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ABSTRACT
Reliable job execution is important in High Performance Computing
clusters. Understanding the failure distribution and failure pattern
of jobs helps HPC cluster managers design better systems, and users
design fault tolerant systems. Machine learning is an increasingly
popular workload for HPC clusters are used for. But, there is little
information on machine learning job failure characteristics on HPC
clusters, and how they differ from the previous workload such
clusters were used for. The goal of our work is to improve the
understanding of machine learning job failures in HPC clusters.
We collect and analyze job data spanning the whole of 2022, and
over 2 million jobs. We analyze basic statistical characteristics, the
time pattern of failures, resource waste caused by failures, and their
autocorrelation. Some of our findings are that machine learning
jobs fail at a higher rate than non-ML jobs, and waste much more
CPU-time per job when they fail.
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1 INTRODUCTION
Reliable job execution is a cornerstone of managing High Perfor-
mance Computing (HPC) facilities [5, 12]. Failed jobs in HPC data-
centers waste researchers’ time, compute resources, and can delay
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Figure 1: Distribution of generic and ML jobs by their final
exit state.

research outcomes. Understanding the pattern and distribution of
failures helps design resilient systems [4, 7] and understand the
impact of failure on existing applications. Machine learning appli-
cations are an important part of an HPC system’s workload [3]. But,
there is little information available on their execution and failures
in HPC datacenters. Towards solving this paucity, we present the
first study that characterizes ML job failures in an HPC cluster.

Wasted machine time due to unsuccessful executions accounts
for an astonishing 65% of the total machine time, and wasted used
CPU, RAM, and DISK demands are roughly 56%, 67%, 70% of the
total used demands [10]. Previous failures characterization stud-
ies [1, 2, 9–11, 14, 15] try to analyze unsuccessful jobs observed
in datacenters, using cluster data collected by companies such as
Google [8]. Researchers conduct statistical analysis on metrics such
as the number of jobs, failure rate[15], CPU/Disk/Memory usage[1].
However, these studies do not consider the special characteristics of
different kinds of workloads such as machine learning workloads.

Machine learning workloads are fast-emerging workloads in
HPC datacenters. Table 1 shows machine learning jobs account
for 13.32% of all kinds of jobs in our dataset. However, machine
learning jobs have a 10% lower completion rate compared to generic
jobs, which is different from other types of jobs (see Figure 1). So it
is important to understand machine learning job failure character-
istics in order to mitigate their negative impact on system resource
usage and application performance.
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Figure 2: System model of fail-stop HPC failures.

In this paper, we aim to answer the following main research
question: What are the characteristics of failed machine learning
jobs in HPC datacenters? Our study is based on traces collected
from the Lisa cluster at the Dutch National Supercomputing Center,
SURF. The traces contain job information for 12 months, for the
whole period from January to December 2022.

Towards understanding the characteristics of machine learning
job failures, we make a threefold contribution in this work:

(1) We implement a toolbox for collecting, cleaning, and ana-
lyzing job data from SLURM scheduler logs. We propose a
method to compare the failures of ML jobs with non-ML
jobs (in Section 3).

(2) We identify differences in submit rate, job duration, time
pattern, and resource use between ML jobs and non-ML
jobs (in Section 4).

(3) We analyze the time correlation of job failure events observed
in machine learning workloads (in Section 5).

2 SYSTEM MODEL
We characterize fail-stop failures in a national scale HPC system
in this work. Figure 2 depicts the system model we use. The jobs
we characterize were submitted to the Lisa HPC cluster. The HPC
cluster is composed of many racks, each of which accommodates
multiple servers. The servers are connected to each other through
a high performance network interconnect.

The HPC cluster is used for different kinds of jobs including bags
of tasks, workflows, and machine learning training jobs. The jobs
are submitted to a SLURM scheduler which then schedules them
onto the servers of the cluster. A job can use a single server or
multiple servers.

We use a fail-stop model for job failures. A job is considered to
have failed when it fails with an error, is cancelled by the user, or
runs out its reserved time. Jobs can also fail if the servers they are
running on fail. We do not consider ML models with bad accuracy,
or simulations with incorrect results as failures.

We collect the data we analyze in this work from the SLURM
scheduler logs. We collect job submission information such as num-
ber of machines, users, etc. We also collect job scheduling infor-
mation such as the nodes that were allocated and the completion
status.

3 METHOD FOR ANALYZING JOB FAILURES
IN HPC CLUSTERS

3.1 Toolbox

Data
Collecting

Data
processing

Characterization
of failures

Autocorrelation
of failures

Figure 3: Overview of the toolbox.

The toolbox consists of four parts (see Figure 3): (1) Collect job
data from the workload scheduler in HPC clusters. (2) Clean up the
job data. (3) Characterize the failure data in the aspects of failure
characteristics, arrival patterns, and CPU usage. (4) Present the
failure rate autocorrelations in machine learning job failures at
multiple time granularities.

3.2 Data collection and clean up
We collect the job data from the workload scheduler SLURM used
in the SURF LISA cluster. The clean-up process includes parsing the
data format, processing missing values, unifying the unit, splitting
nodes, and converting timestamp data. To understand the character-
istics of ML job failures and explore the difference between different
jobs, we divide the job traces dataset into generic completed jobs,
generic failed jobs, ML completed jobs, and ML failed jobs. After
that, we get a clean dataset used for analysis.

The job data we analyzed was collected from the scheduler in
SURF LISA. LISA is a large HPC cluster consisting of several hun-
dreds of multi-core nodes running the Debian Linux operating sys-
tem. It provides computing powers for users from different Dutch
research and academic institutes. Table 1 summarizes the statistics
of the job traces we collected. We observe machine learning jobs
account for 13.32% of all jobs.

3.3 Characterization and auto-correlation of
failures

We conduct three types of characterization: (1) Failures statistics.
Do ML jobs exhibit more failures than generic jobs? When do ML
jobs fail, relative to their runtime? To answer these questions, we
explore the fraction of jobs per job states, and the duration of jobs.

Table 1: Overview of our job traces dataset.

Dataset Description

Source SURF Lisa

Timespan 12 months

Year 2022

#Nodes 348

#Users 2662

#Jobs 2,301,128

%ML Jobs 13.32%

%Generic Jobs 86.68%
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Figure 4: Jobs submitted by date. The horizontal axis contains ticks at the start of every other month. The number of ML jobs is
overlaid on the

(2) Failures arrival patterns. How many generic and ML jobs are
submitted per day? Are there any patterns in the occurrence of
failures? To answer these questions, we visualize submitted jobs
by date, and the daily and hourly numbers of failures. (3) Failures
CPU usage. To find out how many CPUs are used in different jobs,
we present the distribution of the number of CPUs for each kind of
job.

We use the autocorrelation function (ACF) to measure the degree
of correlation based on the temporal failure data. ACF can assess
the degree of correlation between failures at a series of time logs.
We consider the failure rate process, which is the number of failure
events per unit. We compute the autocorrelation of the failure rate
for different time lags including weeks, days, and hours.

4 CHARACTERIZATION OF FAILURES
We characterize the failures in this section, with the method de-
scribed in 3.3. We present our observations and discussions for each
kind of characterization.

4.1 Failures statistics
O-1. Machine learning jobs have a higher failure ratio (23.06%)

than generic jobs (14.72%).
O-2. Most machine learning jobs fail early: 86.95% of failed jobs

have a runtime less than 6 minutes.

Table 2: Fraction of jobs per job state.

State Type Generic Jobs ML Jobs

COMPLETED 77.15% 62.17%
FAILED 14.72% 23.06%

CANCELLED 5.47% 10.15%
TIMEOUT 2.12% 4.38%

OUT OF MEMORY <1% <1%
REQUEUED <1% <1%

NODE FAILURE <1% <1%

O-3. The median runtime of machine learning failures is 18 sec-
onds longer than generic failures.

O-4. 90% of failed machine learning jobs are executed in 0.2 hours,
while 90% successful jobs are executed in 3.79 hours.

To explore the basic statistical characteristics of generic and
machine learning jobs, we compare the terminal execution state
for both job types, ML and generic. Table 2 shows a lot of jobs have
unsuccessful job outcomes.

We observe that machine learning jobs have a higher failure
rate (23.06%) than generic jobs (14.72%) (O-1). Machine learning
jobs that are in the ”CANCELLED”, and ”TIMEOUT” states are
double the amount of generic jobs. However, jobs that end in ”OUT
OF MEMORY”, ”REQUEUED”, and ”NODE FAILURE” of both types
are less than 1%.

Runtime is an important feature to understand how much time
the jobs consume. Is there any difference between the duration of
generic jobs and machine learning jobs? And how about completed
and failed jobs? To answer these questions, we inspect the runtime
of generic and machine learning completed and failed jobs as shown
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Figure 5: Duration of jobs, CDF plot.
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in Figure 5. The figure is an empirical cumulative distribution func-
tion (ECDF) of job duration in hours.Themajority of completed jobs
take up to 1 hour from start to complete. In contrast, most failed
jobs are very short: 86.95% of machine learning failed jobs have a
runtime of 6 minutes or less (O-2). Compared to machine learning
failed jobs, 90.54% generic failed jobs are less than 6 minutes.

A failed machine learning job runs for 18 seconds longer than
a failed generic job at the median (O-3). Above the median, the
difference decreases. As for the completed and failed ML jobs, 90%
failed jobs are executed in 0.2 hours, while 90% successful jobs are
executed in 3.79 hours, which is 3.59 hours longer than unsuccessful
jobs (O-4). On average, unsuccessful machine learning jobs last for
27 minutes, which is about two times of generic jobs for 14 minutes.

4.2 Failures arrival patterns
O-5. Arrival and demand are highly variable. The number of all

submitted jobs per day varies by up to three orders of mag-
nitude.

O-6. Machine learning failures have a diurnal pattern, e.g. 9 to 6
per day.

Many jobs are submitted to a scientific datacenter every day. We
make a timeline plot of job submissions to visualize the number of
machine learning and generic arrival jobs (see Figure 4). To explore
the arrival amounts and patterns of failures, we present the number
of failures per day in a week and per hour in a day (see Figure 6).

We observe that job arrival and demand are highly variable per
day. Fig 4 shows that 6,304 jobs are submitted per day on average,
with a maximum of 163,786 (O-5). Compared to the analysis re-
sults of the jobs data collected in 2020 [13], the median amount
of machine learning jobs increased from 329 to 557, reflecting the
upward trend of machine learning research and application.

Machine learning exhibits a correlation between work hours and
days. In the graphs depicted in Figure 6, while machine learning
job failures exhibit a diurnal pattern, generic job failures exhibit
irregular/erratic fail behavior, with anomaly peaks at certain days
and hours (O-6). We conjecture that generic job failures are irreg-
ular because general jobs have more unspecified noise due to the
operation of the system.

4.3 CPU usage of failures
O-7. Failed ML jobs consume a larger fraction (10.6%) of resources

consumed by completedML jobs, compared to generic jobs (7.6%).
O-8. There is no significant difference between completed and

failed ML jobs in the distribution of the number of CPUs
used per job.

We quantify the resource waste by failed jobs.We define resource
waste as the CPU-time consumed by failed jobs as a fraction of
the total CPU-time consumed by completed jobs of that kind. We
observe that failed machine learning jobs consume 10.6% of the total
CPU time consumed by completed ML jobs. This is much higher
than the 7.6% resource waste by generic jobs.
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Figure 6: Daily and hourly failures for generic and machine learning jobs.
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Figure 7: The number of CPUs used in jobs, CDF plot.

We investigate this further by analyzing the distribution of CPU
cores allocated to jobs. Figure 7 depicts the ECDF of the number of
CPUs (NCPUs) allocated per job, grouped by different categories.
We observe that both failed and completed ML jobs exhibit a simi-
lar distribution of CPUs allocated. In contrast, failed generic jobs
allocate much fewer CPUs per job. Over 50% of failed generic jobs
use a single CPU. This is lower than the 3 CPUs per job used by
over 50% of failed ML jobs. It is also much lower than the 16 CPUs
used by 78.65% of completed generic jobs.

We conjecture that failed generic programs run by users are
exploratory programs run during the program development process.
Allocating a single CPUs might be sufficient to test these programs.
We do not have a theory as to why machine learning jobs require
3x the amount of CPU as generic jobs in the development phase.

5 AUTOCORRELATION OF FAILURES
In this section, we investigate if the occurrence of failure will occur
again in the next hour, day, or week. We use the autocorrelation of
the trace, computed at different aggregation levels and time lags
for our investigation. We use the method described in Section 3.3
to compute the autocorrelation.

O-9. There is high autocorrelation at the week granularity for
small time lags, and none thereafter.

O-10. The autocorrelation at the day granularity declines steadily.
O-11. There is little autocorrelation at the hour granularity, but

whatever exists follows a diurnal pattern.

Figure 8 depicts the autocorrelation functions of the data aggre-
gated at the week, day, and hour time granularities. We depict the
autocorrelation up to 30 units of time lag at every granularity. The
horizontal axis represents the time lag, and the vertical axis depicts
the autocorrelation at a particular time lag.

At the week granularity, we observe a strong correlation at time
lag 1, a medium correlation at time lag 2, and almost no correlation
thereafter. At the day granularity, we observe a medium correlation
at low time lags which steadily declines. At the hour granularity,
we observe little autocorrelation. But, whatever we observe follows
reflects the diurnal pattern which we already found.

The autocorrelation results imply that the number of failures in
the previous days and hours reflective of failures in the subsequent
days and hours, but only to a little extent. At the week level, while
the number of failures in a week is predictive of failures in the next
week, it has no predictive power thereafter.

6 LIMITATIONS
Our work has several limitations. We discuss 3 main limitations in
this section: the bias inherent to our traces, the limited number of
data sources, and the lack of an example of the direct use of the
main findings.

First, we only use a single dataset from one datacenter. It is
possible that our results, albeit valid for the traces used in this work,
are not representative of the workload in other HPC datacenters.
Second, the bias inherent in trace use is the classification of machine
learning jobs and generic jobs. In this work, jobs on GPU nodes are
seen as machine learning jobs. Although most machine learning
jobs are running in GPU nodes, some machine learning jobs are
sent to CPU nodes by users, which probably affects the results.
Finally, there is a lack of an example of the direct use of the main
findings. Our understanding of machine learning job failures could
not be used for tuning a component of the system yet.
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0 5 10 15 20 25 30
Lags [d]

0.0

0.2

0.4

0.6

0.8

1.0

A
u

to
co

rr
el

at
io

n

(b) Autocorrelation at day granularity.

0 5 10 15 20 25 30
Lags [h]

0.0

0.2

0.4

0.6

0.8

1.0

A
u

to
co

rr
el

at
io

n

(c) Autocorrelation at hour granularity.

Figure 8: Autocorrelation functions with the data aggregated at different time granularities.
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7 RELATEDWORK
Much work has been dedicated to characterizing, modeling, and
predicting job failures in HPC and other clusters [1, 2, 9–11, 14, 15].
These failure characterization works try to analyze unsuccessful
jobs observed in datacenters, using cluster data collected by or-
ganizations such as Google [8] and Los Alamos National Labs
(LANL) [6]; However, the datasets were published many years ago
and their data spans relatively short periods of time. Previous fail-
ure analysis studies focus mostly on job-related metrics such as the
number of jobs, failure rate [15], and CPU/disk/memory usage[1].
Although the time correlation of failure events deserves a detailed
investigation due to its practical importance [14], relatively little
attention has been given to characterizing the time correlation of
failures in HPC clusters.

However, the studies do not consider the special characteristics
of different kinds of workloads such as machine learning workloads.
In contrast, our work is the first to investigate machine learning
job failures in a large-scale HPC distributed system. We perform a
detailed investigation using a long-term dataset for 12 months. We
also consider the time correlation of failures.

8 CONCLUSION AND FUTUREWORK
In this work, we conduct an analysis of machine learning job failures
in an HPC cluster. We propose a method to compare the failures
of ML jobs with non-ML jobs. We present 11 observations in our
characterization and autocorrelation study of failures.

First, we collected long-term HPC datacenter job traces of tem-
poral and spatial metrics. Second, we characterized failure states,
runtime, arrival patterns, and CPU usage. We found that machine
learning jobs have a higher failure ratio and present daily patterns
in contrast to generic jobs. We also found that failed ML jobs con-
sumed more CPU resources. Last but not least, we investigated
in this work the time correlations of ML failure events. We found
that the autocorrelation varies at different time granularities: In
the week and day granularity, there are obvious correlations but
only at small time lags; While at the hour granularity there is little
autocorrelation, but whatever exists follows the diurnal pattern as
we observed in the characterization.

We see several possible extensions to this work. First, we only
consider failed machine learning jobs. However, ML jobs that are
cancelled and timeout also accounts for a large fraction of all states.
We will investigate the characteristics of those jobs in the future.
Second, we will collect more diverse job traces from different HPC
or other datacenters to make our results representative. Finally, we
want to use the time correlation between day and hour to predict
failures before it happens, and design a method to help reduce the
impact of failures.
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