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ABSTRACT

Graph processing is increasingly popular given the wide range
of phenomena represented as graphs (e.g., social media networks,
pharmaceutical drug compounds, or fraud networks, among others).
The increasing amount of data available requires new approaches
to efficiently ingest and process such data. In this research, we
describe a solution at a conceptual level in the context of the Graph-
Massivizer architecture. Graph-Inceptor aims to bridge the void
among ETL tools enabling data transformations required for graph
creation and enrichment and supporting connectors to multiple
graph storages at a massive scale. Furthermore, it aims to enhance
ETL operations by learning from data content and load and making
decisions based on machine-learning-based predictive analytics.
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1 INTRODUCTION

Knowledge graphs represent semantically structured information
and offer great potential for building more intelligence into ex-
isting software systems [24]. The increasing amount of available
data makes it increasingly challenging to construct, and process
graphs using a single machine [11]. Furthermore, it is becoming
essential to concurrently ingest fine-grained updates at high veloc-
ities and a massive scale while supporting efficient data access for
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multiple purposes [12, 17]. A scalable framework for graph Extract-
Transform-Load (ETL) must consider the tasks related to graph
formation and serialization. RDF has been widely used to repre-
sent graphs, and many ingestion and data processing tools support
it [16]. Furthermore, specialized graph serialization formats have
been developed to guarantee space-efficient graph representations.
Among them, we can mention the Yale format (representing a graph
using three arrays, accounting for non-zero values, the extent of
rows, and column indices); WebGraph (optimized for representing
a web graph, exploiting links locality) [4]; or the K?-tree [5].
Distributed graph persistence and processing have been ad-
dressed in many ways. Since Google introduced Pregel [14], many
graph processing frameworks with diverse programming models
and features have been proposed, usually persisting graph data
across a distributed filesystem [8]. On the other hand, specialized
databases have been developed to support distributed storage (e.g.,
Titan, OrientDB, ArangoDB) and complex queries on top of them.
Distributed graphs can be either persisted and processed in dis-
tributed homogeneous or heterogeneous architectures [3, 10]. Het-
erogeneous architectures pose additional challenges to exploiting
the capabilities of each node best. Graph partitioning must be con-
sidered for graphs persisted in a distributed manner, given the
direct impact on the performance imposed by load balancing and
communication traffic between the instances of a cluster [6].
Graph neural networks have demonstrated ground-breaking per-
formance on many tasks [20, 22]. While data growth has pushed to-
wards a distributed processing paradigm, research on graph neural
networks has been mainly performed considering shared-memory
architectures within a single machine. Efforts to enable distributed
graph neural networks have been few and recent [9, 13, 21].
Many ETL products (e.g., Airbyte, Stitch, Fivetran, and many
others) provide generic connectors to load and persist tabular data
and neglect connectors to graph storage. Frameworks such as the
data build tool (DBT) [7] capture ETL best practices; however, they
are limited to SQL query language for data transformations. There-
fore, there is a need to develop tools that support ingesting mas-
sive amounts of data, allowing for fine-grained updates at high
velocities, and storing the data in multiple target stores to satisfy
heterogeneous processing needs.
In the context of the Graph-Massivizer project and proposed
architecture [15], we propose developing the Graph-Inceptor tool.
We describe the tool in detail in the next section.
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2 PROPOSED ARCHITECTURE
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Figure 1: The Graph-Massivizer technical architecture con-
sists of five tools.

Graph-Inceptor aims to enable scalable data ingestion and graph
creation. Developed as part of the Graph-Massivizer architecture
(see Fig. 1), it was inspired by the AliGraph architecture [23], which
considers a distributed graph storage with multiple partitions, sep-
arate storage for attributes, and a cache for most essential vertices.
We consider the Graph-Inceptor requires two clearly defined com-
ponents: (a) an Extraction-Transform (ET) process and (b) a Load
(L) process. ET is concerned with extracting data from external
data sources (e.g., databases, APIs, and knowledge graphs) and
transforming it (e.g., extracting entities and relationships from text,
creating semantic abstractions) to be later inserted into the graph.
On the other side, the L provides means to persist data that was
loaded and transformed. The L process may include additional
steps geared towards alleviating graph post-processing, e.g., by
performing graph sampling in an online manner [1, 2].

We envision the whole ETL process can be enhanced with ar-
tificial intelligence models applied across the many phases of the
ingestion process. Such enhancement can be performed at least
in two dimensions: (a) to better process the incoming data and
ensure a higher quality of results and (b) to optimize the underlying
infrastructure. An example of enhancing the data processing could
be using natural language processing and graph neural networks
to extract relevant information from the text and embed it into
the graph. Furthermore, classifiers could be used to determine as-
sociated sentiments, topics, and other relevant aspects of interest.
Conversely, machine learning could optimize an underlying infras-
tructure, e.g., by learning the best cache replacement policies [19]
or predicting the best graph partitioning strategies [18].
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