
Graph-Inceptor: Towards Extreme Data Ingestion, Massive Graph
Creation and Storage

Jože Rožanec
Jožef Stefan Institute

Slovenia
joze.rozanec@ijs.si

Brian Elvesæter
SINTEF
Norway

brian.elvesater@sintef.no

Dumitru Roman
SINTEF
Norway

dumitru.roman@sintef.no

Marko Grobelnik
Jožef Stefan Institute

Slovenia
marko.grobelnik@ijs.si

Peter Haase
Metaphacts
Germany

ph@metaphacts.com

ABSTRACT
Graph processing is increasingly popular given the wide range
of phenomena represented as graphs (e.g., social media networks,
pharmaceutical drug compounds, or fraud networks, among others).
The increasing amount of data available requires new approaches
to efficiently ingest and process such data. In this research, we
describe a solution at a conceptual level in the context of the Graph-
Massivizer architecture. Graph-Inceptor aims to bridge the void
among ETL tools enabling data transformations required for graph
creation and enrichment and supporting connectors to multiple
graph storages at a massive scale. Furthermore, it aims to enhance
ETL operations by learning from data content and load and making
decisions based on machine-learning-based predictive analytics.

CCS CONCEPTS
• Computer systems organization → Architectures.
ACM Reference Format:
Jože Rožanec, Brian Elvesæter, Dumitru Roman, Marko Grobelnik, and Pe-
ter Haase. 2023. Graph-Inceptor: Towards Extreme Data Ingestion, Mas-
sive Graph Creation and Storage. In Companion of the 2023 ACM/SPEC
International Conference on Performance Engineering (ICPE ’23 Companion),
April 15–19, 2023, Coimbra, Portugal. ACM, New York, NY, USA, 2 pages.
https://doi.org/10.1145/3578245.3585339

1 INTRODUCTION
Knowledge graphs represent semantically structured information
and offer great potential for building more intelligence into ex-
isting software systems [24]. The increasing amount of available
data makes it increasingly challenging to construct, and process
graphs using a single machine [11]. Furthermore, it is becoming
essential to concurrently ingest fine-grained updates at high veloc-
ities and a massive scale while supporting efficient data access for

Jože M. Rožanec and Brian Elvesæter are co-first authors with equal contribution and
importance.

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).
ICPE ’23 Companion, April 15–19, 2023, Coimbra, Portugal
© 2023 Copyright held by the owner/author(s).
ACM ISBN 979-8-4007-0072-9/23/04.
https://doi.org/10.1145/3578245.3585339

multiple purposes [12, 17]. A scalable framework for graph Extract-
Transform-Load (ETL) must consider the tasks related to graph
formation and serialization. RDF has been widely used to repre-
sent graphs, and many ingestion and data processing tools support
it [16]. Furthermore, specialized graph serialization formats have
been developed to guarantee space-efficient graph representations.
Among them, we can mention the Yale format (representing a graph
using three arrays, accounting for non-zero values, the extent of
rows, and column indices); WebGraph (optimized for representing
a web graph, exploiting links locality) [4]; or the K2-tree [5].

Distributed graph persistence and processing have been ad-
dressed in many ways. Since Google introduced Pregel [14], many
graph processing frameworks with diverse programming models
and features have been proposed, usually persisting graph data
across a distributed filesystem [8]. On the other hand, specialized
databases have been developed to support distributed storage (e.g.,
Titan, OrientDB, ArangoDB) and complex queries on top of them.
Distributed graphs can be either persisted and processed in dis-
tributed homogeneous or heterogeneous architectures [3, 10]. Het-
erogeneous architectures pose additional challenges to exploiting
the capabilities of each node best. Graph partitioning must be con-
sidered for graphs persisted in a distributed manner, given the
direct impact on the performance imposed by load balancing and
communication traffic between the instances of a cluster [6].

Graph neural networks have demonstrated ground-breaking per-
formance on many tasks [20, 22]. While data growth has pushed to-
wards a distributed processing paradigm, research on graph neural
networks has been mainly performed considering shared-memory
architectures within a single machine. Efforts to enable distributed
graph neural networks have been few and recent [9, 13, 21].

Many ETL products (e.g., Airbyte, Stitch, Fivetran, and many
others) provide generic connectors to load and persist tabular data
and neglect connectors to graph storage. Frameworks such as the
data build tool (DBT) [7] capture ETL best practices; however, they
are limited to SQL query language for data transformations. There-
fore, there is a need to develop tools that support ingesting mas-
sive amounts of data, allowing for fine-grained updates at high
velocities, and storing the data in multiple target stores to satisfy
heterogeneous processing needs.

In the context of the Graph-Massivizer project and proposed
architecture [15], we propose developing the Graph-Inceptor tool.
We describe the tool in detail in the next section.

253

https://doi.org/10.1145/3578245.3585339
https://doi.org/10.1145/3578245.3585339


ICPE ’23 Companion, April 15–19, 2023, Coimbra, Portugal Jože Rožanec, Brian Elvesæter, Dumitru Roman, Marko Grobelnik, and Peter Haase

2 PROPOSED ARCHITECTURE

Figure 1: The Graph-Massivizer technical architecture con-
sists of five tools.

Graph-Inceptor aims to enable scalable data ingestion and graph
creation. Developed as part of the Graph-Massivizer architecture
(see Fig. 1), it was inspired by the AliGraph architecture [23], which
considers a distributed graph storage with multiple partitions, sep-
arate storage for attributes, and a cache for most essential vertices.
We consider the Graph-Inceptor requires two clearly defined com-
ponents: (a) an Extraction-Transform (ET) process and (b) a Load
(L) process. ET is concerned with extracting data from external
data sources (e.g., databases, APIs, and knowledge graphs) and
transforming it (e.g., extracting entities and relationships from text,
creating semantic abstractions) to be later inserted into the graph.
On the other side, the L provides means to persist data that was
loaded and transformed. The L process may include additional
steps geared towards alleviating graph post-processing, e.g., by
performing graph sampling in an online manner [1, 2].

We envision the whole ETL process can be enhanced with ar-
tificial intelligence models applied across the many phases of the
ingestion process. Such enhancement can be performed at least
in two dimensions: (a) to better process the incoming data and
ensure a higher quality of results and (b) to optimize the underlying
infrastructure. An example of enhancing the data processing could
be using natural language processing and graph neural networks
to extract relevant information from the text and embed it into
the graph. Furthermore, classifiers could be used to determine as-
sociated sentiments, topics, and other relevant aspects of interest.
Conversely, machine learning could optimize an underlying infras-
tructure, e.g., by learning the best cache replacement policies [19]
or predicting the best graph partitioning strategies [18].

ACKNOWLEDGMENT
The Graph-Massivizer project receives funding from the Horizon
Europe research and innovation program of the European Union
under grant agreement 101093202. The project started on January
1st 2023 and lasts three years.

REFERENCES
[1] Nesreen K Ahmed, Nick Duffield, Jennifer Neville, and Ramana Kompella. 2014.

Graph sample and hold: A framework for big-graph analytics. In Proceedings of
the 20th ACM SIGKDD international conference on Knowledge discovery and data
mining. 1446–1455.

[2] Nesreen K Ahmed, Nick Duffield, Theodore Willke, and Ryan A Rossi. 2017. On
sampling from massive graph streams. arXiv preprint arXiv:1703.02625 (2017).

[3] Maciej Besta, Dimitri Stanojevic, Johannes De Fine Licht, Tal Ben-Nun, and
Torsten Hoefler. 2019. Graph processing on fpgas: Taxonomy, survey, challenges.
arXiv preprint arXiv:1903.06697 (2019).

[4] P. Boldi and S. Vigna. 2004. TheWebgraph Framework I: Compression Techniques.
In Proceedings of the 13th International Conference on World Wide Web (New York,
NY, USA) (WWW ’04). Association for Computing Machinery, New York, NY,
USA, 595–602. https://doi.org/10.1145/988672.988752

[5] Nieves R Brisaboa, Susana Ladra, and Gonzalo Navarro. 2014. Compact represen-
tation of web graphs with extended functionality. Information Systems 39 (2014),
152–174.

[6] Aydın Buluç, Henning Meyerhenke, Ilya Safro, Peter Sanders, and Christian
Schulz. 2016. Recent advances in graph partitioning. Springer.

[7] dbt (data build tool. 2023. dbt - transform data in your warehouse. https:
//www.getdbt.com/

[8] Arturo Diaz-Perez, Alberto Garcia-Robledo, and Jose-Luis Gonzalez-Compean.
2019. Graph Processing Frameworks. Springer International Publishing, Cham,
875–883. https://doi.org/10.1007/978-3-319-77525-8_283

[9] Swapnil Gandhi and Anand Padmanabha Iyer. 2021. P3: Distributed Deep Graph
Learning at Scale.. In OSDI. 551–568.

[10] Safiollah Heidari, Yogesh Simmhan, Rodrigo N Calheiros, and Rajkumar Buyya.
2018. Scalable graph processing frameworks: A taxonomy and open challenges.
ACM Computing Surveys (CSUR) 51, 3 (2018), 1–53.

[11] Nilesh Jain, Guangdeng Liao, and Theodore LWillke. 2013. Graphbuilder: scalable
graph etl framework. In First international workshop on graph data management
experiences and systems. 1–6.

[12] Pradeep Kumar and H Howie Huang. 2020. Graphone: A data store for real-time
analytics on evolving graphs. ACM Transactions on Storage (TOS) 15, 4 (2020),
1–40.

[13] Adam Lerer, Ledell Wu, Jiajun Shen, Timothee Lacroix, Luca Wehrstedt, Abhijit
Bose, and Alex Peysakhovich. 2019. Pytorch-biggraph: A large scale graph
embedding system. Proceedings of Machine Learning and Systems 1 (2019), 120–
131.

[14] Grzegorz Malewicz, Matthew H Austern, Aart JC Bik, James C Dehnert, Ilan
Horn, Naty Leiser, and Grzegorz Czajkowski. 2010. Pregel: a system for large-
scale graph processing. In Proceedings of the 2010 ACM SIGMOD International
Conference on Management of data. 135–146.

[15] Radu Prodan, Dragi Kimovski, Andrea Bartolini, Michael Cochez, Alexandru
Iosup, Evgeny Kharlamov, Jože Rožanec, Laurenţiu Vasiliu, and Ana Lucia Văr-
bănescu. 2022. Towards Extreme and Sustainable Graph Processing for Ur-
gent Societal Challenges in Europe. In 2022 IEEE Cloud Summit. IEEE, 23–30.
https://doi.org/10.1109/CloudSummit54781.2022.00010

[16] Dumitru Roman, Nikolay Nikolov, Antoine Putlier, Dina Sukhobok, Brian
Elvesæter, Arne Berre, Xianglin Ye, Marin Dimitrov, Alex Simov, Momchill Zarev,
et al. 2018. DataGraft: One-stop-shop for open data management. Semantic Web
9, 4 (2018), 393–411. https://doi.org/10.3233/SW-170263

[17] Sherif Sakr, Angela Bonifati, Hannes Voigt, Alexandru Iosup, Khaled Ammar,
Renzo Angles, Walid Aref, Marcelo Arenas, Maciej Besta, Peter A Boncz, et al.
2021. The future is big graphs: a community view on graph processing systems.
Commun. ACM 64, 9 (2021), 62–71. https://doi.org/10.1145/3434642

[18] Jiayi Shen and Fabrice Huet. 2018. Predict the best graph partitioning strategy by
using machine learning technology. In Proceedings of the 2018 VII International
Conference on Network, Communication and Computing. 27–33.

[19] Giuseppe Vietri, Liana V Rodriguez, Wendy A Martinez, Steven Lyons, Jason
Liu, Raju Rangaswami, Ming Zhao, and Giri Narasimhan. 2018. Driving Cache
Replacement with ML-based LeCaR.. In HotStorage. 928–936.

[20] Zonghan Wu, Shirui Pan, Fengwen Chen, Guodong Long, Chengqi Zhang, and
S Yu Philip. 2020. A comprehensive survey on graph neural networks. IEEE
transactions on neural networks and learning systems 32, 1 (2020), 4–24.

[21] Da Zheng, Chao Ma, Minjie Wang, Jinjing Zhou, Qidong Su, Xiang Song, Quan
Gan, Zheng Zhang, and George Karypis. 2020. Distdgl: distributed graph neural
network training for billion-scale graphs. In 2020 IEEE/ACM 10th Workshop on
Irregular Applications: Architectures and Algorithms (IA3). IEEE, 36–44.

[22] Jie Zhou, Ganqu Cui, Shengding Hu, Zhengyan Zhang, Cheng Yang, Zhiyuan Liu,
Lifeng Wang, Changcheng Li, and Maosong Sun. 2020. Graph neural networks:
A review of methods and applications. AI open 1 (2020), 57–81.

[23] Rong Zhu, Kun Zhao, Hongxia Yang, Wei Lin, Chang Zhou, Baole Ai, Yong Li, and
Jingren Zhou. 2019. Aligraph: A comprehensive graph neural network platform.
arXiv preprint arXiv:1902.08730 (2019).

[24] Xiaohan Zou. 2020. A survey on application of knowledge graph. In Journal of
Physics: Conference Series, Vol. 1487. IOP Publishing, 012016.

254

https://doi.org/10.1145/988672.988752
https://www.getdbt.com/
https://www.getdbt.com/
https://doi.org/10.1007/978-3-319-77525-8_283
https://doi.org/10.1109/CloudSummit54781.2022.00010
https://doi.org/10.3233/SW-170263
https://doi.org/10.1145/3434642

	Abstract
	1 Introduction
	2 Proposed Architecture
	References



