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ABSTRACT

In this paper, we explore the use of Graph Neural Networks (GNNs)
for anomaly anticipation in high performance computing (HPC)
systems. We propose a GNN-based approach that leverages the
structure of the HPC system (particularly, the physical proximity
of the compute nodes) to facilitate anomaly anticipation. We frame
the task of forecasting the availability of the compute nodes as a
supervised prediction problem; the GNN predicts the probability
that a compute node will fail within a fixed-length future window.

We empirically demonstrate the viability of the GNN-based ap-
proach by conducting experiments on the production Tier-0 super-
computer hosted at CINECA datacenter facilities, the largest Italian
provider of HPC. The results are extremely promising, showing
both anomaly detection capabilities on par with other techniques
from the literature (with a special focus on those tested on real,
production data) and, more significantly, strong results in terms of
anomaly prediction.
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1 INTRODUCTION

High Performance Computing (HPC) systems and the datacen-
ters that host them are gaining importance in today’s society and
industry. The size and complexity of modern HPC systems neces-
sitate the introduction of automated and more efficient method-
ologies to support the work of system administrators and facility
managers[22]; this is compounded by the current trends in world-
wide HPC installation, which forecasts growing demand for com-
putational resources[3] and announcements of funding programs
[23]. With almost an order of magnitude higher computational ca-
pabilities than today’s most powerful supercomputers, the Exascale
machine will bring supercomputer-assisted calculations into our
daily life, revolutionising many aspects of our society (manufactur-
ing, transportation, health and decision making, among others).

Overall, it is a daunting task for system administrators, and
users to optimise supercomputer/jobs performance and power con-
sumption, identify anomalous behaviours, faulty situations, and
guarantee systems operating in optimal conditions. The scale of the
problem motivates the development of an automated procedure for
data-driven anomaly detection in current supercomputers. A very
promising direction for such automated approaches is constituted
by Artificial Intelligence (AI) techniques, which, when fed with large
amounts of data and provided with sufficient computing resources,
have demonstrated to be extremely well suited for this task[7]. So
far, AT methodologies in the HPC sector have mostly focused on
performance optimization, anomaly detection, resource utilization,
scheduling and energy savings [9]. Anomalies are, in the context of
HPC monitoring, any events that deviate from the system’s normal
operation and negatively impact the system’s availability (ability
to execute compute jobs).

Anomaly prediction in HPC is more valuable than anomaly de-
tection because it allows for proactive system management. Instead
of waiting for anomalies to occur and then detecting them, anom-
aly prediction uses Machine Learning (ML) algorithms to forecast
future behaviour and identify potential anomalies before they hap-
pen. This allows system administrators to take proactive measures
to prevent or mitigate the impact of anomalies, resulting in im-
proved system reliability and performance [20]. At the same time,
for several reasons, anomaly prediction is also considered more
difficult than anomaly detection. Firstly, it requires high-quality
training data to build accurate predictive models. The training
data must represent normal behaviour, and any changes in the
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system’s behaviour must be reflected in the training data. This can
challenge dynamic and complex systems like high performance
computing, where behaviour can change rapidly and unpredictably
[8]. Secondly, anomaly prediction requires more sophisticated ML
algorithms to handle time-series data and predict future behaviour.
This is a more challenging task than simply identifying deviations
from normal behaviour, as the algorithms must consider both the
past and future behaviour of the system.

In this work, we tackle the problem of anomaly prediction us-
ing an approach that, while not novel, has never been applied
to the HPC domain. In particular we exploit Graph Neural Net-
works (GNNs). GNNs offer a promising solution to address the
limitations of current methods for anomaly detection in high per-
formance computing [26]. GNNs are a deep learning algorithm
well-suited for processing graph-structured data, commonly found
in high performance computing systems. Specifically, we are lever-
aging the spatial proximity of compute nodes in an HPC compute
room. We then implement a GNN-based approach to forecast anom-
alies and we then conduct an experimental evaluation on a dataset
collected from a real production supercomputer, namely we con-
sider two racks from the M100 supercomputer, the Tier-0 machine
hosted at the Italian supercomputing facilities of CINECA 1. We
thus demonstrate the effectiveness of our approach on real, pro-
duction anomalies. The results are very promising, as we obtain an
Area-Under-the-Curve (AUC) of 0.86 in the pure detection task (in
par with other methods from the literature), while at the same time
we can anticipate the anomalies by several hours; the prediction
accuracy maintains very good results — around 0.84 AUC - with
8-hours look-ahead windows, slightly decreasing for longer time
windows (e.g., 0.73 AUC for 24 hours). To the best of our knowledge,
this is the first approach demonstrating this capability on real data
from a production supercomputer.

In the rest of the paper, we start by providing an overview of
other automated anomaly detection and prediction methods for
HPC from the literature (Section 2); then, we briefly describe the
supercomputer used to conduct the experimental evaluation (Sec-
tion 3). In Section 4, the GNN-based approach is introduced, while
(Section 5) examines the results of the empirical evaluation. Finally,
(Section 6) concludes the paper.

2 RELATED WORKS

Anomaly detection is one of the earliest and most widely adopted
applications of operational data analytics in high performance com-
puting. The primary purpose of anomaly detection is to identify
unusual or unexpected patterns or behaviours in the data gener-
ated by high performance computing systems [15]. Anomalies can
include identifying deviations from normal resource utilization pat-
terns, unusual behaviour in system logs, or unusual network traffic
patterns. The goal is to detect anomalies as early as possible so that
they can be investigated and addressed quickly and thus minimize
the downtime of the HPC system.

Anomaly detection algorithms use statistical methods, ML tech-
niques, or a combination of both to analyze data and identify devia-
tions from normal behaviour. These deviations can then be flagged

ICINECA is a public university consortium and the main supercomputing centre in
Italy[24].
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as potential anomalies, and the system administrator can be alerted
for further investigation [19]. Anomaly detection in high perfor-
mance computing is considered a mature topic with good results
due to the significant advances made in the field over the years
[18]. The extensive use of high performance computing systems
in various industries has driven the development of sophisticated
algorithms and tools for detecting anomalies in large amounts of
data.

Different lines of work have explored the anomaly detection
problem in HPC from multiple angles. Borghesi et al.[5, 6] pre-
sented a seminal work where they applied a particular ML model
(autoencoder network) trained in a semi-supervised fashion to per-
form anomaly detection of failures in a supercomputer. The key
limitation of that work was that it was tested only in anomalies
injected in the HPC system by the researchers themselves, thus
incurring in the risk of unwanted bias. Later approaches mixed semi-
supervised methods with supervised ML models, taking advantage
of more monitoring infrastructure which allowed the creation of
annotated data set. These approaches have been tested on real
anomalies found on production HPC systems [7, 8].

More recently, Molan et al. [16] introduced a fully unsupervised
approach for failure detection on HPC compute nodes, again tested
on real anomalies from a Tier-0 supercomputer. The fact that labels
are not needed in this case makes this approach more versatile and
more easily deployable in production HPC systems, as it can start
detecting anomalies even without a preliminary training phase
(or at least requiring only a very short one). The key limitation of
current methods for anomaly detection is that they have shown
a relatively poor ability to forecast the insurgency of anomalies,
a feature extremely desired by system administrators to integrate
this automated approach into their workflow.

One thing shared by all anomaly detection methods for HPC is
that they work at the compute-node level (each HPC has its own
detection model), without taking into account the spatial structure
of the HPC machines - e.g., the fact that the compute nodes are
organized in racks with a well-defined structure. The neighboring
compute nodes have higher probabilities to have correlated behav-
ior w.r.t. distant nodes[12, 14]. It is possible to represent this spatial
structure by representing the compute nodes as nodes in a graph.
After this encoding, it is straightforward to apply graph-specific
ML models to create automated anomaly detection and prediction
models, capable of exploiting this form of locality.

In recent years GNNs have revealed to be extremely well-suited
to deal with graph-like structures[25], especially to exploit node
proximity[27]. One of the advantages of using GNNs for anomaly
detection and prediction in high performance computing is that
they allow us to train the models in a supervised manner. Unlike
simple per-node supervised anomaly detection methods that over-
fit on the majority class. GNNs can use labelled training data more
efficiently even when the classes are extremely unbalanced, as is
the case in anomaly detection in HPC systems [17].

Graph modelling approaches have been successfully applied
to understanding the operation of data centres. Specifically, the
technique of landscape colouring has been applied to identify
anomalous nodes (components) in the datacenter [11]. Alterna-
tively, GNNs have been used to improve workload management on
datacenters [10], identifying network issues [13], rack temperature
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prediction[21], etc. To the best of our knowledge, however, this
work is the first to explore the possibility of deploying graph neural
networks (GNNs) to predict high-performance computing systems’
failures. The use of GNNss in this context is a novel approach that
has the potential to bring significant improvements to the field of
operational data analytics.

3 BACKGROUND

The monitoring and data collection infrastructure in high perfor-
mance computing (HPC) is crucial to ensuring the efficient and
effective operation of HPC systems. The monitoring infrastructure
is designed to collect data from various sources, including hardware
sensors, software logs, and performance metrics, and store this data
in a centralized repository. The specific monitoring infrastructure
employed by CINECA on Marconi 100 (the target system of this
work) is called Examon and has been developed by the University
of Bologna and CINECA [4]. The architecture of the monitoring
system Examon has been developed to exploit the MQTT protocol
as a backbone to be lightweight while capable of ensuring differing
quality-of-service levels. MQTT is a lightweight messaging protocol
for the Internet of Things [1].

Examon collects multiple data sources, ranging from hardware
sensors (for instance, CPU load of all the cores in the supercompute
nodes, CPU clock, instructions per second, memory accesses, power
consumption, fan speed, room and IT components temperature,
etc.) to information pertaining the workload (e.g., jobs submitted
and their characteristics) and the availability of the compute nodes,
such as warning messages and alarms generated by the diagnostic
software tools implemented by system administrators to carry out
their tasks. In previous works we demonstrate that the various
metrics data can be merged into holistic dashboards of the entire
supercomputer [5]. Additionally, in the past we have also shown
how to combine raw metrics with more elaborate information, such
as the output produced by ML models, to obtain more informative
views of the system; for instance, creates a digital twin of the M100
supercomputer as a 3D dashboard showing the status of all compute
nodes (using different colours to highlight their state) [8].

The data experimented on in the dataset is part of a dataset
collected from the Marconi 100 system that is in the process of
being released as an open-source dataset. It contains 31 months of
data and contains data from rack n206 and rack n207.

4 THE PROPOSED APPROACH: GNN FOR
ANOMALY DETECTION

Graph Neural Networks (GNNs) are a type of deep learning algo-
rithm that operates on graph-structured data. Unlike traditional
deep learning algorithms designed to process grid-like structured
data, such as images or text, GNNs handle data represented as a
graph. A graph is a data structure that consists of a set of nodes and
edges, where the nodes represent entities, and the edges represent
relationships between the entities [26].

Convolutional Graph Neural Networks (GCNs) are a specific type
of GNN designed to process graph-structured data. The main idea
behind GCNs is to perform graph convolution operations on the
graph data. These operations are designed to aggregate information
from the local neighbourhood of each node in the graph and use this
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information to update the node representations [17]. The process
of updating the node representations is performed iteratively, and
after several iterations, the GCN algorithm can capture the global
structure of the graph. This global structure can then be used for
various tasks, such as node classification, link prediction, and graph
classification.

In this paper we decided to adopt GCN, as preliminary experi-
ments revealed that this topology would yield better performance.
In this initial work we did not perform a systematic search in the
hyperparameters space, but we rather relied on background knowl-
edge and manual fine-tuning; we will exhaustively search for better
architectures in future works. After the initial empirical exploration,
the GNN architecture with the best performance resulted to be the
following:

e Graph convolution layer of shape (416,300)
e Graph convolution layer of shape (300,100)
e Graph convolution layer of shape (100,16)
e Dense layer of shape (16,16)

e Dense layer of shape (16,1)

The graph neural network is trained on the node classification task.
The label is constructed as follows: the node is labelled 0 if no
anomalies occur in the future window T. Otherwise, the node is
labelled as anomalous.

The graph representation of compute nodes takes advantage of
the nodes’ physical layout in racks. In this work, we have created
an individual model for each compute rack. As explored in other
approaches [16], the modular approach allows scalability with the
future large exascale systems. Each rack is represented as a line
graph (as depicted in figure 1), where nodes are vertices in a (line)
graph. Each node is connected to the node above and below it in a
compute rack. From a ML perspective, anomaly prediction is set
up as a node classification problem - we are trying to predict the
probability of the anomaly (a label) for each of the compute nodes
in a rack (vertices in a line graph).

Compute nodes in a rack Line graph representation

r206n04

r206n03
r206n04

r206n02
r206n03

r206n01
r206n02
r206n01

r206

Figure 1: Graph representation of the physical proximity of
the compute nodes in a rack. Each node is directly connected
to the compute node above and below it.

5 EXPERIMENTAL EVALUATION

In this section, we describe the experimental evaluation conducted
to evaluate the capability of the proposed approach, namely the
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GNN model. The experimental evaluation is complicated by two
factors: 1) there are not many works that can be directly compared
to our approach, as the majority of the research works presented in
the literature is tested only on synthetic anomalies and/or with data
coming from non-production HPC systems; 2) there are no works
explicitly targeting anomaly prediction ([8] is the one coming the
closest as it reveals some anticipation capability as a by-product of
the main goal, that is anomaly detection).

For these reasons we decided to compare the GNN approach
to one of the most most robust and top-performing method for
anomaly detection in real anomalies from production supercom-
puters, namely we chose RUAD as baseline. This simplifies the
comparison for an additional reason: each model is configured to
output the anomaly probability, so the area under the curve (AUC)
metric can be used for a fair comparison. This baseline will serve
to demonstrate the capability of the GNN approach to perform
anomaly detection. In order to test its usefulness for performing
anomaly anticipation as well we compare the GNN method with an-
other, simpler approach (albeit typically used as an initial baseline
in practice), namely a last-value predictor which simply produces
the last seen value as prediction for the next value (i.e., the state of
the HPC node in the following time-step).

5.1 Experimental setting

The experimental evaluation was performed on Marconi 100 (M100)
HPC system located in CINECA. The training of graph neural net-
works was performed on a single compute node of M100 consisting
of 32 IBM POWERO cores, 256 GB of RAM and 4 NVIDIA V100
GPUs with 16 GB of RAM.

The dataset consists of 31 months of observation of two compute
racks of the Marconi 100 system. This data has not been used in
previous research works. First, 80 per cent of the data has been used
as a train set, and the last (historically) 20 per cent as the test set.
The models are implemented in the PyTorch framework. Hyperpa-
rameters for RUAD are adapted from the original paper [16], and
hyperparameters for GNN are determined based on preliminary
exploration and experimentation. The exact hyperparameters for
the RUAD and GNN are described in sections 5.2 and 4, respectively.

5.2 RUAD

The current SOTA for anomaly detection in production supercom-
puters is Recurrent Unsupervised Anomaly Detection (RUAD). The
structure of the model is adopted from [16] and consists of the
following:

e LSTM layer of shape (352, 16)

o LSTM layer of shape (16,8)

e Linear layer of shape (8, 16)

e Linear layer of shape (16, 352)

The main innovation of RUAD is the use of time-dependent encoder
layers and dense (time-agnostic) decoder layers. The training task

of RUAD is to predict the last element in the input sequence:

1

The reconstruction error is then calculated on the last value in
the input sequence; from the normalized reconstruction error, the
anomaly probability is estimated. The time window for RUAD is

RUAD : ')?t(]—W'Fl’ s Xy )_‘:tO'
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adopted directly from the original paper [16], where the time win-
dow 20 achieved the best results.

In line with other works from anomaly detection, the primary
evaluation metric for the proposed approach is the receiver-operator
characteristic (ROC) curve [16]. The ROC curve enables the compar-
ison of the classifiers without setting a specific decision threshold.
This enables the comparison of approaches without selecting a
specific trade-off between specificity and accuracy [2].

5.3 Anomaly anticipation

We start by conducting the same experiments described in the
original paper presenting the RUAD approach, that is [16]. The
authors originally claimed a AUC of 0.77, but in our experiments
conducted for this paper we obtained an AUC of 0.86. This non-
marginal increase in performance is justified by the fact that we
are currently operating with a larger training set than the original
one. In any case, this does not invalidate our comparison as we use
the same more recent dataset to test the GNN approach as well.

The GNN approach, on the other hand, achieves stronger results
in anomaly anticipation than RUAD does in anomaly detection. This
is a remarkable result, as anomaly prediction is a more complex
(albeit more useful) task. In anticipation window of up to 6 hours
ahead, GNN outperforms RUAD in anomaly detection. It can be seen
in the table 1 that the performance of the network declines as we
increase the future window. Still, GNN achieves results comparable
to previous approaches [8, 16] up to 24 hours ahead. This very
promising result shows that the GNN truly unlocks the possibility
of long term anomaly prediction in HPC systems.

In terms of prediction strength, the GNN anomaly detection
approach is compared against the last value predictor, as currently
there are no methods in the HPC literature that directly tackle the
problem of anomaly anticipation (to the best of our knowledge). As
evident in the table 1, the last value predictor achieves comparable
results to GNN for short prediction intervals. This can be explained
by the fact that the anomalies in the HPC system typically last for at
least a few hours - if the nodes are unavailable at ¢0, it is thus very
likely it will also be unavailable at ¢ + 6 (or 1.5 hours in advance).

For longer time intervals, however, the difference between the
last value predictor and the neural network becomes more signifi-
cant. In other words, anomaly prediction becomes more difficult,
and the last value predictor can simply explain anomalies. It is
in longer periods where the strength of the approach shows - for
predictions of up to 8 and 16 hours ahead, the difference of AUC of
the last value and GNN is around 0.1. The increasing performance
gap between GNNs and the last value predictor, as the future ob-
servation window increases, is also apparent from figure 2.

6 CONCLUSIONS AND FUTURE WORK

This paper introduces the first anomaly anticipation method for
high performance computing systems based on graph neural net-
works and demonstrates its superiority over current anomaly de-
tection baselines. Our method outperforms traditional methods
by providing usable results in a long future observation window.
This is a significant breakthrough in high-performance computing
systems, as it shows that graph neural networks can effectively be
used for long-term anomaly anticipation.
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Figure 2: ROC curve of anomaly predictors at different future intervals. The GNN predictor is compared for each interval
against the last value predictor (LVP).
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(T+N) | Time-ahead | AUC of GNN | AUC of LVP
T+6 1.5hr ahead 0.8826 0.8699
T+12 3hr ahead 0.8676 0.8297
T+24 6hr ahead 0.8661 0.7759
T+32 8hr ahead 0.8454 0.7491
T+64 16hr ahead 0.7801 0.6797
T+96 | 24hr ahead 0.7317 0.6408
T+192 | 48hr ahead 0.6455 0.5868
T+288 | 72hr ahead 0.6219 0.5630

Table 1: Comparision between LVP and GNN. The difference
between GNN and the last value predictor increases for larger
future windows.

The experimental results demonstrate the potential of graph
neural networks to unlock the possibility of long-term anomaly
anticipation in high performance computing systems. Using graph
neural networks allows us to consider both the spatial and temporal
relationships between the components in the system, leading to a
more accurate and effective prediction of anomalies.

Future work in this field should focus on increasing the size
of the graph neural network to include the entire compute room
and exploring different types of connections in the graph. This
will further improve the accuracy and effectiveness of the anomaly
anticipation method, leading to a more robust and efficient high
performance computing system. This increased complexity and size
of the neural networks will be supported by integration with the
Graph-Massivizer toolchain. In particular, the GNN applications
on large graphs will integrate with massive graph ingestion and
processing pipelines developed by the project. Overall, this research
represents a significant step forward in developing effective anom-
aly anticipation methods for high performance computing systems
and highlights the potential of graph neural networks in this area.
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