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ABSTRACT
Microservices is a cloud-native architecture in which a single ap-
plication is implemented as a collection of small, independent, and
loosely-coupled services. This architecture is gaining popularity
in the industry as it promises to make applications more scalable
and easier to develop and deploy. Nonetheless, adopting this ar-
chitecture in practice has raised many concerns, particularly re-
garding the difficulty of diagnosing performance bugs and explain-
ing abnormal software behaviour. Fortunately, many tools based
on distributed tracing were proposed to achieve observability in
microservice-oriented systems and address these concerns (e.g.,
Jaeger). Distributed tracing is a method for tracking user requests
as they flow between services. While these tools can identify slow
services and detect latency-related problems, they mostly fail to
pinpoint the root causes of these issues.

This paper presents a new approach for enacting cross-layer
tracing of microservice-based applications. It also proposes a frame-
work for annotating traces generated by most distributed tracing
tools with relevant tracing data and metrics collected from the
kernel. The information added to the traces aims at helping the
practitioner get a clear insight into the operations of the applica-
tion executing user requests. The framework we present is notably
efficient in diagnosing the causes of long tail latencies. Unlike other
solutions, our approach for annotating traces is completely trans-
parent as it does not require the modification of the application,
the tracer, or the operating system. Furthermore, our evaluation
shows that this approach incurs low overhead costs.

CCS CONCEPTS
• Software and its engineering→ Software testing and debug-
ging.
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1 INTRODUCTION
Microservice architecture is becoming increasingly popular in the
cloud thanks to the flexibility and scalability it enables within the
application [1]. Based on this architecture, a complex application
can straightforwardly be distributed over multiple hosts as it is
structured into several small, autonomous, and single-purpose ser-
vices. These services communicate with each other through well-
defined interfaces using lightweight APIs (e.g., RESTful APIs). This
approach to application development offers numerous advantages
over the traditional method of developing monolithic applications.
For instance, since services are run independently, they can easily
be scaled up and down in order to meet changing demands. In
addition, because services are implemented as isolated units, devel-
opers can use different programming languages and frameworks
depending on their skills and the required functionalities. They can
also update a particular service without changing the code of other
services, which would shorten the development and deployment
time.

Despite the well-known advantages of microservices, the adop-
tion of this architecture brings many challenges, especially when
it comes to debugging performance issues [5]. In brief, diagnosing
performance bugs in microservices-based applications is notori-
ously hard for the following reasons. First, processing user requests
usually requires the collaboration of a set of services through the
request/response synchronous communication (e.g., gRPC) or asyn-
chronous event-driven messaging systems (e.g., Kafka). Therefore,
a slow or bottlenecked service can cause a chain reaction that will
eventually decrease the performance of other services. As laten-
cies propagate through the components of the distributed applica-
tion, diagnosing the root causes of the problem becomes extremely
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difficult. Second, typical microservice-based software comprises
hundreds or even thousands of interconnected services. Therefore,
the complexity of identifying performance issues and diagnosing
their causes increases with the number of services and interde-
pendencies. Third, the services are likely implemented in different
programming languages, developed based on various libraries and
frameworks, and communicate through heterogeneous networking
systems. Hence, the complexity of this type of software impedes
the ability of the practitioner to understand its operations and, thus,
makes the troubleshooting process for performance anomalies long
and tedious.

The most effective approach to detecting latency-related prob-
lems in microservices lies in tracking user requests as they travel
across multiple services and hosts [17]. This approach, known as
distributed tracing, provides end-to-end visibility of the request ex-
ecution and enables uncovering the dependencies between services.
Spans are the fundamental building blocks of distributed tracing.
A span represents a tagged time interval that denotes the execu-
tion of a particular operation (e.g., RPC or function calls) as part
of a service workflow. It is worth noting that spans are recorded
with information that describes their operational contexts, such
as the operation name, the start/end timestamps, and the causal
relationship between each other. On the other hand, a trace is a
series of related spans generated as a result of executing a given
user request or transaction.

The literature reportsmanymethods formonitoringmicroservice-
based applications and diagnosing their performance bugs. For
instance, X-Trace [11] and Dapper [21] have established the prin-
ciples of distributed tracing, notably achieving causality between
requests by propagating metadata between the services composing
the distributed system. From ancestor solutions to modern open-
source tools (e.g., Jaeger [15] and Zipkin [23]), distributed tracing
has been used extensively for pinpointing abnormal latencies. Nev-
ertheless, as these tools rely on gathering high-level information,
they are unable to diagnose intricate performance issues or conduct
in-depth analysis of latency causes. Several proposals based on
the use of general-purpose tracers (e.g., LTTng [9] and eBPF [13])
have been proposed to circumvent this limitation. For instance,
there have been a number of attempts to leverage host-based trac-
ing to troubleshoot performance problems in distributed systems
[2, 4, 16, 18, 19]. However, the difficulty of synchronizing fine-
grained traces recorded on different hosts makes these proposals
fail to diagnose performance bugs occurring from the interaction of
many remote services. Conversely, there exist diagnostic tools that
use cross-layer tracing to improve their visibility into microservice-
oriented systems [3, 12, 20]. The major limitations of these tools are
the substantial overhead they create and the necessity to recompile
either the OS kernel, the tracer, or the microservice application.

In this article, we propose an efficient approach to address the
shortcomings above by annotating distributed traces with relevant
information andmetrics derived from kernel events. The annotation
added to the traces provides valuable insights into the operations
of the application and the operating system during the execution
of key operations. This information can help diagnose the causes
of unexpected latencies and identify potential performance opti-
mization opportunities. For instance, by examining the system calls
executed by a microservice, practitioners can identify which ones

are contributing to latencies or consuming the most resources. The
analysis of system calls related to block I/O, such as read() and
write(), enables identifying parts of the application that are experi-
encing excessive latency due to I/O operations, and showing how
much time is being spent on each I/O operation. In addition, the
analysis of system calls related to networking, such as connect(),
send(), and recv(), can provide insights into the time spent on each
communication. Hence, by adding annotations derived from kernel
events to distributed traces, practitioners can identify areas of the
application that require optimization, which can ultimately improve
the overall performance.

Our approach is distinctly non-intrusive compared to others as
it does not necessitate any alterations to the application, tracer,
or kernel. Besides, the framework that implements our approach
does not rely on any host-based tracer, and its overhead is minimal.
To sum up, the contribution of this paper is two-fold: Firstly, we
propose an efficient approach for annotating traces with useful
kernel information. Secondly, we develop a framework based on
this approach that can work with many distributed tracers.

This paper organizes the remainder as follows. Section 2 looks at
the main techniques and tools for discovering performance bugs in
microservice-based applications. Section 3 presents our approach
and describes the design details of our framework. Section 4 reports
the experimental results and evaluates the overhead of the proposed
framework. Finally, Section 6 concludes the article and presents
our future work.

2 RELATEDWORK
Previous works aimed to achieve observability in microservices
environments by focusing on two research directions. First, devise
efficient tracing techniques adapted to distributed applications. Sec-
ond, detect and diagnose software anomalies through trace analysis.
Since this paper focuses on the first direction, we will describe it in
the following paragraphs.

There is a large body of research focusing on the topic of tracing
microservice-based systems. To date, the most mature approach
to achieving this goal is tracing the end-to-end execution path of
user requests. This approach relies on inserting unique identifiers
into requests and establishing causality between them by propa-
gating metadata between processes and distributed system compo-
nents. X-Trace [11] is one of the earliest implementations of this
approach. It is a tracing framework that enacts application tracing
by propagating metadata down the request datapath and along all
the sub-requests through the modification of networking protocols.
Dapper [21], Google’s distributed tracing system, shares many of its
core ideas with X-trace but makes end-to-end performance tracing
more convenient for production. For instance, it leverages sampling
techniques to lower the tracing overhead. It also restricts instru-
mentation to a small corpus of threading, control flow, and RPC
library code to increase application-level transparency. Canopy [17]
makes tracing more comprehensive by decoupling instrumentation,
collection of traces, and transformation of tracing data. Inspired by
the ideas and tracing models proposed by these pioneering tracing
systems, several open-source and proprietary distributed tracing
tools have emerged (e.g., Jaeger [15], and Zipkin [23]). All these

26



Transparent Trace Annotation for Performance Debugging in Microservice-oriented Systems ICPE ’23 Companion, April 15–19, 2023, Coimbra, Portugal

node k

Jaeger Agent Jaeger Collector

Storage Backend

Jaeger Query

Jaeger UI

....Service A

node 1

OTL SDK

Jaeger Agent

spans

node 2

Jaeger Agent

M
ic

ro
se

rv
ic

e-
ba

se
d 

Ap
pl

ic
at

io
n

Service B
OTL SDK

Service Z
OTL SDK

Network

Figure 1: Reference architecture for a microservice-based application

tools can pinpoint several latency-related issues in monitored ap-
plications. However, as their operations are based on collecting
high-level tracing data, they mostly fail to diagnose the root causes
of detected issues.

Unlike the traditional approach adopted by most distributed
tracing systems, a few proposals provide transparent tracing of
microservices without requiring changes to the application’s source
code [6, 14, 22]. Frameworks based on this approach use service
mesh 1 for intercepting communication between services. Hence,
containers in a microservice system are deployed with sidecars (e.g.,
Envoy) that extract metadata from requests, generate tracing data,
and report it to a distributed tracer. Furthermore, the authors in
[14] proposed to monitor specific system calls (e.g., read and sendto)
to establish causality between the requests. The high overhead and
the necessity to modify the deployment of microservices represent
the main limitations of these frameworks.

Distributed tracing frameworks produce high-level information
providing a comprehensive overview of the end-to-end request
processing. Practitioners can use this information to depict and
analyze the operations of the traced system at the workflow level.
Unfortunately, this information is usually insufficient to character-
ize the execution state of the system and, therefore, enact latency
root cause analysis. As a result, numerous performance diagnostic
frameworks use host-based tracing to collect detailed performance
data from microservice systems [2, 16, 18, 19]. There is a multitude
of host-based tracers for almost every OS. For instance, tracers like
LTTng [9] and eBPF [13] are very popular among Linux users.

On the other hand, a few diagnostic tools leverage cross-layer
tracing to improve their visibility into distributed systems. For
instance, authors in [12] used a patched Jaeger client to capture
and synchronize kernel and distributed request events. Moreover,
authors in [3] inject application-level events into kernel traces by
executing a stylized sequence of innocuous system calls at each
high-level event of interest (e.g., the start and end of an RPC call).
These system calls are used as synchronization anchors in the trace
to interleave both high- and low-level events. The work closest
to ours is presented in [20]. The authors used a custom kernel
module to inject the contexts of distributed requests into kernel
space. They used a patched version of the Linux kernel to add some

1A dedicated infrastructure layer for facilitating service-to-service communications

information to the task_struct structure of the current process. They
also modified LTTng to incorporate system call information into
the userspace trace. The downside of the proposed framework is its
high overhead as it is incapable of only annotating spans of interest.
Besides, the need to recompile the modified kernel and tracer is
another serious limitation.

This paper proposes a framework that leverages kernel events
for annotating traces generated by distributed tracers. Our frame-
work aims to provide practitioners with useful information to help
them diagnose the causes of long tail latencies. Compared to other
works, our approach presents less overhead and ensures monitor-
ing transparency and ease of deployment since it does not require
the modification of the application, the distributed tracer, or the
operating system.

3 PROPOSED SOLUTION
This section introduces our approach to annotating distributed
traces transparently. For the sake of simplicity, we present in Fig. 1
a reference architecture for a microservice-based application. A
typical microservice application is composed of a collection of
services deployed on several nodes interconnected by a network.
Services are instrumented using OpenTelemetry (OTL). The latter
is an open-source project that provides a unified framework for
generating, capturing, and transmitting telemetry data (i.e., logs,
traces, and metrics). It also offers a set of APIs and libraries enabling
the instrumentation of applications across many programming
languages in a vendor-agnostic way. It is worth noting that the
setup in our experiments relies on Jaeger to propagate and process
the traces generated by OTL. Nevertheless, our framework can
also work with any other distributed tracing backend tool. Fig. 2
illustrates the architecture of the framework that implements our
approach. The framework we propose comprises components of
two types: monitoring libraries and kernel modules.We describe the
role and relationship between these components in the following
sections.

3.1 Monitoring libraries
Each monitoring library is in charge of three main tasks. First, it
registers the threads executing the monitored service with the ker-
nel modules. The registration is performed through an input/output
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Figure 2: Architecture of the proposed framework

control (ioctl) system call. The ioctl system call is commonly used in
Linux and other Unix-based operating systems to enable user-level
programs to communicate with a device driver in order to control or
query the device’s state. The purpose of the registration phase is to
allow kernel modules to identify the spans they need to track their
latencies and annotate their corresponding traces. Considering that
several services could be running on the same host machine2, the
registration allows choosing which services to monitor.

Second, the monitoring library intercepts the start and end of
spans generated during the execution of services and forwards cor-
responding events to our kernel modules. Therefore, before running
a service, we must dynamically link it with a monitoring library
implemented in the same programming language. For instance, to
run a service written in C++, we preload a library X, and to run
a service written in Golang, we preload another library Y. Indeed,
library preloading is a handy and efficient technique for hooking
into functions and overriding specific symbols transparently. In
Linux, we use LD_PRELOAD to preload monitoring libraries at run-
time. LD_PRELOAD is an environment variable containing paths
to shared libraries that the Linux loader (i.e., ld.so) will load before
any other libraries at the application startup.

For instance, we leveraged this technique to hook into the func-
tion set_tracer_provider() in order to implement amonitoring library
for services implemented in Python. Our goal is to instantiate a cus-
tom span processor and register it using the add_span_processor()
method of the trace_provider object. The latter is received as a pa-
rameter of the function set_tracer_provider(). OTL allows hooks
for span’s start and end methods invocations through the span
processor interface. It is worth noting that span processors are
invoked in the same order they were registered, and their callbacks
are not executed unless spans are sampled. Hence, whenever our
monitored service calls an API method to start a span (e.g., the
start_span() and start_as_current_span() methods), our custom span
processor intercepts the invocation and injects a "start event" into
the kernel space. Similarly, it injects an "end event" into the ker-
nel whenever the scope of a given span is terminated. Since the
application may use several span processors (e.g., span exporters),
2A physical or virtual machine

it is crucial to ensure that the tracing span processor is inserted
at the head of the span processors list. This would ascertain that
the callback functions provided by the tracing span processor are
invoked first and, therefore, minimize the delay between the time
the span is started/ended and the time the corresponding event is
recorded. Our framework uses both the "trace id” and "span id" as
a key to uniquely identify generated events.

Finally, the monitoring library uses the information received
from kernel modules to annotate the traces. The kernel modules
leverage a set of shared memory buffers to send annotation data
to the monitoring libraries asynchronously. We implemented the
shared memory using the relay interface provided by the Linux
kernel [10]. This interface enables kernel modules to efficiently
transfer large quantities of data to userspace applications via many
relay channels. A relay channel is implemented as a set of per-CPU
kernel buffers, each represented as a regular file. Our monitoring
libraries retrieve annotation data from those files as it becomes
available, using mmap() or read() functions. Then, they use the
various API functions provided by OTL to annotate traces, such
as set_attribute() and add_event(). Exceptionally, to annotate traces
with the system calls executed by the service during a given span,
it creates nested spans with the same names.

3.2 Kernel modules
Our framework uses three kernel modules for tracking the laten-
cies of spans generated by registered services and calculating per-
formance metrics. The operations of the span-latency-tracker and
latency-begin-end kernel modules are based on the latency-tracker
module, which was developed in our laboratory [8]. The latter
provides a rich API enabling the efficient and scalable tracking of
events in the kernel. It matches entry events to exit events based
on a shared key. It then executes a user-provided callback if the
delay between two matching events exceeds a predefined and dy-
namically configurable threshold. In our context, the entry and exit
events are the span_start and span_end events triggered by our
monitoring libraries.

Hence, the monitoring library intercepts calls to span begin or
end methods and writes the span identifier in one of the two proc
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Table 1: Subset of the tracepoints monitored by the kernel module of the proposed tool

Tracepoint Description
span_begin Triggered when the monitored application starts a span. The main fields are trace_id and span_id.
span_end Triggered when the monitored application closes a span.
task_newtask Fired when a new thread is spawned. The main fields are PID and TGID (Thread Group ID).
sched_process_exit Fired when a thread is terminated. PID is the main field of this event.
syscall_enter Fired when a system call is executed. The identifier of the syscall is the main field of this event.
syscall_exit Fired when a system call finishes its execution.

files 3 provided by the latency-begin-end module. The latter’s role
is to trigger kernel events that delimit spans latencies based on
span identifiers written in the proc files. On the other hand, the
span-latency-tracker module is responsible for two main tasks. First,
it tracks the span begin and end events and calculates the span
latencies using the API provided by the latency-tracker module.
Similarly, it observes several other kernel events to calculate rele-
vant performance metrics that characterize the execution state of
the service and the system on which it is running (see Table 1). For
example, the span-latency-tracker module monitors the sys_enter
and sys_exit kernel events to record the system calls made by each
thread of the monitored service. If the latency of a particular span
exceeds a dynamically computed threshold, the module sends in-
formation about the system calls executed within that span to the
monitoring library via relay channels. Since each span is associated
with the thread that emitted it, only the system calls executed by
that thread are annotated for that span. Besides, our kernel module
uses the parent-child relationship between nested spans and the
timestamps of system call execution to determine which span to
annotate. The practitioner can configure the proposed framework
to track only a subset of system calls of interest.

Furthermore, our tool can be customized to collect additional
data and use it for annotating distributed traces. For instance, the
span-latency-tracker kernel module can be configured to gener-
ate and export a kernel call stack whenever a span exceeds a pre-
configured threshold. This kernel module leverages signals to notify
monitoring libraries and enable them to annotate active spans with
kernel and userspace call stacks. Moreover, it can be configured to
export generic metrics denoting the load of the system on which the
monitored service is running. One example of such metrics is the
average wake-up latencies of threads. The wake-up latency denotes
the time a thread waits in the running queue before it starts running
on the CPU. When the monitored service threads exhibit increasing
wake-up latencies, performance degradation can be explained by
system overload or the presence of many higher-priority threads.
We leverage the sched_waking and sched_switch kernel events for
calculating the wake-up latency metric.

One intriguing challenge we had to address in our design was
to prevent the kernel module from collecting data related to the
threads spawned by the monitoring libraries. In other words, how
can our tool only track the threads of the monitored service? Un-
doubtedly, tracking all the threads spawned by the application
3These files are named latency-tracker-begin and latency-tracker-end.

would affect monitoring accuracy and increase our tool overhead.
From the operating system’s point of view, it is infeasible to dis-
tinguish between the threads we spawn for annotating traces and
those originally spawned by the service. The algorithm we devised
to solve this issue comprises three steps. First, the monitoring li-
brary explicitly registers the main thread of the service at startup.
Second, our kernel module leverages the task_newtask event to
automatically register any thread whose TGID is the main thread
PID. Finally, each spawned monitoring thread invokes the ker-
nel function unregister_thread() to remove itself from the list of
tracked threads. It is worth noting that the kernel thread uses the
sched_process_exit event to detect threads that have finished their
executions and unregister them automatically. This method allows
tracking threads of interest, even if the monitored applications rely
on thread spawning for load-based dynamic scaling, such as those
using gRPC to implement services.

4 RESULTS AND EVALUATION
We dedicate this section to evaluating the efficacy of our tool and
estimating its overhead. We tested the functionalities of our tool
with many multi-threaded applications using monitoring libraries
written in C++ and Python. For instance, we assessed our tool
using Astronomy Shop [7], a microservice-based application that
simulates an e-commerce website. Fig. 3 illustrates how our tool
annotates the long-lasting spans of monitored services with helpful
information extracted from the kernel. We chose the Astronomy
Shop application because it is already instrumented with OTL and
is composed of fourteen services implemented in various program-
ming languages. The use of various technologies to implement those
services would allow us to compare the overhead costs induced by
utilizing different monitoring libraries.

Table 2: Hardware and software experimental configurations

Host Environment
CPU Intel Core i7-7500U CPU @2.70GHz
Cores 4
RAM 16 GB
OS Ubuntu 22.04
Kernel Version 5.15.0-56
Opentelemetry-cpp Version 1.8.0
Jaeger Version 1.33.0
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Figure 3: Snapshot of the Jaeger UI showing the span CurrencyService/Convert annotated by our tool with the system calls
executed within it.

The overhead incurred by any performance analysis tool might
obscure the causes of existing latencies and alter the normal opera-
tions of the monitored application if it is considerable. Hence, we
conducted a set of experiments to assess the impact of annotating
the traces generated by the "currency service". The latter uses gRPC
to enable other services (e.g., the frontend and checkout services) to
convert amounts of money between different currencies. Since the
currency service is implemented in C++, our experiments require
preloading a monitoring library written in the same programming
language. For the sake of simplicity, we only measure the over-
head of annotating traces with the system calls executed within
spans. Table 2 presents the hardware and software experimental
configuration we used to conduct these benchmarks.

In our first experiment, we aimed to measure the increase in
overhead that occurs when our tool is coupled with a distributed
tracer, like Jaeger. To achieve this, we developed a client program
that can remotely invoke the "CurrencyConvert" procedure of the
currency service multiple times. The currency service relies on
spawning new threads to handle concurrent requests. Fig. 4 depicts
the time required by the monitored service to fulfill the received
requests when it is not traced, only traced with Jaeger, and traced
with Jaeger and our tool. It is worth noting that our setup uses
a trace sampling rate fixed at 10%. Besides, we configured our
framework to annotate all spans regardless of their latencies (i.e., the
threshold parameter of our kernel module is set to 1 nanosecond).
The figure shows that our tool incurs negligible overhead if the
number of requests is less than 10k. Nevertheless, when the number
of requests reaches 100k, the overhead incurred by the usage of
Jaeger combined with our tool is estimated at 7.55%. In other words,
our tool imposes an additional overhead estimated at 4.16%, which
is very acceptable.

The overhead of our tool is likely impacted by the quantity
of tracing data collected from the kernel and injected into the
trace. Drawing on this observation, we wanted to measure how this
overhead varies according to the number of system calls executed
per span. Hence, the second benchmark consists in inserting several
innocuous system calls (i.e., getpid()) into the currency service
and measuring the latency of processing received requests. Fig. 5
presents the results we got for this benchmark. First, this figure
reveals that the number of system calls impacts the overhead of our
tool. Second, it also shows that the difference in processing latencies

is negligible when the workload is composed of 10k requests or less.
Nevertheless, when the workload is composed of 100k requests or
more, the processing latency increases by almost 4% for every five
system calls added.

Results from the last experiment demonstrate that monitoring
overhead increases linearly with the number of recorded system
calls (precisely with the number of kernel events). They prove that
our tool can scale well with the load and type of monitored services.
Besides, it should be noted that most applications trace spans at
a sampling rate less or equal to 1%. Furthermore, our tool allows
practitioners to set a latency threshold for span annotation and
specify a list of system calls to track, significantly reducing thus
tracing overhead. In short, our tool presents minimal overhead,
making its use with a distributed tracer very convenient.
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5 THREATS TO VALIDITY
Our approach is designed to transform existing distributed tracing
frameworks into powerful performance diagnostic tools with mini-
mal costs. However, it has two limitations that we will outline in
the following paragraphs.

The proposed tool is compatible with compiled and interpreted
programming languages like C++ and Python. However, it cannot
annotate traces generated by microservices developed in bytecode-
based programming languages (e.g., Java). Applications written in
bytecode-based languages require specific Virtual Execution Envi-
ronments (VEEs), like the Java Virtual Machine (JVM), to translate
bytecode into machine code. Due to the complexity of the mecha-
nisms implemented by the VEEs (e.g., garbage collection and JIT
compilation), executing code at application startup can be chal-
lenging. Additionally, the threading models adopted by these VEEs
make it difficult to associate generated spans with their underlying
threads, complicating thus the task of adding annotations.

As a second limitation, our approach cannot intercept system
calls of the virtual Dynamic Shared Object (vDSO) type. The vDSO
is a mechanism that modern Linux kernels use to provide applica-
tions access to certain system calls (e.g., clock_gettime()) without
requiring a context switch to kernel mode. As this allows a faster
system call execution and less overhead, system calls accessed via
vDSO are unlikely to induce considerable latencies or high resource
consumption.

In short, our approach provides efficient tracing for microser-
vices developed in numerous programming languages. Nevertheless,
those developed in bytecode-based languages require additional
considerations, mostly due to the complexity of their execution
environments. Besides, our tool cannot intercept vDSO system
calls, but this limitation is insignificant and does not diminish our
approach’s efficacy.

6 CONCLUSION
Microservices is a well-defined software architecture whose pri-
mary goal is to reduce the complexity of the development and
deployment of distributed applications. Despite this architecture’s
numerous benefits, discovering the causes of unexpected long laten-
cies of the application operations remains challenging. Distributed
tracing, the most efficient method for detecting latency-related is-
sues in microservice-based applications, enables practitioners to
discover the unusual latencies of operations’ executions quickly.
Nevertheless, this method does not provide any means to enact
analyses for debugging spotted latencies and pinpointing their root
causes.

This paper proposes a novel approach for annotating span-based
traces with meaningful data gathered from the kernel. It also intro-
duces an open-source tool that implements this approach. This tool
presents many advantages. First, it is entirely non-intrusive as it
does not require the modification of the application, the distributed
tracer, or the operating system. Second, it does not rely on any third-
party library or tool like most related works. Finally, it is developed
based on efficient algorithms and data structures, such as hash maps
for matching span_begin and span_end events, and shared mem-
ory for exchanging data between kernel and monitoring libraries.
Besides, as it is designed for microservice-based applications that
exhibit high tail latencies, it only annotates long-lasting spans. As
a result, the proposed tool presents minimal overhead.

In our future work, we aim to improve the proposed tool’s func-
tionalities by adding annotations that include further data and
metrics derived from kernel events. We also plan to enhance our
framework’s annotation mechanism to support bytecode-based mi-
croservices. Furthermore, while this manuscript provides a coarse-
grained overhead analysis based on request processing time, we
intend to conduct a more detailed cost analysis that delves into our
tool’s CPU and memory overhead. Our ultimate goal is to analyze
larger distributed systems and compare the overhead of our tool to
alternative solutions. Additionally, we plan to gather practitioner
feedback to improve the tool’s usability. By achieving these goals,
we hope to provide a more efficient and comprehensive perfor-
mance diagnostic tool that addresses the limitations of existing
distributed tracing systems.
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