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ABSTRACT
With the ever-increasing volume of data and the demand to analyze
and comprehend it, graph processing has become an essential ap-
proach for solving complex problems in various domains, like social
networks, bioinformatics, and finance. Despite the potential ben-
efits of current graph processing platforms, they often encounter
difficulties supporting diverse workloads, models, and languages.
Moreover, existing platforms suffer from limited portability and
interoperability, resulting in redundant efforts and inefficient re-
source and energy utilization due to vendor and even platform
lock-in. To bridge the aforementioned gaps, the Graph-Massivizer
project, funded by the Horizon Europe research and innovation pro-
gram, conducts research and develops a high-performance, scalable,
and sustainable platform for information processing and reasoning
based on themassive graph (MG) representation of extreme data. In
this paper, we briefly introduce the Graph-Massivizer platform. We
explore how the emerging serverless computing paradigm can be
leveraged to devise a scalable graph analytics tool over a codesigned
computing continuum infrastructure. Finally, we sketch seven cru-
cial research questions in our design and outline three ongoing and
future research directions for addressing them.

CCS CONCEPTS
• Theory of computation → Graph algorithms analysis; •
Computer systems organization → Cloud computing.
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1 INTRODUCTION
Graphs are data structures consisting of vertices (i.e., nodes) and
edges (i.e., relationships) between these vertices, which are com-
monly used to represent a wide variety of real-world data in various
fields, e.g., computer science, mathematics, physics, bioinformatics,
and engineering. Graph processing refers to using algorithms to
analyze and manipulate data represented as graphs and perform a
series of tasks, e.g., finding the shortest path between two vertices,
grouping vertices into clusters, identifying patterns in the data, and
making predictions based on the graphs’ structure [18]. The parallel
and distributed nature of graph processing enables the processing
of massive graphs (MG), making it possible to handle extreme data
and solve complex problems at scale.

Graph processing platforms often employ high-performance
computing (HPC) or cloud computing resources (i.e., storage, com-
putation) to offer their users a range of graph processing and anal-
ysis services. Although numerous cloud- or HPC-based graph pro-
cessing platforms exist, they always encounter difficulties in sup-
porting scalable, latency-, resource-, energy-aware, and cost-efficient
services. This is because graph processing platforms must be able
to cater to the diverse needs of their users, who may have different
requirements for graph processing and analysis depending on the
specific use case. Consequently, carrying out graph processing on
the computing continuum environment with a diverse range of
devices, e.g., HPC, cloud, and local devices, for satisfying various
users’ requirements is a step forward [2, 18, 20].

As shown in Fig. 1, the computing continuum is not limited to
only cloud servers. It encompasses a range of devices in three layers,
so-called cloud, fog, and edge, where these layers are connected and
used together seamlessly to provide an incorporated computing
experience. Thousand of powerful remote servers (in terms of com-
putation and storage resources) are in the cloud layer, where data
and applications can be directly stored on them rather than on local
devices. Indeed, this allows users to access computing resources
from anywhere, anytime, employing any device with an Internet
connection. The fog layer extends cloud computing services by
placing millions of servers with limited resources compared to the
cloud layer in close proximity to users. In fact, the computing con-
tinuum architecture leverages this layer to address the challenges
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Figure 1: Illustration of the computing continuum

of cloud computing, such as latency and bandwidth constraints, by
bringing computing resources closer to the source of the data. In ad-
dition, billions of edge devices (e.g., traditional computers, servers,
or Internet of things (IoT) devices) can be incorporated to provide
real-time data processing and deliver faster and more responsive
computing experiences [25]. Although the computing continuum
allows graph processing platforms to process various graph cate-
gories over heterogenous environments, there are still burdens to
accomplishing a pure pay-per-use and effortless scalability.

To address the abovementioned issues, modern computing con-
tinuum infrastructures are equipped with an emerging paradigm,
so-called serverless computing [1]. Utilizing new techniques such
as microservices, Function-as-a-Service (FaaS) [9], event-driven pro-
gramming, and containerization enables serverless systems to work
based on simple and small functions. Therefore, the operational
concerns are abstracted to developers, and ease-of-use, fine-grained
scalability, automation of server management, and pay-per-use
billing instead of subscription are provided in such systems. [36].
However, using serverless techniques, which rely on stateless func-
tions, poses numerous challenges when it comes to processing
graphs, as inherently extreme data nature contradicts the stateless
concept. Therefore, designing serverless graph processing platforms
on the computing continuum requires careful investigation of the
following fundamental research questions (RQs):

RQ1 State Management: How can states be effectively managed
by a serverless computing continuum system where func-
tions are stateless, and graph data requires to be stored in a
(remote) memory?

RQ2 Scalability: How can the system’s scalability be ensured
when processing different kinds of graphs (in terms of type
and size) in a serverless computing continuum environment?

RQ3 Diversity: How can a serverless computing continuum sys-
tem be designed to support a broad class of iterative graph al-
gorithms and handle both directed and undirected, weighted
and unweighted graphs that can change at runtime?

RQ4 Efficiency How can the uncertainty of latencies and re-
source utilization in a serverless computing continuum sys-
tem be mitigated to ensure the efficient processing of MG?

RQ5 Sustainability: How can a serverless computing contin-
uum system be devised to minimize energy consumption
and carbon footprint while maximizing performance and
scalability?

RQ6 Automation: How can a serverless computing continuum
system be fully automated to meet diverse graph processing
developers’ requirements with minimal resource manage-
ment knowledge?

RQ7 Cost-Efficiency: How can the cost of executing graph pro-
cessing functions in a serverless computing continuum sys-
tem be optimized to balance performance and affordability?

The Graph-Massivizer project, funded by the Horizon Europe
research and innovation program of the European Union, aims
to tackle the limitations of existing graph processing platforms
and draws inspiration from innovative computing paradigms over
the computing continuum. The project aims to develop a high-
performance, scalable, gender-neutral, secure, and sustainable MG
platform [30]. In this paper, we leverage the serverless paradigm, in-
troduce one of theGraph-Massivizer software tools, i.e., Serverlizer,
and discuss how Serverlizer can address the aforementioned RQs.

The remainder of the paper is organized as follows. Section 2 sur-
veys state-of-the-art works. We briefly explain Graph-Massivizer
conceptual architecture and introduce its associated tools in Sec-
tion 3. We elaborate on the details of the proposed serverless solu-
tion and our ongoing and future works in Section 4. Finally, Sec-
tion 5 concludes the paper.

2 RELATEDWORK
This section reviews the state-of-the-art graph processing solutions
in two categories.

2.1 Current Graph Procesing Platforms
The adaptability of graph data structures makes them suitable for-
mats for representing complex systems and relationships. Thus,
graph processing is a valuable tool for many applications and
Use cases. Use cases include recommendation systems [10], so-
cial network analysis [11], network optimization [18], fraud detec-
tion [24], and bioinformatics [28]. Graph processing algorithms
have unique natures, e.g., computation-intensive and unpredictable
access patterns, which make them well-suited for running on com-
plex environments such as HPC systems and cloud-based environ-
ments. Therefore, several large-scale graph processing platforms,
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e.g., Apache Giraph [3, 26], Apache Flink [8], GraphMat [33], and
GraphX [15], are introduced.

Despite the famous graph processing platforms’ benefits, most
encounter scalability issues when dealing with extremely massive
and complex graphs. Since they generally run on a fixed number
of compute nodes, they cannot adapt to variations in workload by
either scaling in or scaling out resources; consequently, they face
performance limitations. In addition, these platforms make com-
plexity for users who require more expertise in specific frameworks,
such as Apache Hadoop [19]. Moreover, since most of these plat-
forms view large-scale graph processing as only relevant for large
organizations, the potential for cost-efficient deployment options
is ignored in their designs [19]. As a result, there has been grow-
ing needs and interests to design and develop graph processing
platforms that enhance the performance and capabilities of current
systems while addressing their limitations.

2.2 Serverless Graph Processing Platforms
Inspired by the issues outlined in Section 2.1, academia and industry
have started to adopt the promising serverless computing paradigm
to design easy-to-use, scalable, resource- and cost-efficient graph
processing platforms. Several pioneering works in the literature,
like [21, 23, 27], employed serverless computing to present (big)
data processing systems. However, none of them provides support
for graph processing applications. Szalay et al. [34] employ resource
partitioning and centralized cluster-level heuristics to schedule la-
tency and throughput-sensitive serverless applications but do not
take into account graph processing operations explicitly. Aslan-
pour et al. [5] presents energy-aware scheduling for serverless edge
computing. However, their solution is focused on edge devices and
does not provide a graph processing platform that operates across
the entire computing continuum nodes.

Heidari et al. [17] suggest a cost-effective auto-scaling method
that adjusts the number and types of virtual machines according
to the computation needs of convergent graph applications. How-
ever, this approach is incompatible with serverless paradigms since
it does not consider the fundamental principles of serverless, i.e.,
containerization and FaaS. Current serverless platforms, such as
Apache OpenWhisk [4], rely on deployment frameworks like Ku-
bernetes and Docker Swarm, which utilize greedy decision-making
techniques, such as filtering nodes and are unable to host a given
function and establish a rating among the rest. The authors in [35]
propose a serverless graph processing system called Graphless,
which is implemented with AWS Lambda. Graphless allows graph
processing functions to be deployed using push or pull operations
on a set of predefined worker resources utilizing static and super-
step schedulers. However, sustainability has not been considered
in Graphless design. In addition, the authors demonstrate that the
efficiency of Graphless can be degraded due to the variability of
network characteristics under communication-intensive workloads.

In contrast to the state-of-the-art solutions, the Serverlizer
tool aims to enable scalable and sustainable serverless execution
of MG processing over extreme data, combining sustainability and
performance metrics (e.g., greenhouse gases (GHG) emissions, pro-
cessing, and data throughput). It also enables processing MG over

Graph-Serverlizer

Figure 2: Graph-Massivizer architecture.

a vast set of heterogeneous resources across the computing contin-
uum, comprising HPC, cloud, fog, edge, and specialized hardware.

3 GRAPH-MASSIVIZER PLATFORM
Graph-Massivizer develops, integrates, deploys, and validates a
novel integrated toolkit for sustainable development and operation
of MG processing on extreme data. The conceptual architecture of
the Graph-Massivizer, including three layers, i.e., (i) graph opera-
tional layer, (ii) graph processing layer, and (ii) hardware infrastruc-
ture layer, is depicted in Fig. 2.

The graph operational layer facilitates generating, transform-
ing, and manipulating extreme data through basic graph operations
(BGO), comprising graph creation, enrichment, query, and analytics.
The following components are placed in this layer:
1 Graph creation: implemented by the Graph-Inceptor tool trans-

lates extreme data from various static and event streams or fol-
lows heuristics to generate synthetic data, persist it, or publish
it within a graph structure.

2 Graph enrichment, Graph query, and Graph analytics:
three BGO implemented by the Graph-Scrutinizer tool. They
analyse and expand extreme datasets using probabilistic reason-
ing and ML algorithms for graph pattern discovery, low mem-
ory footprint graph generation, and low latency error-bounded
query response. The output of this phase is a new graph, a query,
or an enriched structured dataset.
Following three phases, the graph processing layer provides

sustainable and energy-aware serverless graph analytics on the
underlying heterogeneous HPC infrastructure. This layer includes
the following entities:
3 Graph workload prediction and optimisation: it is repre-

sented by the Graph-Optimiser tool that analyses and expresses
the given graph processing workload into a workflow of BGO.
It further combines parametric BGO performance and energy
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Figure 3: Demonstration of Graph-Serverlizer workflow.

models with hardware models to generate accurate performance
and energy consumption predictions for the workload running
on a given multi-node, heterogeneous infrastructure of CPUs,
GPUs, and FPGAs. The predictions indicate the most promising
combinations of BGO optimisations and infrastructure, i.e., a
codesigned solution for the given workload while guaranteeing
its performance and energy consumption bounds.

4 Sustainability analysis: it is implemented by theGraph-Greenifier
tool that collects, studies, and archives performance and sustain-
ability data from operational data centers and national energy
suppliers on a large scale. This phase simulates multi-objective
infrastructure sustainability profiles for operating graph ana-
lytics workloads, trading off performance and energy (e.g., con-
sumption, CO2, methane, GHG emissions) metrics. Its ultimate
purpose is to model the impact of specific graph analytics work-
loads on the environment for evidence-based decision-making.

5 Serverless graph processing: the Graph-Serverlizer tool
is responsible to implement it. It uses performance and sus-
tainability models and data from the previous phases to deploy
serverless graph analytics on the computing continuum. It re-
lies on novel scheduling heuristics, infrastructure partitioning,
and environment-aware processing for scalable orchestration
of serverless graph analytics with an accountable performance
and energy consumption trade-off.

The hardware infrastructure layer considered byGraph-Massivizer
consists of geographically distributed data centers across the HPC,
cloud, fog, and edge computing continuum. A data center is a col-
lection of nodes connected through high-performance networks. A
node represents a heterogeneous set of tightly coupled devices com-
prising commodity multiprocessors and specialized accelerators
such as GPU or FPGA.

4 GRAPH-SERVERLIZER
This section designs essential components of the Graph-Serverlizer
tool, show its plans for addressing described RQs, and outlines our
ongoing and future works.

4.1 Design
The Graph-Serverlizer tool encapsulates BGO as serverless func-
tions targeting their scheduling and deployment on the comput-
ing continuum according to the performance and sustainability
metrics and labels communicated by Graph-Optimizer and Graph-
Greenifier (See Fig. 3). The serverless technology allows deploy-
ing BGO with minimal operational delay and reduced financial
cost based on a pay-as-use business model. Furthermore, it lessens
the burden on developers by providing transparent runtime man-
agement. As shown in Fig. 3, Graph-Serverlizer includes three
components, i.e., (1) Resource Similarity Identification, (2) Resource
Partition Creation, (3) FaaS BGO Scheduling and Deployment , which
provide the following services:
• Similarity resource partitioner: Graph-Serverlizer employs
a three-step approach that partitions the underlying infrastruc-
ture nodes by considering the resources, I/O, and network BGO
requirements. It first applies resource extraction to identify HPC,
Cloud, and Edge codesigned infrastructure nodes’ characteris-
tics based on resource types, such as processing cores, memory,
storage, and energy consumption. Next, the multilayer infras-
tructure facilitation clusters the infrastructure nodes comprising
specialised hardware (GPUs, FPGAs) based on their topological
(betweenness centrality) and similarity relationships between
the related resources. Finally, the layer partitioning clusters each
resource layer of the multilayer infrastructure in disjoint resource
partitions of nodes with similar resource types, including opera-
tional delay, sustainability, and energy consumption metric.

• Sustainable BGO function operation: Graph-Serverlizer
targets three BGO function operation phases, considering hetero-
geneous hardware resources and sustainability profiles. Firstly,
feature partitioning identifies appropriate nodes with similar
features, cost, and sustainability characteristics to the resource
requirements of the BGO encompassed as functions. Afterward,
function scheduling allocates appropriate virtual instances within
the nodes of the same feature partition and highly connected
network layer partition based on the performance and sustainabil-
ity metrics provided by Graph-Optimizer. Graph-Serverlizer
envisions a scheduling algorithm inspired by matching theory
opposing two conflicting players (i.e., BGO and hardware nodes),
bounded by the sustainabilitymetrics provided byGraph-Greenifier.

• BGO serverlization: implements function wrapping techniques
for BGO and the required execution libraries for a set of serverless
computing platforms, such as Apache OpenWisk [4].

• Cybersecure deployment: addresses runtime aspects of the
FaaS functions and provides elastic and scalable deployment of
the BGO while minimizing operational costs. It further features
real-time sustainability analysis and automated decision-making
with a reduced negative environmental impact. Graph-Serverlizer
employs state-of-the-art security and privacy mechanisms [14]
installed at the MG providers to protect against malicious attacks.

4.2 Ongoing and Future Directions
We continue our research for the current and future works as fol-
lows:
• Serverless resource (in)similarity (RQs 2,4,7): The comput-
ing continuum and, in particular, federated FaaS offer extremely
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heterogeneous resources to deploy serverless functions. In gen-
eral, the maximum amount of memory used by each function
is configured by the user during the deployment. However, the
CPU resources are managed by each cloud provider differently.
While cloud providers offer fine-grained memory setups per MB,
they provide coarse-grained CPU resources, often configured
by the providers without user control [6]. Unfortunately, even
the underlying CPUs are heterogeneous for all evaluated cloud
providers, e.g., AWS, IBM, Google, and Azure, as reported by
Kelly et al. [22]. Ristov et al. [32] introduced function twins,
which represent the resource similarity of the same function be-
ing deployed across different regions of the same cloud provider
with the same amount of memory usage. Indeed, twins that ac-
cess cloud storage within the identical region as the function
provide the same performance. The authors introduced an accu-
rate model to simulate the performance of serverless workflow
applications across different locations in federated FaaS. There-
fore, one of our directions will be equipping the Serverlizer
with such a model.

• Serverless benchmark platforms (RQs 3,4,7): As Copik et
al. [12] used three BGOs (i.e., pagerank, mst, and bfs) and pre-
sented a serverless benchmark suite for FaaS Computing (named
SeBS), we plan to utilize BGOs to benchmark serverless platforms.
More precisely, categorizing various BGOs into distinct models
and mimicking serverless function execution, including CPU and
memory usage simulation, could be employed for this aim [16].

• BGO serverlization with FaaSification (RQs 1,5,6): There
are several works in the literature to produce serverless func-
tions. For instance, some solutions, e.g., FaaSifier M2FaaS [29],
transform certain sections of current monolithic applications into
serverless functions. Other methods like [13] involve developing
the code of a local technique with the corresponding handler
method of the target cloud provider and then deployment as
a serverless function on numerous cloud providers. However,
the abovementioned approaches are mainly focused on creat-
ing a deployment package with a limited setup for deployment,
which is usually restricted to a single memory setup, region, and
provider. For more advanced deployment, Serverlizer can be
equipped to enables user to generally utilize Infrastructure-as-
a-Code tools [7, 31] to deploy functions across the computing
continuum from a single deployment package.

5 CONCLUSION
This paper aimed to explore how the emerging serverless com-
puting paradigm can be leveraged to design scalable serverless
graph analytics over a codesigned continuum infrastructure. We
raised seven primary research questions to address the existing
graph processing platform challenges using serverless computing.
We surveyed state-of-the-art graph processing solutions and in-
troduced our serverless tool, i.e., Graph-Serverlizer, within the
Graph-Massivizer project toolkit. Moreover, three ongoing and fu-
ture directions were presented to outline our overall vision of our
research plan.
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