decision-making capabilities. Machine
Learning (ML) is a sub-field within AI that develops algorithms
through which systems can learn from examples and experience.
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Experience, which comes in the form of a huge amount of data
commonly referred to as the training set, is thus exploited by learn-
ing algorithms to build mathematical models to accomplish specific
tasks.

Some AI algorithms are resource-demanding; often, smart de-
vices collecting data do not have enough resources to host an AI
processing that ends up being offloaded onto the Cloud incurring
a high-latency response. This latency does not hinder the train-
ing of the model, which often requires using distributed systems,
nor the gathering of data composing the training set. Conversely,
it drags down any attempt to take decisions on locally gathered
data without the need for information to travel in a round trip to
a remote data centre; performing AI inference at the edge enables
low-latency use cases.

The evolution of Edge Computing has brought a new infras-
tructure paradigm: the Compute Continua, which covers the wide
spectrum from hyper-local IoT sensors to Cloud Data Centers being
aware of the many intermediate devices among them. The hetero-
geneity of software and hardwarewithin the Continua is a challenge
for researchers and practitioners that is overcome through software
development solutions.

Multi-tenancy is an intrinsic characteristic of the Compute Con-
tinua. Generally, IoT devices are specific-purpose and serve a single
user – the device owner–; however, the farther a device is from the
IoT level, the more shared its resources are among several users. ML
workflows often work with privacy-sensitive data such as images
obtained from cameras, recordings from microphones, or personal
data collected through activity trackers. Shared devices are a po-
tential threat for this information; attackers – either third-party
users deploying malicious software on the device or malicious ad-
ministrators – could take benefit of any vulnerability on the device
to access that information. However, not only vulnerabilities open
the door for malicious user to get access to confidential data as any
user with privileged access to the device can inspect other users
data through techniques such as memory dumps. For this reason,
software development solutions need to protect this data not only
while in transit, often done through secure transport protocols such
as HTTPS, but also protect data at rest as well as when in use. Data
can be encrypted while stored on a disk. However, at operation time
this data is loaded into memory opening a window for attackers to
access it.

The work presented in this paper contributes to the current
state-of-the-art by providing a software development solution with
the capability to develop applications targeting the Compute Con-
tinua with the protection of in-memory data in a transparent man-
ner for the developer. In particular, but without loss of generality,
this work considers ML applications developed using the COMPSs
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framework: a programming model that aims at easing the develop-
ment of distributed applications targeting the Compute Continua.
For protecting application data, COMPSs’ runtime system builds
on SCONE, a framework that allows to transform native applica-
tions into confidential ones such that the application code runs
in a trusted execution environment such as Intel SGX protecting
sensitive data when in use during the training or inference. Besides,
the article presents the results of the evaluation tests conducted
using a prototype implementation that validates the viability of the
proposal.

The article continues by introducing the two baseline technolo-
gies used in this paper. While Section 3 describes the COMPSs
programming model and casts a glance over the architecture and
operation of its runtime system, Section 4 does the same for the
security tool: SCONE. Section 5 discusses the different decisions
taken during the design of the solution. To validate the proposal,
several tests have been conducted using a prototype implementa-
tion; Section 6 presents their results. The last section concludes the
article and identifies potential lines for future work.

2 RELATEDWORK
2.1 Programming MLWorkflows for the

Continuum
In the continuum, data processing is needed in three different sce-
narios. The first scenario is traditional batch jobs triggered by a
system administrator, an end-user or a scheduling system to anal-
yse large amounts of at-rest data; for instance, train an ML model
or run a large simulation. There are plenty of solutions in the bibli-
ography building on the concept of task-based workflows; while
some of these models are domain-specific and defined to target a
specific problem (e.g., deal with collections of data [12] or run data
analytics [21]), other models are general purpose[2, 7, 17].

The second scenario, called sense-process-actuate, considers that
computation is triggered by the infrastructure when sensing an
event and the IT platform is expected to process it and provide
an appropriate response even activating some of the actuators to
produce some physical effect. This is usually handled by submitting
a Machine Learning inference operation to a Function-as-a-Service
provider [1, 5, 11, 16].

Whereas the first two scenarios consider an eventual trigger-
ing of the computation, the last scenario considers the processing
of continuous generation of data (stream) aiming at keeping the
data stored in the system updated or producing other streams of
data with the results. A stream of data could be processed using
a workflow manager[22]; however, that would generate a lot of
tasks and introduce a management overhead. Developers usually
implement their solutions building directly in data distribution
frameworks[8, 15]; Dataflows Managers [4, 19] are a more efficient
approach to process streams.

In general, the currently available software development solu-
tions target one of these scenarios and focus on tackling the specific
challenges set out by the scenario they deal with; however, this
technological heterogeneity incurs the adoption of a wide range
of programming frameworks and models that hinder the efficient

development of solutions targeting complete solutions of the con-
tinuum. To the best of our knowledge, Colony [16] is the only frame-
work able to efficiently support the three scenarios with one single
programming model thanks to its native support of the COMPSs
programming model [17, 19].

2.2 Security considerations the Continuum
There are several approaches to ensure privacy and security in
machine learning workflows: Early works in the area of preserving-
privacy data mining and processing techniques have often relied
on randomizing user data [10, 13, 18]. Although these approaches
were promising, they often resulted in a lower accuracy compared
to performing processing on plain text data. Furthermore, while
these approaches aim to provide privacy of computation itself, they
do not address and protect the results such as the trained model
that are stored in the cloud or edge, nor do they secure and protect
the inference phase.

A first approach that tried to tackle this challenge was published
by Graepel et al. [14], which consisted of machine learning algo-
rithms to perform both training and classification on encrypted
data. The solution utilizes homomorphic encryption, however, such
encryption schemes provide only very restrictive computing opera-
tions, and incur high performance overheads.

An alternative approach is the use of shielded executions as they
provide strong security guarantees for legacy applications running
on un-trusted platforms [9]. Several frameworks have evolved in
this area such as the original Intel SGX SDK [3], abstractions such
as Haven [9] or even library OS approaches such as Graphene-
SGX [20]. Although these approaches/frameworks allow you to run
a workload in trusted execution environments such as Intel SGX,
they often require source code modifications while our approach
can be applied in a transparent fashion through binary transforma-
tion techniques lowering the burden on the users.

3 COMP SUPERSCALAR (COMPSS)
COMPSs/PyCOMPSs is a programming framework aiming at eas-
ing the development of general-purpose applications targeting the
Cloud-Edge-IoT Continuum [16]. The core of the framework is
its task-based programming model [17] which provides a sequen-
tial fashion of programming that allows its runtime toolkit to or-
chestrate its execution on top of any distributed infrastructure.
PyCOMPSs is an enhanced version of the programming model ex-
ploiting the benefits of the Python programming language. The
following sections provide a description of the programming model
used by the application developers and cast a glance at the archi-
tecture of the runtime system, highlighting those parts that are
relevant for the protection of application data.

3.1 Programming Syntax
PyCOMPSs provides a sequential programming model to develop
applications, hiding the complexity of the underlying infrastruc-
ture. The programming model includes the definition of the tasks
and of the constraints (through Python annotations) to drive the
scheduling phase at execution time. The application developer pro-
vides a sequential Python script whose functions are annotated
through decorators; these annotations are used by the runtime to
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run those parts of the code as asynchronous parallel tasks code.
When executed, the user code (the annotated part) is intercepted
and analysed by the runtime, generating an execution graph.

The PyCOMPSs programming model provides a set of Python
decorators that allow the user to identify the function/methods
whose calls will be considered tasks and a small API for synchro-
nisation. The main decorator is the @task decorator. This dec-
orator can be placed on top of any function, instance method or
class method and is used to identify the function’s input/output
parameters and return peculiarities.

The code snippet in Listing 1 depicts the selection of the func-
tion train to convert its invocations into tasks with the @task deco-
rator across lines 2-5. The method takes as input three collections of
objects (x_list, y_list, id_list) and one object (random_state),
and produces 4 results.

1 @constraint(computing_units = "4")

2 @task(x_list = {Type: COLLECTION_IN},

3 y_list = {Type: COLLECTION_IN},

4 id_list = {Type: COLLECTION_IN},

5 returns = 4)

6 def train(x_list , y_list , id_list , random_state):

7 x, y, ids = _merge(x_list , y_list , id_list)

8

9 clf = SVC(random_state = random_state)

10 clf.fit(X = x, y = y.ravel())

11

12 ...

13

14 return sv, sv_labels , sv_ids , clf

Listing 1: Sample PyCOMPSs application selecting the train
method to become a task

Besides, PyCOMPSs also supports the task’s constraint definition.
To this end, it provides the @constraint decorator, which also
needs to be placed on top of the stack of decorators. In the previous
example, the @constraint decorator in line 1 indicates that tasks
for this function require 4 cores to run. Constraints are also used to
let the developers provide hints on the fault tolerance at task level
thus allowing them to discard parts of a workflow that do not lead
to relevant results or that fail for some reason, without affecting
the main application.

3.2 Runtime System
When a COMPSs application is deployed across the Continua, each
node belonging to the infrastructure runs a daemon process, known
as Agent, that handles the different computation requests that ar-
rive through its API. When a monitoring system detects that new
data has been collected and its analysis must be triggered or when
an external user decides to run a computation, they submit to this
API a request to run a function execution. Upon the reception of this
request, the API submits to the Runtime engine a task that encapsu-
lates the execution of the main code of the computation. As depicted
in Figure 1, this engine is composed of four main components:

Resource Manager monitors the availability of computing
resources (embedded on the device or available as agents on
remote nodes).

Task Scheduler picks the resources and time-lapse to host the
execution of each task while meeting dependencies among

them and guaranteeing exclusive access to the assigned re-
sources.

Data Manager keeps track of the data values located in the
node and establishes a data sharing mechanism across the
whole infrastructure

Executor Engine handles the execution of tasks on the re-
sources embedded on the local device (CPU, GPU, FPGA or
any other accelerator).

Agent API

Runtime Engine














Resource

Manager

Task

Scheduler

Data

Manager

Execution Engine

  App / Service code

CPU GPU Acc

Figure 1: Components of the Agent running the COMPSs
runtime

Upon the reception of the task, the runtime engine analyses the
data values on which the task operates and identifies potential data
dependencies with previously-submitted tasks. With this informa-
tion, the runtime builds a directed acyclic graph representing the
task dependencies; each node in the graph represents a task to run
and the arrows among the nodes correspond to the data dependen-
cies where the origin node represents the task producing and the
end is the consumer task. When a task has no incoming arrows or
all the incoming arrows correspond to a completed task, it means
that the task is dependency-free; and thus, it is ready for execution.
Once the runtime is aware of all the dependencies of a task and
their status, the Task Scheduler plans its execution considering the
availability of the local computing devices and the availability of
the computing resources in other agents previously configured. If
the Task Scheduler decides that the task should be offloaded onto
another agent, it forwards the task to the remote agent through the
API so the remote agent handles the task in the same manner. Con-
versely, if the Task Scheduler decides to host the task execution in
the local computing devices, it requests the Data Manager to fetch
all the necessary input data values and submits the task execution
to the Execution Engine.

The Execution Engine is a multi-process component following a
master-worker architecture as depicted in Figure 2. The master part
is executed within the same process as the rest of the runtime. Its
purpose is to receive the different tasks to execute and orchestrate

271



ICPE ’23 Companion, April 15–19, 2023, Coimbra, Portugal Francesc-Josep Lordan Gomis, André Martin, Daniele Lezzi
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Figure 2: Diagram of the architecture of the Executor Engine
component

their execution on the resource of the device via the worker pro-
cesses. COMPSs allows combining the execution of tasks developed
in different languages; it supports the native execution of Java, C
and Python functions, but it also supports the execution of a task
as an external binary or even a container. Upon the reception of the
first task of each natively-supported language, the master deploys
several worker processes that will deal with the actual execution
of the tasks.

These workers, also known as executors, are simple processes
that are waiting for their master to submit a task execution, they
load the necessary input data values from the disk to memory,
and execute the task’s specific function operating on those values.
When the local computing devices execute a code programmed
following the COMPSs/PyCOMPSs programming model, new tasks
are spawned and submitted back to the runtime engine so that
the runtime handles their execution in the same way as it was
done for the main task. At the end of the function execution, the
worker writes the result values into the disk, lets the master know
about the completion of the task, and waits for a request to execute
another task. By hosting each executor in a different process, the
execution of one task is isolated from other executions keeping
its own memory space. The inter-process communication between
the master and the executors builds on named pipes to establish a
bi-directional channel connecting the master with each executor.

4 TRUSTED EXECUTION & SCONE
Intel SGX is a relatively new technology that combines a proces-
sor mode and a set of processor instructions to provide Trusted
Execution Environments (TEEs). SGX ensures that processes are
isolated from each other by utilizing a dedicated and cryptograph-
ically protected memory region (so called enclave) [3]. Enclaves
use a contiguous memory region as a block of protected memory
borrowed from the Dynamic Random Access Memory (DRAM) as
Processor Reserved Memory (PRM). The PRM comprises the En-
clave Page Cache (EPC), a set of 4KB memory pages, and enclave
meta data. The PRM is neither accessible from other applications

nor privileged code such as the operating system or the hypervisor.
The Memory Encryption Engine (MEE), part of the processor, en-
crypts and authenticates data for non-PRM memory and protects
EPC pages.

Although the Intel SGX SDK provides software developers in-
terfaces to run applications in enclaves in its entirety, the usage of
such interfaces is cumbersome as it requires developers to provide
glue code for every possible system call an application may use. To
overcome this burden, frameworks such as SCONE [6] or Haven [9]
evolved that simplify or even completely eliminate manual steps re-
quired to run applications in TEEs using Intel SGX. SCONE achieves
this by providing a custom standard c-library which contains glue
code as well as all enclave- and system-call handling routines. Addi-
tionally, SCONE provides ready to use functionality for attestation
and secret provisioning.

In order to enable applications to facilitate the hardware features
provided by Intel SGX, applications must be either cross-compiled
using SCONE’s cross compiler or sconifiedwhere an existing docker
image is modified and patched in such a way that native applica-
tions can run seamlessly in an enclave such as provided by Intel
SGX. During the cross compilation process, the application is in-
strumented with several additional instructions and code that first
pre-allocates memory in an enclave for loading the application code
and data into it afterwards. It furthermore attests the previously
loaded code and data to ensure that the application code and data is
the expected one and has not been tampered during enclave loading
with prior of its execution.

As mentioned previously, an alternative approach to the cross
compilation is the use of prebuilt docker images or a so-called
sconify-CLI tool which performs binary transformation/patching
of existing docker images. In this process, the original glibc will be
replaced with a modified one which contains the instrumented code
which usually the cross compiler would weave in as described in the
cross compilation process. The patched glibc code not only allows
an application to be loaded and executed inside of an enclave, it also
provides mechanisms to encrypt data at rest and in transit. This is
achieved by intercepting the system calls such as read and write and
en-/de-crypting the buffers provided as arguments before writing
them out onto the underlying file system. This mechanisms can
be used not only for writing and reading files but also to establish
secure connections using TLS. In order to do so, the so called SCONE
runtime will furthermore perform transparently TLS handshakes
and as well as perform a mutual authentication ensuring that the
respective counterparts can be trusted.

In order to harness the security mechanisms such as the file
system and network protection shield, the confidential application
will furthermore establish a secure connection the configuration
and attestation service (CAS) which stores policies and information
such as what volumes, i.e., directories on a local disk should be
transparently en-/de-crypted and what other peers processes can
establish secure connections with this process. The CAS instance
will furthermore inject secrets as well as certificates preventing
human access to these secrets unless absolutely necessary.
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Figure 3: Diagram of the architecture components protected
with SCONE with the first approach

5 INTEGRATION
The work presented in this article pursues enhancing a software
development solution for the Compute Continua by protecting in-
memory application data in a transparent manner for both, the
application developer and its end user. SCONE is able to provide
this protection by instrumenting the memory accesses of a binary
to keep the heap space of its host process encrypted with no im-
plications for the developer or the end user. Hence, any software
development solution – for instance, COMPSs – could achieve the
purpose of this work if it is extended to leverage SCONE to protect
the application data.

As explained in Section 3, COMPSs deploys in every node of
the infrastructure an Agent that handles function executions in a
Function-as-a-Service manner. Each agent works autonomously,
and its memory is isolated from the other agents. Hence, protecting
the in-memory data of a service deployed across the Continua is a
problem that can be tackled by considering every agent individually.
If all the agents composing a deployment protect their local in-
memory data, then all the in-memory application data is safe from
attackers.

A first approach to secure COMPSs’ workflows consisted of
sconifying the whole Agent; i.e., protecting with SCONE the process
hosting the runtime system (a Java Virtual Machine) and all the
executor processes as depicted in Figure 3. The implementation of
this prototype following this approach is not trivial as it requires
fork support of the agent process. On the one hand, for security
reasons, SCONE does not forward the environment from a parent
process to its forked children as variables could contain private
information. Hence, the executors would not be able to receive
the values of those variables that might be used by the application.
Modifying the scripts that start the executors to run an environment
setting snippet works around the problem.

Besides these challenges that can be solved through additional
engineering effort, this approach entails another problem: the over-
head due to allocating an encrypted heap space for the Agent pro-
cess and for each executor and the additional cost of operating
over an encrypted memory space. Delving into the details of the

Runtime Process
















Runtime Engine













Agent API

Resource
Manager

Task

Scheduler

Data

Manager

Execution Engine

Executor 

Process


App


Executor 

Process


App


Executor 

Process


App


Figure 4: Diagram of the architecture of the solution with a
selection of the components protected with SCONE

COMPSs architecture reveals that a significant part of these over-
heads is unnecessary. The purpose of this article is to protect the
application data, and, as explained in Section 3, application data is
loaded onto memory only by the executor processes. The process
hosting the agent – and hence, the master part of its Execution
Engine – only knows the identifiers of the data values involved
in a task, but it is never aware of their content. Thus, to protect
the in-memory data of an application, only the memory space of
executors needs to be protected as depicted in Figure 4.

With this new approach, the starting of the Agent and the han-
dling of the tasks remain exactly the same as in the original COMPSs
version, hence, they do not entail any overhead. Conversely, when
the Task Scheduler of the Agent decides, for the first time, to host
locally the execution of a task, it spawns all the processes corre-
sponding to the executors for that language. For instance, in the
case of requesting the execution of a Python method, the Agent
would spawn several Python interpreters running the code of the
executor. In order to protect the memory of these new executors,
the Python interpreter being executed can not be an out-of-the-box
distribution; it must be a modified Python interpreter instrumented
by SCONE that allocates an encrypted heap space at launch time
and ensures that memory accesses handle data encryption. Thus,
when the Agent starts several executors, they all allocate their re-
spective encrypted heap space incurring a significant overhead that
depends on their size. Once all the executors are ready, the Execu-
tion Engine starts submitting tasks to them. Upon their reception,
the executors behave exactly the same as with the original COMPSs
version with the only difference being that the modified interpreter
handles encryption with every memory access.

6 EVALUATION
With the purpose of validating the described solution and mea-
suring the impact of the overheads, the prototype has undergone
several tests. The following sections describe the testbed that hosted
the tests, the application being executed, and the results obtained.
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6.1 Testbed
For the evaluation, we ran the experiment on a server equipped
with two Intel Icelake ES2 XCC CPUs, each with 28 cores, 48MB
cache and 64 GB DDR4 2933 RAM. As an operating system, we
used Ubuntu 20.04.4 LTS with kernel 5.14.0. Furthermore, we used
SCONE v5.7 to run the applications in Intel SGX enclaves.

6.2 Application: Random Forest Classification
RandomForest (RF) is a classification algorithm that constructs a
set of individual decision trees, also known as estimators. Each
estimator classifies a given input into classes based on decisions
taken in random order. The final classification of the model is the
aggregate of the result of all the estimators; thus, the accuracy of the
model depends on the number of estimators composing it. These
tests use the implementation provided in dislib [23], a library that
provides application developers with a set of built-in AI algorithms
able to run in a distributed manner leveraging PyCOMPSs.

The test measures the time to handle the subsequent classifica-
tion of 20 samples using a pre-trained RF model when setting up
a different number of executors (max number of tasks running in
parallel). This model, composed of 40 estimators, classifies an ECG
as a normal ECG, Atrial Fibrillation (AF), inconclusive or noise. For
each classification, COMPSs generates the graph depicted in Fig-
ure 5 composed of 81 tasks with dependencies whose execution is
orchestrated to run using a different number of executors. For each
estimator, dislib may split its decision tree into several sub-branches
and compute the prediction for each sub-branch (predict_branch
tasks depicted in blue) and then merge the results of each branch
to compute the prediction of the whole estimator (merge_branches
tasks depicted in white). In this case, the model is small enough so
that a single node hosts the prediction execution; hence, disLib de-
cides to encapsulate the whole prediction in a single predict_branch
task for each estimator. Finally, when all the estimators have com-
puted their prediction, a last task (soft_vote depicted in red) gathers
all the classifications and decides the overall classification for the
sample.

1

2

81

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

3

4

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

5

6

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

7

8

71

72

73

74

75

76

77

78

79

80

9

Figure 5: Task dependency graph generated by COMPSs for
each Random Forest classification. Blue circles illustrate pre-
dict_branch tasks; white circles, merge_branches; and red
circles, soft_vote

6.3 Test Results
As already explained in Section 5, the processing of the first request
incurs a significant overhead due to the spawning of the executors.
For this reason, the execution time for processing the first sample
is considered apart from the others. Table 1 contains the average
execution time obtained for processing the first request according
to the number of executors deployed on the node (from 1 to 32)
comparing the performance when SCONE is disabled (Plain) and
the performance with SCONE being set up to use different sizes of
memory heap (2GB, 8GB and 32GB). The memory size of the host

sets a hard limit on the number of executors; with a heap size of 32
GB, the host node can only allocate up to 8 executors.

Table 1: Execution Time (ms) of the first request to perform
a Random Forest classification of a 1-sample input according
to the number of processes spawned (executors) and the heap
size of scone (if secure).

# executors
1 2 4 8 16 32

Plain 6,563 3,335 1,857 1,257 1,024 1,034
2 GB 16,189 11,601 10,919 12,317 19,290 31,825
8 GB 27,330 22,695 25,641 34,066 82,137 188,765
32 GB 75,135 73,265 146,691 219,712 - -

Figure 6 illustrates the evolution of the execution time for this
first request on each security setup when the number of executors
increases. With it, it is plain to see the effect of securing the applica-
tion with scone on the first request. When data is left unprotected
(plain line), COMPSs is able to reduce the execution time of the
first request as the number of executors increases. As expected, all
the protected versions incur some overhead on the spawning of
the executors, and the size of the heap has a significant effect on
its magnitude. In the 1-executor case, the execution time – 6,563
ms with the unprotected COMPSs – grows along with the size of
the heap reaching a 1100% overhead when the executors require
32GB – 75,135 ms. The larger the number of executors increases,
the bigger this overhead becomes. The memory allocation of the
multiple executors stacks up reaching 219 seconds to spawn 8 ex-
ecutors in the 32GB case (in total 256 GB of memory) – 174 times
slower than the 8-executors plain case –, and 188 seconds in the 32
8-GB executors (also 256GB of memory) – 182 times slower than
the 32-executors plain case.
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Figure 6: Evolution of the execution time of the first re-
quest when COMPSs is unprotected (plain) and protected
with scone using a heap space of 2GB, 8 GB and 32 GB

Once an Agent has deployed all the processes for the executors,
these overheads no longer apply to the processing of the subsequent
requests. Table 2 contains the average execution time obtained for
processing a request at operation time – i.e., dismissing the first
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request – according to the number of executors deployed on the
node (from 1 to 32) comparing the performance when SCONE is
disabled (Plain) and the performance with SCONE being set up to
use different sizes of memory heap (2GB, 8GB and 32GB). Figure 7
illustrates the evolution of this average execution time on each
security setup when the number of executors increases.

Table 2: Average Execution Time (ms) of the Random Forest
classification of a 1-sample input according to the number
of processes spawned (executors) and the heap size of scone
(if secure).

# executors
1 2 4 8 16 32

Plain 5,857 3,137 1,740 1,022 659 584
2 GB 7,446 3,942 2,233 1,426 1,013 1,019
8 GB 7,610 4,119 2,258 1,404 1,011 1,040
32 GB 7,190 3,921 2,180 1,370 - -
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Figure 7: Evolution of the average execution time of a request
(ignoring the first one) when COMPSs is unprotected (plain)
and protected with scone using a heap space of 2GB, 8 GB
and 32 GB

Unlike in the case of dealing with the first request, at operation
time, the heap size does not affect the response time. As the chart
in Figure 7 shows, all the secured versions of COMPSs behave in a
similar manner. Although the average times have some small differ-
ences, their statistical significance is minimal and their difference
could be explained by other factors like the workload from other
applications. When comparing the secured version to the plain,
the experiment reveals that the overhead of operating with an en-
crypted memory slows down the execution by about 30%. However,
it is important to notice that this memory encryption overhead
does not prevent the COMPSs runtime to improve the performance
of the application as the number of executors increases up to 16.
Beyond that, the application scalability in the node seems to stall,
probably because the encryption accelerator is being shared among
several processes.

7 CONCLUSIONS
In this paper we presented a proposal for the design and execution
of distributed applications in secure environments. The described
system adopts in-memory data protection that allows users to de-
velop parallel applications without the need to deal with the intri-
cacies of the underlying computational infrastructure and with the
mechanisms of explicitly encrypting the data.

The framework is based on the COMPSs programming frame-
work that enables sequential applications to be parallelized and exe-
cuted automatically scaling the computation across the distributed
nodes of the computing continuum. The protection of the appli-
cation data is achieved through the integration of the COMPSs
runtime with the SCONE framework that allows to run the user
code in trusted environments. The evaluation of the execution of
a ML application demonstrate that the scalability of the COMPSs
application is kept also taking into account the overhead introduced
by the encryption of the memory.

As future work we are investigating how to reduce the overhead
and how to increase the performance on a larger number of nodes.
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