
metaphactory for Massive Graphs
Aaron Eberhart
metaphacts GmbH

Germany
ae@metaphacts.com

Peter Haase
metaphacts GmbH

Germany
ph@metaphacts.com

Wolfgang Schell
metaphacts GmbH

Germany
ws@metaphacts.com

ABSTRACT
Knowledge Graphs and semantic technologies allow scientists and
domain experts to model complex relations between data in a logi-
cally structured and machine readable format. metaphactory is a
platform that enables users to build these kinds of semantic graphs
easily and efficiently. metaphactory uses standards such as RDF in
combination with OWL, SKOS, SHACL, and others to provide a
flexible endpoint to interact with graphs of varying complexity and
expressivity. As part of the Graph-Massivizer project, metaphactory
is supporting integration and infrastructure consolidation for com-
ponents developed in the project. Part of this work is to develop
a toolkit which metaphactory uses to process very large graphs
without sacrificing sustainability. In this paper we describe in detail
the metaphactory platform and how it supports large-scale graph
processing in the Graph-Massivizer project, as well as outlining
the current efforts within the project and how they aim to increase
capabilities in the present to support future work.

CCS CONCEPTS
• Information systems→ Data exchange;Mediators and data
integration.

KEYWORDS
Graph-Massivizer; metaphactory
ACM Reference Format:
Aaron Eberhart, Peter Haase, and Wolfgang Schell. 2023. metaphactory
for Massive Graphs. In Companion of the 2023 ACM/SPEC International
Conference on Performance Engineering (ICPE ’23 Companion), April 15–19,
2023, Coimbra, Portugal. ACM, New York, NY, USA, 6 pages. https://doi.org/
10.1145/3578245.3585330

1 INTRODUCTION
Knowledge Graphs and semantic technologies allow scientists and
domain experts to model complex relations between data in a log-
ically structured and machine readable format. These graphs are
often extremely useful for understanding the meaning of large
datasets, but can be limited in size due to the need to manually cu-
rate many very specific expressions. This limitation is not inherent
in the graph semantics or technology itself, but rather in the time
and space required to develop and store such a graph. When we

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
GraphSys ’23, April 15–16, 2023, Coimbra, Portugal
© 2023 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 979-8-4007-0072-9/23/04. . . $15.00
https://doi.org/10.1145/3578245.3585330

want to create and utilize very large graph datasets we require the
proper tools to ensure that our solutions remain tractable.

metaphactory is a platform that enables users to build these
kinds of semantic graphs easily and efficiently. By allowing users to
visually interact with the knowledge graph and build applications
that use the structured data as intended, metaphactory provides a
streamlined path for developing and interacting with knowledge
graphs that is unhindered by the need to do everything from scratch.
This utility is also generally agnostic to the underlying graph store
technology used, meaning that metaphactory is able to accommo-
date large graphs as well as small.

Its specific strengths mentioned previously allow metaphactory
to play a central role in the Graph-Massivizer [5] project. In Graph-
Massivizer, a team of scientists and industry experts from diverse
yet related domains are working to develop a toolkit which enables
users to gather insights and reason about large scale knowledge
graphs while ensuring that efficiency and sustainability are not
sacrificed. metaphactory acts as an integration platform for the
different parts of the toolkit, providing data management and ar-
chitectural coordination support.

In this paper we first describe in greater detail what metaphac-
tory is and discuss its strengths which feature prominently in the
Graph-Massivizer project. Following that we describe the over-
all goals of Graph-Massivizer. Then we briefly mention the work
in the other parts of the project and show how they connect to
metaphactory and the overall architecture. Following that we talk
about strategies metaphactory uses to represent and handle the
large amounts of data required for Graph-Massivizer, then finally
we talk about future work.

2 metaphactory
metaphactory is a platform that allows new users and domain
experts alike to visually model and use semantic data stored in a
knowledge graph. In Figure 1 an example of metaphactory use is
shown1. In this picture you can see the visual editor for knowledge
graphs, allowing a user to simultaneously model and edit their
knowledge graph and intuitively grasp the connections between
different classes and relations.

metaphactory works with many existing graph databases and
technologies, such as Amazon Neptune 2, GraphDB 3, RDFox 4,
Stardog 5, and more. This flexibility is one of metaphactory’s great
strengths, and ensures that diverse use cases with both extremely
large as well as small graphs can be supported by avoiding over-
commitment to one particular technology. One of the major factors
1Additional examples: https://metaphacts.com/product/semantic-knowledge-
modeling
2https://aws.amazon.com/neptune/
3https://www.ontotext.com/products/graphdb/
4https://www.oxfordsemantic.tech/product
5https://www.stardog.com/

215

https://doi.org/10.1145/3578245.3585330
https://doi.org/10.1145/3578245.3585330
https://doi.org/10.1145/3578245.3585330
https://metaphacts.com/product/semantic-knowledge-modeling
https://metaphacts.com/product/semantic-knowledge-modeling
https://aws.amazon.com/neptune/
https://www.ontotext.com/products/graphdb/
https://www.oxfordsemantic.tech/product
https://www.stardog.com/

GraphSys ’23, April 15–16, 2023, Coimbra, Portugal Aaron Eberhart, Peter Haase, & Wolfgang Schell

Figure 1: Example Usage of metaphactory

that makes this flexibility possible is by adhering to community
standards so as to maintain broad capability to switch between
different formats.

2.1 Standards
metaphactory uses standards such as the Resource Description
Framework (RDF) [8] in combination with Web Ontology Lan-
guage (OWL) [1], Simple Knowledge Organization System (SKOS)
[3], Shapes Constraint Language (SHACL) [2], SPARQL Protocol
and RDF Query Language (SPARQL) [6], and others to provide a
flexible endpoint to interact with graphs of varying complexity
and expressivity. The subsequent list of standards we support is of
primary relevance for the Graph-Massivizer project and should not
be considered exhaustive.

2.1.1 RDF. A common format for data interchange on the web,
RDF is also a common tool for representing knowledge graphs. RDF
data is written as a set of node-edge-node triples which form a
graph.

2.1.2 OWL. OWL is a format for expressing more abstract and
complex axioms with logical notions than standard RDF. OWL
is serialized in RDF so the two are compatible, even though the
semantics are slightly different. In general OWL is more expressive
than pure RDF but also has far more difficult reasoning problems
due to the added complexity.

2.1.3 SHACL. A constraint language, SHACL, is used for augment-
ing RDF expressivity with shapes. It is in certain respects less ex-
pressive than OWL, but the two are both based in RDF and share
much in common. SHACL is often used for data validation by plac-
ing constraints on data which determine how it should appear when

Figure 2: A Labeled Edge In RDF-star

it is valid. OWL and SHACL are often used when defining a data
model or schema for an application.

2.1.4 SPARQL. Whenever semantic data in RDF needs to be queried
SPARQL is the standard for this type of operation. SPARQL queries
look similar to queries in other popular query languages, however
they are specialized to work on RDF graphs. SPARQL can also be
used to insert or remove data as needed.

2.1.5 SKOS. SKOS is a standardized way to improve data inter-
operability on the web using a set of RDF and OWL axioms. This
works within existing technologies and contains a predefined way
in which data should connect and interact across different sources
and domains. SKOS can also be used to define controlled vocabu-
laries an taxonomies.

2.1.6 RDF-star. RDF-star is a superset of RDF which allows labels
on edges, as seen in Figure 2. This small addition is quite powerful
with the additional types of annotations and descriptions it permits,
yet has little effect on the technical complexity of problems that
can be solved. Labelled edges can be textual descriptors or even
numerical weights, it is even possible to use them as simplifications

216

metaphactory for Massive Graphs GraphSys ’23, April 15–16, 2023, Coimbra, Portugal

for more complex expressions in native RDF such as reification.
RDF-star can be used as a compatibility layer to Labeled Property
Graphs (LPG) as it provides a bridge to the full set of expressivity
of the LPG model.

2.2 Technical Advantages
The metaphactory platform has many technical advantages for the
Graph-Massivizer project. The first has already been mentioned,
though it is worth repeating, that metaphactory works with existing
graph databases, and rather than reinventing the wheel it instead
provides a flexible interface for working with exiting technologies.
This means that the size of a massive graph is not inherently a
limitation so long as technologies exist to interface with them, like
the kind we see in this project.

Another advantage of metaphactory is that it enables the use
of serverless deployment for graph processing technologies it in-
terfaces with. This is especially useful when dealing with very
large datasets as compute power can scale as-needed without the
necessity of running a single massive instance on one server or
machine. A serverless deployment also allows for simplified local
infrastructure by relying on a coordinated data infrastructure in the
cloud which can more efficiently manage resources and potentially
leverage this for more sustainable execution of heavy workloads.

metaphactory also supports sustainability efforts in various ways.
The first major sustainability aspect is direct: by using efficient
and highly optimized infrastructure with metaphactory Graph-
Massivizer ensures that there is minimal waste when graph com-
putations are performed. There is also a more personal aspect to
sustainability, whereby proper data management can lead to more
efficient workflows and internal processes. Not only does metaphac-
tory support sustainability directly, but also can be a powerful tool
for managing metadata and efficient interoperability between sepa-
rate subsystems, thereby reducing the indirect waste of effort and
time.

3 GRAPH-MASSIVIZER
Graph-Massivizer seeks to develop a high-performance, scalable,
and sustainable platform for information processing and reason-
ing based on the massive graph representation of extreme data. It
contains a toolkit of five open-source software tools for use with
graph datasets. In this section we will describe metaphactory’s role
in the Graph-Massivizer project and situate it within the other con-
nected efforts. Finally we will give a brief overview of the system
architecture for the Graph-Massivizer toolkit.

3.1 Graph-Massivizer and metaphactory
Within the Graph-Massivizer project, metaphactory is responsible
for a precise range of goals. The abbreviated list of objectives for
the project and development is shown next.

• Define the Graph-Massivizer platform comprising the five re-
searched tools and their deployment, integration and testing
protocols and procedures

• Define and provision a federated hardware and software
infrastructure for the development, integration and testing
of the five Graph-Massivizer tools and the four use cases

• Integrate the five Graph-Massivizer tools

• Develop, port, and deploy the pilot use cases on the Graph-
Massivizer platform

• Perform testing of the Graph-Massivizer tools
• Deploy and operate the Graph-Massivizer platform

The four use cases identified in the project are: sustainable green
finance, global environment protection foresight, green AI for the
sustainable automotive industry, and a data centre digital twin
for exascale computing. Clearly metaphactory is involved in all
aspects of this effort by coordinating the architecture and providing
a unified data model between subsystems.

3.2 Graph-Massivizer Components
As part of the Graph-Massivizer project there are many sub-tasks
which all play an important role in the toolkit’s overall functionality.
metaphactory integrates data from them all, so they are now briefly
summarized.

3.2.1 Graph-Massivizer. Graph-Massivizer is the toolkit which
binds together all other parts of the architecture. It is available
to all partners for use and runs with metaphactory.

3.2.2 Graph-Inceptor. TheGraph-Inceptor realizes amassive graph
for the system to use and has optimizations for creation and storage
of large amounts of graph data.

3.2.3 Graph-Scrutinizer. The Graph-Scrutinizer has query and in-
spection capabilities as well as probabilistic reasoning for insights
on the data.

3.2.4 Graph-Optimizer. The Graph-Optimizer ensures that large
graph operations are completed in an efficient way, while capturing
data about performance and workload for further insights and
optimization.

3.2.5 Graph-Greenifier. Graph-Greenifier evaluates the energy
consumption of massive graph operation and provides data about
efficiency and the proportion of renewable energy used.

3.2.6 Graph-Serverlizer. The Graph-Serverlizer allows for server-
less deployment of the Graph-Massivizer toolkit so that resources
can be used on-demand whenever possible to avoid wasting com-
puting resources.

3.3 Architecture
The intended architecture for the Graph-Massivizer toolkit is shown
in Figure 3. There are two primary layers in the architecture that
support respectively graph usage and graph optimization.

The first layer, called the operational layer, handles external fac-
ing graph operations such as graph creation and graph querying
and analytics. The subsystems responsible for this activity are the
Graph-Inceptor and the Graph-Scrutinizer. This layer handles the
generation of massive graphs from input data, as well as the out-
put of structured and potentially optimized graphs or graph data
enhanced with analytics.

The second layer, called the processing layer, is responsible
for internal optimization and sustainability processes. The Graph-
Optimizer, Graph-Greenifier, and Graph-Serverlizer utilities com-
prise the backbone of this layer. Here we have a layer that runs

217

GraphSys ’23, April 15–16, 2023, Coimbra, Portugal Aaron Eberhart, Peter Haase, & Wolfgang Schell

Figure 3: Architecture Diagram

in the background and ensures that all front-facing utilities are
optimized and run sustainably.

Both layers are coordinated by the Graph-Massivizer toolkit that
metaphactory orchestrates. This means that data interfaces with
metaphactory are a paramount concern as all subsystems must
be able to communicate in a coherent interchange format with
metaphactory.

4 GRAPH-MASSIVIZER DATA
A primary role metaphactory plays in the Graph-Massivizer project
is to facilitate data coordination across the architecture with the
toolkit. In this section we discuss major relevant aspects to how
metaphactory coordinates and represents data inside the system,
starting with data integration and modeling, and then discussing
data management and data visualization and search.

4.1 Data Modeling
There are various options for how a datamodel for Graph-Massivizer
may be represented in metaphactory, and the toolkit may use any
of them as required by the subsystems. metaphactory uses Findable,
Accessible, Interoperable and Reusable (FAIR) [7] data principles
for data management, which supports the coherent modeling of
data from various disparate sources. The primary ways in which
metaphactory models data follow.

• Ontology Modeling
– metaphactory allows for visual ontology modeling and
development

– Ontologies can represent the data in a system architecture
such as the Graph-Massivizer toolkit in a semantically
rigorous way using OWL and SHACL

– Visual modeling streamlines the development process and
allows for improved understandability between ontology
modelers who make the ontology and domain experts who
utilize the ontology

• Vocabularies

– A vocabulary is a highly reusable set of terms with defini-
tions and often an accompanying taxonomy which defines
hierarchical relations between them

– Vocabularies expressed in RDF can be directly imported
and used by metaphactory

• Combining Ontologies and Vocabularies
– Vocabularies can link with other RDF and RDF-compatible
data artifacts such as OWL or SHACL Ontologies

– Properly linked vocabularies can enhance abstract models
with large amounts of diverse and structured instance data
and other resources

• RDF-star to Bridge Different Graph Models
– When different subsystems make use of their own model,
RDF-star can be used to annotate and formalize the con-
nections between them

– This can be done directly, or by using Property Graphs
expressed with RDF-star, where the edge labels prescribe
properties for each edge

– RDF-star can also enhance analytics by associating numer-
ical values with edges if required

4.2 Data Integration
In Figure 4 we can see how the different elements of the Graph-
Massivizer toolkit need to communicate. metaphactory facilitates
data integration by providing an exchange for data across subsys-
tems which may have their own internal and independent data
paths, as well as handling the data model for the overall archi-
tecture and allowing data queries for interactive exploration and
visualization. Some systems may of course communicate directly
when required, as you can see in some of the arrows in Figure 4,
however metaphactory provides an interface with all components
as the main entry point.

4.3 Data Management
As the Graph-Massivizer project grows and develops, it will likely
become helpful or even necessary to provide a precise accounting
of the data management plan, which metaphactory is positioned to
support. Information such as provenance, licensing, versioning, and
distribution identification can all be stored using RDF or RDF-star
with metaphactory. All of this information is accessible just like
any other data and can be queried or visualized as required by the
system and use cases.

metaphactory uses data catalogs defined using the Data Catalog
Vocabulary (DCAT) [4] to manage data and ensure that the data
is accessible in a standardized format for reuse. Since these cata-
logs are often expressed as vocabularies they are able to integrate
with data in metaphactory freely in the same way as a standard
vocabulary.

4.4 Data Visualization and Search
metaphactory supports the Graph-Massivizer project not only with
handling the graph data but also by providing an easy-to-use inter-
face for accessing, visualizing, and understanding insights derived
from the system. Visualization and search are both provided to
end-users through simple to configure web components which can
be used to implement a use case for specific information needs.

218

metaphactory for Massive Graphs GraphSys ’23, April 15–16, 2023, Coimbra, Portugal

Figure 4: Data Flow Diagram

Figure 5: Example Search

The visualization components for knowledge graphs can be seen
in Figure 1, which shows the Ontology Editor including rich graph
visualization capabilities. Figure 5 shows an example of a structured
semantic search. In this case we ask the system to look for organi-
zations with the founder ”Peter Haase" and then expand the result
to include the headquarters location. In this case there is exactly
one result but for other people and organizations we may find more
entries in the table. The entire search would normally need to be
performed with a complex SPARQL query in other systems, but
with metaphactory we have the ability to specify the data we are
looking for in a simple interactive clickable interface without need-
ing to write or parse a dense query. This allows domain experts

and non-experts to view, search, and use the data without a deep
technical background in semantic technologies.

5 FUTUREWORK
Plans for future work for metaphactory and Graph-Massivizer are
actively developing as work progresses in the project. Current plans
for future work include both immediate concerns to develop the
target infrastructure, as well as more ambitious high-level goals
that motivate the work and may be possible in future systems.

In the short term, our primary goal is to fully initialize and
coordinate the combined system in a way that can support each
partner independently while also ensuring that the toolkit has

219

GraphSys ’23, April 15–16, 2023, Coimbra, Portugal Aaron Eberhart, Peter Haase, & Wolfgang Schell

maximum interoperability. Developing data models and schemas
will play a large part in these coordination efforts, and initial work
has already begun on setting up an internal knowledge graph for
use by the partners which can be expanded to link with other
important shared resources for Graph-Massivizer.

Over the longer term, plans for future work also shows great
potential. Important connections and research opportunities within
the project are also being explored, with the possibility of related
and mutually-beneficial research in topics such as large graph rep-
resentation and management or Neuro-Symbolic AI for knowledge
graphs.
Acknowledgement This project has received funding from the
European Union’s Horizon Research and Innovation Actions under
Grant Agreement Nº 101093202.6

REFERENCES
[1] Sean Bechhofer, Frank vanHarmelen, JimHendler, Ian Horrocks, DeborahMcGuin-

ness, Peter Patel-Schneijder, and Lynn Andrea Stein. 2004. OWL Web Ontology
Language Reference. Recommendation. World Wide Web Consortium (W3C). See
http://www.w3.org/TR/owl-ref/.

[2] Dimitris Kontokostas and Holger Knublauch. 2017. Shapes Constraint Language
(SHACL). W3C Recommendation. W3C. https://www.w3.org/TR/2017/REC-shacl-
20170720/.

[3] Alistair Miles and Sean Bechhofer. 2008. SKOS Simple Knowledge Organiza-
tion System Reference. World Wide Web Consortium, Working Draft WD-skos-
reference-20080829.

[4] Andrea Perego, Simon Cox, Alejandra Gonzalez Beltran, Peter Winstanley, Ric-
cardo Albertoni, and David Browning. 2020. Data Catalog Vocabulary (DCAT)
- Version 2. W3C Recommendation. W3C. https://www.w3.org/TR/2020/REC-
vocab-dcat-2-20200204/.

[5] Radu Prodan, Dragi Kimovski, Andrea Bartolini, Michael Cochez, Alexandru Iosup,
Evgeny Kharlamov, Jože Rožanec, Laurenţiu Vasiliu, and Ana Lucia Vărbănescu.
2022. Towards Extreme and Sustainable Graph Processing for Urgent Societal
Challenges in Europe. In 2022 IEEE Cloud Summit. 23–30. https://doi.org/10.1109/
CloudSummit54781.2022.00010

[6] Andy Seaborne and Eric Prud’hommeaux. 2008. SPARQL Query Language for
RDF. W3C Recommendation. W3C. https://www.w3.org/TR/2008/REC-rdf-sparql-
query-20080115/.

[7] Mark D Wilkinson, Michel Dumontier, IJsbrand Jan Aalbersberg, Gabrielle Apple-
ton, Myles Axton, Arie Baak, Niklas Blomberg, Jan-Willem Boiten, Luiz Bonino
da Silva Santos, Philip E Bourne, et al. 2016. The FAIR Guiding Principles for
scientific data management and stewardship. Scientific data 3 (2016).

[8] David Wood, Markus Lanthaler, and Richard Cyganiak. 2014. RDF 1.1 Concepts and
Abstract Syntax. W3C Recommendation. W3C. https://www.w3.org/TR/2014/REC-
rdf11-concepts-20140225/.

6More information available at: https://graph-massivizer.eu/

220

http://www.w3.org/TR/owl-ref/
https://doi.org/10.1109/CloudSummit54781.2022.00010
https://doi.org/10.1109/CloudSummit54781.2022.00010
https://graph-massivizer.eu/

	Abstract
	1 Introduction
	2 metaphactory
	2.1 Standards
	2.2 Technical Advantages

	3 Graph-Massivizer
	3.1 Graph-Massivizer and metaphactory
	3.2 Graph-Massivizer Components
	3.3 Architecture

	4 Graph-Massivizer Data
	4.1 Data Modeling
	4.2 Data Integration
	4.3 Data Management
	4.4 Data Visualization and Search

	5 Future Work
	References

