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ABSTRACT
Graphs can represent various phenomena and are increasingly
used to tackle complex problems. Among the challenges associated
with graph processing is the ability to analyze and mine massive-
scale graphs. While the massive scale is usually associated with
distributed systems, the complex nature of graphs makes them
an exception to the rule. Currently, most graph processing is per-
formed within a single computer. In this research, we describe a
solution at a conceptual level in the context of the Graph-Massivizer
architecture. We use two approaches to provide graph analytics and
querying functionalities at scale. First, we leverage graph sampling
techniques to obtain relevant samples and avoid processing the
whole graph. Second, we support heuristic and neural query execu-
tion engines.We envision an interface that will decidewhich queries
to execute with a given engine, given constraints (e.g., execution
time boundaries, exactness of results, energy saving requirements).
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1 INTRODUCTION
Graphs are mathematical abstractions used to model relationships
between objects. They represent real-world phenomena and allow
us to explore, predict and explain such phenomena [13]. Among
prevalent domains modeled with graphs, we find social networks,
the world wide web, telecommunications, fraud detection, logis-
tics, and epidemiology [3, 12]. Growing attention and research are
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devoted to graph processing [4, 7, 8]. The information in graph-
based data can be retrieved by exploring the topology and attribute
information. In this position paper, we describe how we envision
the Graph-Scrutinizer, a novel graph processing component defined
within the Graph-Massivizer architecture (see Fig. 2), which aims
to enable flexible and efficient graph processing at scale, even when
the graph changes over time [11].

2 BACKGROUND
Graphs are usually persisted and processed in single-machine sys-
tems, distributed systems, or high-performance computing clusters.
Proper graph storage plays a fundamental role in enabling efficient
graph processing. In the project, the storage of graphs is in two
parts. The full graph is stored in a graph database by the Graph
Inceptor, and the Graph-Scrutinizer will maintain specific details
of the information to speed up its ability to execute its tasks. Some
of this will be stored in graph format, some in a neural form (e.g.,
weights of machine learning models), or other structures. We find
persistence data formats and partitioning strategies in related work
on storing large graphs. Data formats exploit general graph char-
acteristics [2] or domain-specific knowledge [1] to enable certain
compression levels. Similarly, it is possible to use compression to
scale the capabilities of machine learning models which work with
graph data [6]. Graph partitioning divides the graph over multiple
storages while minimizing the number of edges between these sub-
graphs. The chosen partition strategies must be aligned with the
graph processing approaches.

Dominguez-Sal et al. [5] categorized graph processing algorithms
into seven categories: traversals, graph analysis, component identi-
fication, communities detection, centrality measure computation,
pattern matching, and graph anonymization. All of these are of
relevance for the Graph-Scrutinizer. Lumsdaine et al. [9] consider
the most significant challenges in graph processing identifying
the elementary unit of computation, dealing with the poor data
locality, and assigning computation units given the skewed nature
of graphs and the high data-access-to-computation ratio. Usually,
graph processing algorithms that execute over the whole graph
differ fundamentally from those solved with graph query languages.
Nevertheless, new approaches are being proposed, which blur the
requirement lines between both. For example, neural approaches
have recently been proposed to efficiently answer complex queries
on knowledge graphs [10].
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Figure 1: Parallelism between AliGraph architecture and
Graph-Scrutinizer component of the Graph-Massivizer ar-
chitecture. (A) depicts the AliGraph [14] architecture, while
(B) describes a possible realization of the Graph-Scrutinizer
and Graph-Inceptor in the context of the Graph-Massivizer
architecture.

3 GRAPH-SCRUTINIZER
The Graph-Scrutinizer has some overlap with the AliGraph architec-
ture [14] (see Fig. 1). While the AliGraph architecture was designed
to support graph neural networks at scale only, we generalize the
design to support graphs either persisted in a single instance or
distributed setting while providing a more comprehensive range
of analytic and querying capabilities. We consider two building
blocks: samplers and algorithms. The samplers enable us to sample
relevant data from the graph, considering some appropriate criteria.
Conversely, the algorithms provide means for performing graph
queries, analytics, and probabilistic reasoning.

The Graph-Massivizer revolves around the timely delivery of
results and sustainability. Therefore, we balance time and space
complexity and consider infrastructure capacity limits and aware-
ness of energy requirements and their environmental impact. In
some cases, an approximation of the correct answer arriving in
time with low energy consumption is better than a correct answer
arriving too late or consuming a lot of energy. To do this, there
are multiple algorithms with different characteristics for each task.
Dynamically, the choices are optimized depending on the current
requirements. For example, we plan to support two implementa-
tions for querying and reasoning: one using heuristics and a neural
one. The heuristic one can retrieve exact results, but is slower, while
the neural one would execute faster but not provide correctness
guarantees.

Graph-Scrutinizer will also have an API, providing a standard
interface for query and reasoning requests, which aims to abstract
the client from the particularities of the underlying implementation
and constraints. Given the tradeoff between the heuristic and neural
approaches, we envision having a component to weigh and decide
which approach to use based on the characteristics of the request,
infrastructure, runtime configurations, and execution optimization
goals (e.g., energy saving, and precision levels, among others). These
decisions would be enabled by the graph optimizer and greenifier
components.
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Figure 2: The Graph-Massivizer technical architecture, high-
lighting the Graph-Scrutinizer component. [11]
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