
Large-scale Graph Processing and Simulation with Serverless
Workflows in Federated FaaS

Sashko Ristov
sashko.ristov@uibk.ac.at
University of Innsbruck

Innsbruck, Austria

Reza Farahani
reza.farahani@aau.at

Alpen-Adria-Universität Klagenfurt
Klagenfurt, Austria

Radu Prodan
radu.prodan@aau.at

Alpen-Adria-Universität Klagenfurt
Klagenfurt, Austria

ABSTRACT
Serverless computing offers an affordable and easy way to code
lightweight functions that can be invoked based on some events to
perform simple tasks. For more complicated processing, multiple
serverless functions can be orchestrated as a directed acyclic graph
to form a serverless workflow, so-called function choreography (FC).
Although most famous cloud providers offer FC management sys-
tems such as AWS Step Functions, and there are also several open-
source FC management systems (e.g., Apache OpenWhisk), their
primary focus is on describing the control flow and data flow be-
tween serverless functions in the FC. Moreover, the existing FC
management systems rarely consider the processed data, which is
commonly represented in a graph format. In this paper, we review
the capabilities of the existing FC management systems in support-
ing graph processing applications. We also raise two key research
questions related to large-scale graph processing using serverless
computing in federated Function-as-a-Service (FaaS). As part of the
Graph-Massivizer project, funded by the Horizon Europe research
and innovation program, we will research and develop (prototype)
solutions that will address these challenges.

CCS CONCEPTS
• Theory of computation → Graph algorithms analysis; •
Computer systems organization → Cloud computing.

KEYWORDS
Computing Continuum; Serverless Computing; Graph Processing;
Massive Graph; Workflows.

ACM Reference Format:
Sashko Ristov, Reza Farahani, and Radu Prodan. 2023. Large-scale Graph
Processing and Simulation with Serverless Workflows in Federated FaaS. In
Companion of the 2023 ACM/SPEC International Conference on Performance
Engineering (ICPE ’23 Companion), April 15–19, 2023, Coimbra, Portugal.
ACM, New York, NY, USA, 5 pages. https://doi.org/10.1145/3578245.3585333

1 INTRODUCTION
Serverless computing is becoming the de-facto technology to trans-
form the future of computing due to offering the real "pay-as-
you-go" charging model at the finest grain. More and more cloud
providers serverlessize their cloud services; Among others, many

This work is licensed under a Creative Commons Attribution
International 4.0 License.

ICPE ’23 Companion, April 15–19, 2023, Coimbra, Portugal
© 2023 Copyright held by the owner/author(s).
ACM ISBN 979-8-4007-0072-9/23/04.
https://doi.org/10.1145/3578245.3585333

cloud providers offer serverless containers (e.g., AWS Fargate or
Google Cloud Run), serverless databases (e.g., AWS DynamoDB),
and even serverless graph processing (e.g., AWS Neptune).

Themost common serverless computing cloud service is Function-
as-a-Service (FaaS), which offers developers to code their applica-
tions in the form of serverless functions. In FaaS-enabled systems,
the entire infrastructure and platform management, including scal-
ing up and down decisions, is performed by the cloud providers,
while developers only upload their codes and invoke the functions.
Cloud providers usually do not charge for functions’ deployment,
charging solely for the resources utilized during the function’s
runtime. For instance, AWS charges their AWS Lambda users to
the closest millisecond. At the same time, AWS Lambda serverless
functions can be configured within a range of 128MB up to 10GB
RAM memory, with a fine-grained memory precision of 1MB.

Many scientists have used FaaS in recent years to propose scien-
tific computing solutions [16, 30, 41]. Complex applications are built
in the form of serverless workflows or also called function choreogra-
phies (FCs) [36] by orchestrating serverless functions. Various FCs
exist in the literature for batch [36], event-based [2], or real-time
processing [19]. The top five cloud providers offer FC management
systems, as well, such as AWS Step Functions, Google Workflows,
or IBM Composer. Apart from the FC management systems of pub-
lic cloud providers, researchers introduced many open-source FC
management systems, such as xAFCL [37], LithOps [40], and Py-
Wren [21]. All these systems offer proprietary JSON, YAML, or
JavaScript format to define the control flow of serverless functions
and data flow between functions. A shared feature among all of
these FC management systems is their use of a Directed Acyclic
Graph (DAG) to represent the workflow.

Although the above-mentioned FC management systems are
widely used to run scientific workflows [36], their languages to
describe dependencies in the FC are mainly focused on data replica-
tion and distribution without diving into data types. In most cases,
FC functions download data from cloud storage in a file format
and upload the result of computing back to the storage. However,
numerous modern applications are data-intensive in which many
data items have relations with each other, represented in a graph
format. Therefore, modern computing requires to execute many
graph processing algorithms, such as breadth-first search to build
indexes of crawled web pages, depth-first search to solve puzzles
that have one solution, shortest path to guide a driver to travel
from one location to another (e.g., Google Maps), cycle detection to
determine deadlocks in concurrent systems, or graph coloring to
solve logic games (e.g., Sudoku). Other examples try to determine
a group of people that are strongly connected in social networks

227

https://doi.org/10.1145/3578245.3585333
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1145/3578245.3585333


ICPE ’23 Companion, April 15–19, 2023, Coimbra, Portugal Sashko Ristov, Reza Farahani, & Radu Prodan

or schedule flight crews in airline companies. Such applications re-
quire adaptable graph data structures to represent complex systems
and relationships. Thus, graph processing is a valuable tool for such
applications and use cases, which often include recommendation
systems [8], social network analysis [9], network optimization [18],
fraud detection [24], and bioinformatics [31]. For this purpose, sev-
eral graph processing platforms are introduced, such as Apache
Giraph [1, 29], Apache Flink [7], GraphMat [42], and GraphX [49].
While these platforms support computation-intensive and unpre-
dictable access patterns, most of them encounter scalability issues
and cannot exploit all available serverless resources in federated
FaaS, especially in cases when dealing with extremely massive and
complex graphs. In general, they run on small-scaled clusters, usu-
ally tightly coupled, with a fixed number of compute nodes, which
restricts them from adapting to the dynamic workloads with scaling
in or out.

As a consequence, graph processing is limited by two perspec-
tives. On the one hand, FC management systems, which can utilize
serverless resources across the globe, offer limited support for graph
processing. On the other hand, graph processing platforms support
libraries for graph processing but with limited resource utiliza-
tion. Therefore, scalable serverless graph processing requires careful
investigation of the following research questions (RQs):

RQ1 FC management systems to support graph processing:
To what extent can the existing serverless FC management
systems and their languages to describe FCs be extended to
offer support for large-scale graph processing?

RQ2 Graph processing in federated FaaS: To what extent
can the existing graph processing platforms be migrated
to serverless as FC to enlarge their scalability in federated
FaaS?

To address these research questions, we will research and develop
(prototype) solutions as part of theGraph-Massivizer project, funded
by the Horizon Europe research and innovation program.

The remainder of the paper is organized in several sections.
Section 2 surveys the state-of-the-art FC management systems
and their support for graph processing in federated FaaS. We ex-
plore graph processing challenges and platforms with serverless
approaches for graph processing in Section 3. Finally, Section 4
concludes the paper and presents our position for future work
in serverless graph processing in federated FaaS with serverless
workflows.

2 FC MANAGEMENT SYSTEMS IN FEDERATED
FAAS

This section reviews the state-of-the-art of existing FCmanagement
systems and simulation frameworks for federated FaaS.

2.1 FC management systems of public cloud
providers

AWS Step Functions is the FC management system of Amazon,
which uses JSON to orchestrate functions into an FC using various
constructs for parallelization, data distribution, as well as condi-
tional branches. IBM Composer is another FC management system
that utilizes JavaScript to develop the FC. Despite their offering for

federated cloudssingle region

pFor 

N = 1000

f2 f3

f4

f1
pFor 

N = 600

f2 f3

f4

f1
pFor 

N = 400

f2 f3

f4

f1

federated clouds

pFor 

N = 500

f2 f3

f4

f1
pFor 

N = 400

f2 f3

f4

f1
pFor 

N = 100

f2 f3

f4

f1

a) per function 
single region

b) per FC 
federated clouds

c) per function 
federated clouds

Figure 1: Various approaches for FC execution (a) within a
single cloud region (e.g., AWS Step Functions) (b) portable
execution per FC (e.g., Hyperflow), and (c) portable FC execu-
tion per function in federated clouds (xAFCL)

various constructs, both FC management systems utilize resources
within the same cloud region of the same cloud provider without
the possibility of running an FC across multiple cloud regions in
federated FaaS, leading to limited scalability. Fig. 1a presents an
example of an FC that is executed within a single cloud region.
Google Workflows introduces similar constructs but uses YAML to
determine the control and data flows. Compared to its competitors,
it supports running functions via HTTP requests, which allows
executing serverless functions on any cloud region, as illustrated
in Fig. 1 c.

2.2 Open source FC management systems in a
single cloud region

Apache OpenWhisk is one of the widely used open-source FC
management systems, especially for evaluating scheduling algo-
rithms [32, 44, 45, 48, 50]. Indeed, it relies on Kubernetes to manage
function invokers and schedule on which container should execute
each function. Hyperflow [28] is another open-source project that
can port the entire FC from one to another FC management system,
as shown in Fig. 1b.

2.3 FC management systems that offload
computing on cloud

A few FC management systems are introduced that can run FCs
across multiple commercial FaaS providers. However, their scala-
bility is limited because they can offload functions of the FC on a
single FaaS provider, which usually restricts the concurrency to a
maximum of 1,000 functions. The MPSC [3] framework for Multi-
Provider Serverless Computing balances a bag of tasks between the
local edge devices and AWS Lambda and IBM Cloud Functions. Os-
car [33] offloads functions to the cloud when the edge resources are
overloaded. Hyperflow [28] supports running FCs either entirely
on a specified region of AWS Lambda or Google Cloud Functions.
However, neither of them considers the concurrency limitations of
the FaaS providers.

2.4 FC management systems in federated FaaS
Ristov et al. introduced the xAFCL FC management system [37],
which distributes an FC across various cloud regions of all top five
FaaS providers (Fig. 1c). It uses the Abstract Function Choreography

228



Large-scale Graph Processing and Simulation with Serverless Workflows in Federated FaaS ICPE ’23 Companion, April 15–19, 2023, Coimbra, Portugal

(a) MC FC.

(b) BWA FC.

Figure 2: FCs in AFCL.

Language (AFCL), a YAML-based language, to describe complex
control and data flows.

Fig. 2 depicts two examples of FCs represented as a graph with
AFCL. Monte Carlo (MC) 𝜋 approximation (Fig. 2a) consists of a se-
quence of two functions. The first sequence is a compound function,
a parallel for loop, which scales with the number of monteCarlo
base functions. After all instances of the monteCarlo base function
finish, the FC runs averagePi function to collect results and re-
turns the approximation of the 𝜋 number. Despite its simple shape,
the MC FC is intensively used in serverless research due to its
parallelism [5, 6, 12, 13, 35, 39, 40].

The BWA FC (Burroughs-Wheeler Alignment) [25] (Fig. 2b) maps
low-divergent sequences against a large reference genome from
the Escherichia coli DNA. It is also a popular FC that is widely
used in research [15, 37, 38, 51] due to the complex compute and
data-bound requirements. BWA orchestrates five functions in a
complex FC with two nested parallel loops and a parallel section.

While these two FC management systems, and many others, are
commonly employed by researchers to assess different scheduling
techniques, their main emphasis is typically on minimizing costs
and maximizing performance, with rare attention paid to sustain-
ability. Moreover, to the best of our knowledge, we could not find
FCs for graph processing.

2.5 FaaS and FC simulation
The simfaas [47] emulator can simulate the runtime of serverless
functions, the effects of cold start, and economics in FaaS plat-
forms. Other frameworks, such as DFaaSCloud [20] and OpenDC
Serverless [22], are simulators for FaaS platforms focus on func-
tions’ execution time. SimFaaS [27] simulates serverless functions
with fixed memory setup in a single cloud region and models the
average response time of functions, cold start, and concurrent in-
stances of the serverless function. Recently, an advanced simulation

framework 𝑆𝑖𝑚𝐿𝑒𝑠𝑠 [34] has been introduced as an extension of
xAFCL [37]. It proposes a mathematical model to determine the
overheads not only for a single function and their similar setups
across federated FaaS, but for the entire FC. It should be noted that
the aforementioned simulators/emulators allow for simulations of
the performance, cost of functions, and FCs on a large scale, but
still, they do not take sustainability into account.

3 GRAPH PROCESSING CHALLENGES AND
SERVERLESS PLATFORMS

This section first presents several identified challenges for graph
processing, and then describes several initial works for graph pro-
cessing using serverless computing.

3.1 Graph processing challenges
Despite multiple FC management systems, which support the dis-
tribution of computing in federated FaaS, Lumsadaine et al. [26]
identified the following challenges for parallel graph processing:

• Graph processing is data-driven because a graph comprises ver-
tices and edges, which define how algorithms should perform
the computations.

• Regardless of whether a graph is sparse or dense, its edges and
vertices usually do not create embarrassingly parallel problems.

• Graphs have poor locality due to irregular characteristics.
• Graph processing generates a high data-access-to-computation
ratio.

While various FC management systems introduce languages to
specify parallelism, control flow, and data flow, they still do not
consider the above-mentioned challenges. For example, suppose
computing or data is skewed. In that case processing parallel loops
will be inefficient because the makespan (i.e., the time difference
between the start and finish times) of the entire parallel loop would
depend on the iteration that runs longest, while many other itera-
tions would finish earlier. Additional skewness will be introduced
by various overheads in federated FaaS, such as network latency or
authentication, concurrency, FaaS, and session overheads [34].

3.2 Serverless graph processing platforms
Coimbra et al. [10] elaborated various approaches for graph pro-
cessing, including single-machine and shared-memory parallel
approaches, high-performance computing, and distributed graph-
processing systems. In this section, we focus on serverless graph
processing platforms.

Several initial works can be found in the literature, which used
serverless computing to present (big) data processing systems [21,
23, 30]. However, none of them provides support for graph pro-
cessing applications. Szalay et al. [43] employ resource partitioning
and centralized cluster-level heuristics to schedule latency and
throughput-sensitive serverless applications but do not take into
account graph processing operations explicitly. Aslanpour et al. [4]
present energy-aware scheduling for serverless edge computing.
However, their solution is focused on edge devices and does not
provide a graph processing platform that operates across the entire
computing continuum nodes.

229



ICPE ’23 Companion, April 15–19, 2023, Coimbra, Portugal Sashko Ristov, Reza Farahani, & Radu Prodan

Heidari et al. [17] suggest a cost-effective auto-scaling method
that adjusts the number and types of virtual machines according
to the computation needs of convergent graph applications. How-
ever, this approach is incompatible with serverless paradigms since
it does not consider the fundamental principles of serverless, i.e.,
containerization and FaaS. The authors in [46] propose a serverless
graph processing system called Graphless, which is implemented
with AWS Lambda. Graphless allows graph processing functions to
be deployed using push or pull operations on a set of predefined
worker resources utilizing static and super-step schedulers. How-
ever, sustainability has not been considered in Graphless design. In
addition, the authors demonstrate that the efficiency of Graphless
can be degraded due to the variability of network characteristics
under communication-intensive workloads.

Copik et al. [11] use three serverless functions that conduct graph
processing (i.e., PageRank, minimum spanning tree, and breadth-
first search) as a part of the serverless benchmark suite named SeBS.
With this approach, various serverless functions that conduct graph
processing can be used to mimic their execution, including CPU
and memory usage simulation [14].

While serverless functions that conduct graph processing are the
necessary step towards scalable graph processing in federated FaaS,
it is still the initial step. Running complex graph processing, such as
PageRank, may take minutes, even for a small data set. On the other
hand, parallelizing the steps and running this algorithm as an FC
may significantly reduce themakespan, but more importantly, it can
scale the graph’s size, achieving both faster and scaled processing.

4 CONCLUSION AND FUTUREWORK
This paper designed two important research questions for large-
scale graph processing, i.e., (1) how existing serverless FC manage-
ment systems can be extended to support graph processing and (2)
how existing graph processing platforms can be migrated to a form
of serverless FC management system. We surveyed state-of-the-art
supports for graph processing using the existing FC management
systems that can utilize serverless resources in federated FaaS. We
also addressed the challenges of graph processing and showed that
answering the aforementioned research questions requires further
investigations. Therefore, we will research and develop (prototype)
solutions that will address these questions in the context of the
Graph-Massivizer project.

ACKNOWLEDGMENTS
This research received funding from:

• Land Tirol, under contract F.35499;
• European High-Performance Computing Joint Undertaking, un-

der grant agreement 951745 (FF4EuroHPC project and CardioHPC
experiment);

• the Horizon Europe research and innovation program of the
European Union. Its grant management number is 101093202.

REFERENCES
[1] Apache. 2020. Apache Giraph. Retrieved 2023-02-12 from https://giraph.apache.

org/
[2] Aitor Arjona, Pedro García López, Josep Sampé, Aleksander Slominski, and

Lionel Villard. 2021. Triggerflow: Trigger-based orchestration of serverless
workflows. Future Generation Computer Systems 124 (2021), 215–229. https:
//doi.org/10.1016/j.future.2021.06.004

[3] Austin Aske and Xinghui Zhao. 2018. Supporting Multi-Provider Serverless
Computing on the Edge. InWorkshop Proceedings of the 47th International Con-
ference on Parallel Processing (ICPP Workshops ’18). ACM, Eugene, OR, USA.
https://doi.org/10.1145/3229710.3229742

[4] Mohammad Sadegh Aslanpour, Adel N. Toosi, Muhammad Aamir Cheema, and
Raj Gaire. 2022. Energy-Aware Resource Scheduling for Serverless Edge Comput-
ing. In IEEE International Symposium on Cluster, Cloud and Internet Computing
(CCGrid). 190–199. https://doi.org/10.1109/CCGrid54584.2022.00028

[5] Daniel Barcelona-Pons and Pedro García-López. 2021. Benchmarking parallelism
in FaaS platforms. Future Generation Computer Systems 124 (2021), 268–284.
https://doi.org/10.1016/j.future.2021.06.005

[6] Daniel Barcelona-Pons, Marc Sánchez-Artigas, Gerard París, Pierre Sutra, and
Pedro García-López. 2019. On the FaaS Track: Building Stateful Distributed
Applications with Serverless Architectures (Middleware ’19). ACM, Davis, CA,
USA, 41–54.

[7] Paris Carbone, Asterios Katsifodimos, Stephan Ewen, Volker Markl, Seif Haridi,
and Kostas Tzoumas. 2015. Apache flink: Stream and batch processing in a single
engine. The Bulletin of the Technical Committee on Data Engineering (2015).

[8] Janneth Chicaiza and Priscila Valdiviezo-Diaz. 2021. A comprehensive survey of
knowledge graph-based recommender systems: Technologies, development, and
contributions. Information (2021).

[9] Avery Ching, Sergey Edunov, Maja Kabiljo, Dionysios Logothetis, and Sambavi
Muthukrishnan. 2015. One trillion edges: Graph processing at facebook-scale.
Proceedings of the VLDB Endowment (2015).

[10] Miguel E Coimbra, Alexandre P Francisco, and Luís Veiga. 2021. An analysis of
the graph processing landscape. journal of Big Data 8, 1 (2021), 1–41.

[11] Marcin Copik, Grzegorz Kwasniewski, Maciej Besta, Michal Podstawski, and
Torsten Hoefler. 2021. SeBS: A Serverless Benchmark Suite for Function-as-a-
Service Computing. In International Middleware Conference (Middleware ’21).
ACM, Québec city, Canada, 64–78. https://doi.org/10.1145/3464298.3476133

[12] Simon Eismann, Johannes Grohmann, Erwin van Eyk, Nikolas Herbst, and Samuel
Kounev. 2020. Predicting the Costs of Serverless Workflows. In Int. Conf. on
Performance Engineering (ICPE). ACM, Canada, 265–276.

[13] Pedro García-López, Aleksander Slominski, Simon Shillaker, Michael Behrendt,
and Barnard Metzler. 2020. Serverless End Game: Disaggregation enabling Trans-
parency. arXiv preprint arXiv:2006.01251 (2020).

[14] Ryan Hancock, Sreeharsha Udayashankar, Ali José Mashtizadeh, and Samer Al-
Kiswany. 2022. OrcBench: A Representative Serverless Benchmark. In 2022 IEEE
15th International Conference on Cloud Computing (CLOUD).

[15] Nicholas Hazekamp, Nathaniel Kremer-Herman, Benjamin Tovar, Haiyan Meng,
Olivia Choudhury, Scott Emrich, and Douglas Thain. 2018. Combining Static and
Dynamic Storage Management for Data Intensive Scientific Workflows. IEEE
Trans. on Par. and Distr. Sys. 29, 2 (2018), 338–350. https://doi.org/10.1109/TPDS.
2017.2764897

[16] Michael T Heath. 2018. Scientific Computing: An Introductory Survey, Revised
Second Edition. SIAM.

[17] Safiollah Heidari and Rajkumar Buyya. 2021. A Cost-Efficient Auto-Scaling
Algorithm for Large-Scale Graph Processing in Cloud Environments with Het-
erogeneous Resources. IEEE Transactions on Software Engineering 47, 8 (2021),
1729–1741. https://doi.org/10.1109/TSE.2019.2934849

[18] Safiollah Heidari, Yogesh Simmhan, Rodrigo N. Calheiros, and Rajkumar Buyya.
2018. Scalable Graph Processing Frameworks: A Taxonomy and Open Challenges.
ACM Comput. Surv. 51, 3 (jun 2018). https://doi.org/10.1145/3199523

[19] Sanghyun Hong, Abhinav Srivastava, William Shambrook, and Tudor Dumitras.
2018. Go Serverless: Securing Cloud via Serverless Design Patterns. In 10th
USENIX Workshop on Hot Topics in Cloud Computing (HotCloud 18). USENIX
Association, Boston, MA.

[20] Hongseok Jeon, Chunglae Cho, Seungjae Shin, and Seunghyun Yoon. 2019. A
CloudSim-Extension for Simulating Distributed Functions-as-a-Service. In In-
ternational Conference on Parallel and Distributed Computing, Applications and
Technologies (PDCAT). 386–391. https://doi.org/10.1109/PDCAT46702.2019.00076

[21] Eric Jonas, Qifan Pu, Shivaram Venkataraman, Ion Stoica, and Benjamin Recht.
2017. Occupy the Cloud: Distributed Computing for the 99%. In Proceedings of the
2017 Symposium on Cloud Computing (SoCC ’17). ACM, Santa Clara, California,
445–451. https://doi.org/10.1145/3127479.3128601

[22] S Jounaid. 2020. OpenDC Serverless: Design, Implementation and Evaluation of
a FaaS Platform Simulator. Ph.D. thesis, Vrije Universiteit Amsterdam.

[23] Youngbin Kim and Jimmy Lin. 2018. Serverless data analytics with flint. In 2018
IEEE 11th International Conference on Cloud Computing (CLOUD). IEEE.

[24] Eren Kurshan and Hongda Shen. 2020. Graph computing for financial crime
and fraud detection: Trends, challenges and outlook. International Journal of
Semantic Computing (2020).

[25] Heng Li and Richard Durbin. 2010. Fast and accurate long-read alignment with
Burrows–Wheeler transform. Bioinformatics 26, 5 (2010), 589–595.

[26] Andrew Lumsdaine, Douglas Gregor, Bruce Hendrickson, and Jonathan Berry.
2007. Challenges in parallel graph processing. Parallel Processing Letters 17, 01
(2007), 5–20.

230

https://giraph.apache.org/
https://giraph.apache.org/
https://doi.org/10.1016/j.future.2021.06.004
https://doi.org/10.1016/j.future.2021.06.004
https://doi.org/10.1145/3229710.3229742
https://doi.org/10.1109/CCGrid54584.2022.00028
https://doi.org/10.1016/j.future.2021.06.005
https://doi.org/10.1145/3464298.3476133
https://doi.org/10.1109/TPDS.2017.2764897
https://doi.org/10.1109/TPDS.2017.2764897
https://doi.org/10.1109/TSE.2019.2934849
https://doi.org/10.1145/3199523
https://doi.org/10.1109/PDCAT46702.2019.00076
https://doi.org/10.1145/3127479.3128601


Large-scale Graph Processing and Simulation with Serverless Workflows in Federated FaaS ICPE ’23 Companion, April 15–19, 2023, Coimbra, Portugal

[27] Nima Mahmoudi and Hamzeh Khazaei. 2021. SimFaaS: A Performance Simulator
for Serverless Computing Platforms. In Int. Conf. on Cloud Computing and Services
Science (CLOSER ’21). 1–11.

[28] Maciej Malawski, Adam Gajek, Adam Zima, Bartosz Balis, and Kamil Figiela.
2020. Serverless execution of scientific workflows: Experiments with HyperFlow,
AWS Lambda and Google Cloud Functions. Future Generation Computer Systems
110 (2020), 502–514. https://doi.org/10.1016/j.future.2017.10.029

[29] ClaudioMartella, Roman Shaposhnik, Dionysios Logothetis, and Steve Harenberg.
2015. Practical graph analytics with apache giraph. Vol. 1. Springer.

[30] Stefan Nastic, Thomas Rausch, Ognjen Scekic, Schahram Dustdar, Marjan Gusev,
Bojana Koteska, Magdalena Kostoska, Boro Jakimovski, Sasko Ristov, and Radu
Prodan. 2017. A Serverless Real-Time Data Analytics Platform for Edge Comput-
ing. IEEE Internet Computing 21, 4 (2017), 64–71. https://doi.org/10.1109/MIC.
2017.2911430

[31] Pavlopoulos, Georgios A and Secrier, Maria and Moschopoulos, Charalampos N
and Soldatos, Theodoros G and Kossida, Sophia and Aerts, Jan and Schneider,
Reinhard and Bagos, Pantelis G. 2011. Using graph theory to analyze biological
networks. BioData mining (2011).

[32] Thomas Rausch, Alexander Rashed, and Schahram Dustdar. 2021. Optimized
container scheduling for data-intensive serverless edge computing. Future Gen-
eration Computer Systems 114 (2021), 259–271. https://doi.org/10.1016/j.future.
2020.07.017

[33] Sebastián Risco, Germán Moltó, Diana M Naranjo, and Ignacio Blanquer. 2021.
Serverless workflows for containerised applications in the cloud continuum.
Journal of Grid Computing 19, 3 (2021), 1–18.

[34] Sashko Ristov, Mika Hautz, Christian Hollaus, and Radu Prodan. 2022. SimLess:
Simulate Serverless Workflows and Their Twins and Siblings in Federated FaaS.
Association for Computing Machinery.

[35] Sasko Ristov, Dragi Kimovski, and Thomas Fahringer. 2022. FaaScinating Re-
silience for Serverless Function Choreographies in Federated Clouds. IEEE Trans-
actions on Network and Service Management (2022), 1–1. https://doi.org/10.1109/
TNSM.2022.3162036

[36] Sasko Ristov, Stefan Pedratscher, and Thomas Fahringer. 2021. AFCL: An Abstract
Function Choreography Language for serverless workflow specification. Fut.
Gen. Comp. Syst. 114 (2021), 368 – 382.

[37] Sasko Ristov, Stefan Pedratscher, and Thomas Fahringer. 2021. xAFCL: Run Scal-
able Function Choreographies Across Multiple FaaS Systems. IEEE Transactions
on Services Computing (2021), 1–1. https://doi.org/10.1109/TSC.2021.3128137

[38] Roland Mathá, Sasko Ristov, Thomas Fahringer, and Radu Prodan. 2020. Simpli-
fied Workflow Simulation on Clouds based on Computation and Communication
Noisiness. IEEE Transactions on Parallel and Distributed Systems 31, 7 (2020),
1559–1574. https://doi.org/10.1109/TPDS.2020.2967662

[39] Josep Sampe, Pedro Garcia-Lopez, Marc Sanchez-Artigas, Gil Vernik, Pol Roca-
Llaberia, and Aitor Arjona. 2021. Toward Multicloud Access Transparency in
Serverless Computing. IEEE Soft. 38, 1 (2021), 68–74. https://doi.org/10.1109/MS.
2020.3029994

[40] J. Sampe, M. Sanchez-Artigas, G. Vernik, I. Yehekzel, and P. Garcia-Lopez. 2021.
Outsourcing Data Processing Jobs with Lithops. IEEE Transactions on Cloud
Computing (Nov. 2021), 1–1. https://doi.org/10.1109/TCC.2021.3129000

[41] Josep Sampé, Gil Vernik, Marc Sánchez-Artigas, and Pedro García-López. 2018.
Serverless Data Analytics in the IBM Cloud (Middleware ’18). ACM, Rennes,
France, 1–8.

[42] Narayanan Sundaram, Nadathur Rajagopalan Satish, Md Mostofa Ali Patwary,
Subramanya R Dulloor, Satya Gautam Vadlamudi, Dipankar Das, and Pradeep
Dubey. 2015. Graphmat: High performance graph analytics made productive.
arXiv preprint arXiv:1503.07241 (2015).

[43] Márk Szalay, Péter Mátray, and László Toka. 2021. Real-time task scheduling
in a FaaS cloud. In 2021 IEEE 14th International Conference on Cloud Computing
(CLOUD). IEEE.

[44] Yang Tang and Junfeng Yang. 2020. Lambdata: Optimizing Serverless Computing
by Making Data Intents Explicit. In 2020 IEEE 13th International Conference on
Cloud Computing (CLOUD). 294–303. https://doi.org/10.1109/CLOUD49709.2020.
00049

[45] Ali Tariq, Austin Pahl, Sharat Nimmagadda, Eric Rozner, and Siddharth Lanka.
2020. Sequoia: Enabling Quality-of-Service in Serverless Computing. In Proceed-
ings of the 11th ACM Symposium on Cloud Computing (SoCC ’20). ACM, Virtual
Event, USA, 311–327. https://doi.org/10.1145/3419111.3421306

[46] Lucian Toader, Alexandru Uta, Ahmed Musaafir, and Alexandru Iosup. 2019.
Graphless: Toward serverless graph processing. In 2019 18th International Sym-
posium on Parallel and Distributed Computing (ISPDC). IEEE.

[47] Erwin van Eyk. [n.d.]. SimFaaS. https://github.com/erwinvaneyk/simfaas. Ac-
cessed: 2021-10-22.

[48] Song Wu, Zhiheng Tao, Hao Fan, Zhuo Huang, Xinmin Zhang, Hai Jin, Chen
Yu, and Chun Cao. 2021. Container lifecycle-aware scheduling for serverless
computing. Software: Practice and Experience (2021).

[49] Reynold S Xin, Joseph E Gonzalez, Michael J Franklin, and Ion Stoica. 2013.
Graphx: A resilient distributed graph system on spark. In First international
workshop on graph data management experiences and systems. 1–6.

[50] Hanfei Yu, Hao Wang, Jian Li, and Seung-Jong Park. 2021. Harvesting Idle
Resources in Serverless Computing via Reinforcement Learning. arXiv preprint
arXiv:2108.12717 (2021).

[51] Qimin Zhang, Nathaniel Kremer-Herman, Benjamin Tovar, and Douglas Thain.
2018. Reduction of Workflow Resource Consumption Using a Density-based
Clustering Model. In 2018 IEEE/ACM Workflows in Support of Large-Scale Science
(WORKS). 1–9. https://doi.org/10.1109/WORKS.2018.00006

231

https://doi.org/10.1016/j.future.2017.10.029
https://doi.org/10.1109/MIC.2017.2911430
https://doi.org/10.1109/MIC.2017.2911430
https://doi.org/10.1016/j.future.2020.07.017
https://doi.org/10.1016/j.future.2020.07.017
https://doi.org/10.1109/TNSM.2022.3162036
https://doi.org/10.1109/TNSM.2022.3162036
https://doi.org/10.1109/TSC.2021.3128137
https://doi.org/10.1109/TPDS.2020.2967662
https://doi.org/10.1109/MS.2020.3029994
https://doi.org/10.1109/MS.2020.3029994
https://doi.org/10.1109/TCC.2021.3129000
https://doi.org/10.1109/CLOUD49709.2020.00049
https://doi.org/10.1109/CLOUD49709.2020.00049
https://doi.org/10.1145/3419111.3421306
https://github.com/erwinvaneyk/simfaas
https://doi.org/10.1109/WORKS.2018.00006

	Abstract
	1 Introduction
	2 FC management systems in federated FaaS
	2.1 FC management systems of public cloud providers
	2.2 Open source FC management systems in a single cloud region
	2.3 FC management systems that offload computing on cloud
	2.4 FC management systems in federated FaaS
	2.5 FaaS and FC simulation

	3 Graph processing challenges and serverless platforms
	3.1 Graph processing challenges
	3.2 Serverless graph processing platforms

	4 Conclusion and future work
	Acknowledgments
	References



