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ABSTRACT
We present Graph-Optimizer, a module of the Graph-Massivizer
platform, that uses optimised BGOs and composition rules to cap-
ture and model a graph processing workload, and further com-
bines the workload model with hardware and infrastructure mod-
els, predicting performance and energy consumption. Combined
with design space exploration, such predictions enable co-designed
workload implementations to fit a requested performance objective
and guarantee their performance bounds during execution.

CCS CONCEPTS
•Hardware→ Analysis and design of emerging devices and systems;
• Computer systems organization→ Parallel architectures;
Distributed architectures; • Software and its engineering→ Soft-
ware performance; Massively parallel systems; Designing
software; • Computing methodologies → Parallel computing
methodologies; Modeling methodologies.
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1 INTRODUCTION
Graph processing applications focus on the analysis of data repre-
sented as a set of entities (vertices) and their connections (edges).
Graph processing workloads are common in many application
domains - from social networks analysis to logistics, and from
text or image analysis to bioinformatics - because they offer the
opportunity to analyse interconnected entities, as well as deter-
mine and predict their evolution. As such, there are many types of
graphs [1, 11, 12], and many more algorithms to process them [8, 9].

As the data increases in size (number of entities) and complexity
(number and types of edges) [15], graph processing workloads
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suffer in terms of performance and scalability [5, 7]. Thus, graph
processing needs new algorithms, suitable for and heterogeneous,
accelerated systems [3, 10, 18].

In this work we present Graph-Optimizer, a framework that pro-
vides model-based performance guarantees for graph processing
workloads on heterogeneous, accelerated systems. Graph-Optimizer
combines graph-aware BGO models for different processors with
data partitioning and communication models, to provide perfor-
mance and energy consumption estimates. In this talk, we introduce
the design of Graph-Optimizer, we emphasize its advantages over
state-of-the-art, and indicate how, given BGO models, they can
be combined towards a predictive model. We further present the
roadmap for building Graph-Optimizer.

2 RELATEDWORK
Modeling graph processing workloads and predicting their perfom-
rance remain challenging for three reasons: workloads complexity,
hardware complexity, and data-dependent performance.

Graph processing workloads. Current work on optimizing
graph processing workloads focuses on two main directions: the de-
sign and implementation of dedicated, hand-tuned (parallel and/or
distributed) algorithms, or the construction of graph processing
platforms or systems (GPPs/GPSs).

Hand-tuned graph processing algorithms are designed and op-
timized for a given operation, platform and, often, type of graph.
For example, for breadth-first search traversal, thereare more than
20 GPU-based algorithms, and several approaches developed exclu-
sively to (dynamically) combine these to further improve perfor-
mance [2, 18, 19]. Similar efforts exist for PageRank and Centrality
metrics. Hand-tuned algorithms remain difficult to design and im-
plement, and are often non-portable across systems and/or graphs.

Build for usability, GPPs/GPSs offer a convenient alternative to
hand-tuned algorithms. Specifically, they offer users a set of basic
graph processing operations (BGOs), an API to apply them, and one
or several back-ends to match or different systems. Users design
graph processing applications as a workflow of BGOs, analysing
and/or transforming the input graph towards the required result.
Several surveys and analyses of such platforms [6, 8, 9, 16] speak of
their advantages in terms of programmability and portability, and
highlight the limited overhead such platforms might have.

Neither hand-tuned nor GPPs/GPSs provide accurate perfor-
mance and/or energy consumption guarantees for the workload
being processed. For hand-tuned algorithms, benchmarking re-
mains the norm, while GPPs/GPSs provide no performance models
for their APIs and/or implementations. Graph-Optimizer will pro-
vide such models for basic primitives, and build complex workload
models through composition.
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Data modeling. The performance of graph processing work-
loads depends significantly on graph properties [8, 9, 18]. Capturing
that dependency in analytical models remains challenging, and diffi-
cult to include in workloads models. Current work focuses on either
machine-learning approaches, where the workload is considered
a mix of the algorithm and input data [18], or on observing and
using correlation between specific properties (i.e., vertex degree
distribution, diameter, etc.) and performance profiles of specific
algorithms. Graph-Optimizer will use a combination of the two
for the BGO models. The composition of these models will also
need to take partitioning models into account to determine the
communication volume, but will not depend on graph properties.

Hardware models The complexity of heterogeneous systems
combining parallel CPUs and accelerators is well documented [14].
Graph processing workloads are notoriously difficult for such par-
allel hardware [13]. Graph-Optimizer will focus on accurate mod-
els for BGOs, combining microbenchmarking with analytical and
statistical models [4, 17], and accurate models of data transfer in-
frastructure to scale from BGOs to real workloads.

3 GRAPH-OPTIMIZER DESIGN AND
VALIDATION

Figure 1 presents the high-level architecture of Graph-Optimizer.
The tool enables users to express graph processing as a workflow
of basic graph operations (BGOs), and, using hardware models for
both processing units and communication infrastructure, can assess
the performance (e.g., in terms of execution time or energy) of the
given workload on a specific hardware configuration. Through a
design-space exploration procedure, Graph-Optimizer can select
the most suitable node-level system for the problem at hand.

Figure 1: A high-level architecture of Graph-Optimizer

We will validate Graph-Optimizer using several configurations
of heterogeneous systems, using AMD and Intel CPUs, as well as
accelerators such as NVIDIA and AMD GPUs.

Our first validation case-study is a synthetic combination of
different BGOs, including: graph sampling and up-scaling, graph
traversal, centrality calculation, and, optionally, community detec-
tion or clustering based on the centrality scores. Concretely, we
will use existing implementations of the selected BGOs to provide a
first approximation of the workload. Next, we model the BGOs and
calibrate these models on the different hardware devices through
microbenchmarking. Finally, we add the infrastructure model (as
the system "executing" the data communication and/or dependen-
cies) and compose the overall application model. In turn, this model
is used to predict the performance of graph workloads on different
hardware configurations and input data.

The validation is successfil when Graph-Optimizer provides ac-
curate predictions. Specifically. the framework must guarntee a
performance lower bound, provide correct ranking of the different
configurations (thus enabling design-space exploration), and should
not be ore than 25% off from the measured performance.

4 SUMMARY AND OUTLOOK
The first step in developing Graph-Optimizer is top provide opti-
mized BGOs and their performance models. Next, we will focus on
data partitioning and model composition rules to support larger
workloads, and validate Graph-Optimizer on different synthetic
mixes of BGOs. Finally, we will enable the use of Graph-Optimizer
for design-space exploration and to drive the Graph-Greenifier tool
towards scaling to massive data and large-scale systems.
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