
Challenges Towards Modeling and Generating
Infrastructure-as-Code

Galia Novakova Nedeltcheva†
 DEIB, Politecnico di Milano

 Milan, Italy
 galia.nedeltcheva@polimi.it

Bin Xiang
 CNRS@CREATE

 Singapore
 bin.xiang@cnrsatcreate.sg

Laurentiu Niculut
 HPE CDS

 Rome, Italy
 laurentiu.niculut@hpe.com

Debora Benedetto
HPE CDS

Rome, Italy
 debora.benedetto@hpecds.com

ABSTRACT
The infrastructure-as-code (IaC) is an approach for automating

the deployment, maintenance, and monitoring of environments
for online services and applications that developers usually do
manually. The benefit is not only reducing the time and effort but
also the operational costs.

This paper aims at describing our experience in applying IaC
in cloud-native applications, mainly discussing the key challenges
towards modeling and generating IaC faced in the ongoing project
Programming Trustworthy Infrastructure-As-Code in a Secure
Framework (PIACERE). The concluding insights could spur the
wider adoption of IaC by software developers.

CCS CONCEPTS
• Computer systems • Cloud Computing • Software and its
engineering

KEYWORDS
Infrastructure-as-Code (IaC), Modeling IaC, Generating IaC,
DevOps, Challenges

ACM Reference format:

Galia Novakova Nedeltcheva, Bin Xiang, Laurentiu Niculut and Debora
Benedetto. 2023. Challenges Towards Modeling and Generating
Infrastructure-as-Code. In the Companion of the 14th ACM/SPEC
International Conference of Performance Engineering (ICPE’23), April 15–19,
2023, Coimbra, Portugal. ACM, New York, NY, USA, 5 pages.
https://doi.org/10.1145/3578245.3584937

1 INTRODUCTION
The infrastructure-as-code (IaC) is a method of deploying

environments for applications, as well as optimizing
infrastructure management and deployment time. The IT
infrastructure includes Virtual Machines (VMs) and associated
configuration resources. IaC requires three elements to function:
resource pooling, software-defined intelligence, and a unified API.
Software development tools, such as deployment orchestration,
version control systems, and automated testing libraries are used
to manage the infrastructure [1], [2]. Moreover, the development
and maintenance of IaC should follow the software engineering
methodologies and best practices [3].

Also, IaC defines where new infrastructure is deployed (ex:
public or private cloud), the type of service it will run on, and the
settings and security that should be enabled. The deployment
models are repeatable and can be changed and tested to make the
deployment and management of the infrastructure consistent [4],
[5].

Cloud computing, containers, virtualization, orchestration,
and networking applications are used to streamline IT operations.
With that in mind, software provisioning, configuring, and
maintenance should require less time and effort. Other than that,
the problems should be promptly identified and resolved [1], [6].

The DevOps culture and practices are evolving rapidly.
DevSecOps addresses security vulnerabilities while leveraging
automation. Various new tools are being built and there is no
single way of applying DevOps practices by practitioners. In fact,
the DevOps and IaC models necessitates a high level of technical
competence. This is the reason why IaC services are often
outsourced in order to improve their automation process in terms
of time, cost, and quality of the IT infrastructure. Overall, IaC is
an optimal approach to managing modern IT environments and
supporting successful DevOps [1], [4], [7].

After pointing to a summary of the related work and
positioning our contributions in terms of identifying solutions to
issues, the paper continues with a discussion on the key
challenges faced in the ongoing project PIACERE towards

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or
distributed for profit or commercial advantage and that copies bear this notice and
the full citation on the first page. Copyrights for third-party components of this
work must be honored. For all other uses, contact the Owner/Author.
ICPE '23 Companion, April 15–19, 2023, Coimbra, Portugal
© 2023 Copyright is held by the owner/author(s).
ACM ISBN 979-8-4007-0072-9/23/04.
https://doi.org/10.1145/3578245.3584937

189

mailto:bin.xiang@cnrsatcreate.sg

ICPE ‘23 Companion, April 15–19, 2023, Coimbra, Portugal Galia Novakova Nedeltcheva, Bin Xiang, Laurentiu Niculut, & Debora Benedetto

modeling and generating IaC. The proposed approach and
discussed IaC concerns relate to the field of computing
continuum, from Cloud to IoT

We try to report our experience and provide a meaningful
perspective of the issues that might be tackled within similar
innovation and research projects as the PIACERE.

2 RELATED WORK

Some of the challenges in front of IaC have been discussed in
the literature, but are not limited to, include the following ones
[8]:

• Configuration: The IaC development process is usually
automated however, some of the process steps need to be
executed manually, e.g. the generation of the parent code. In
this respect, a risk of technical faults due to the man effort
involved could be always expected [1].

• Code execution: Rather than managing physical system
configurations, developers can instead use scripts written as
code executed on the infrastructure [2]. Also, it is
recommendable that the configuration is separated from the
code [3].

• Dependencies between the different components: They are
manually passed as configuration parameters, leading to a
complex set of templates and pipelines, which is difficult to
maintain [3].

• Access management: Developers often require privileged
access to specific systems however, this creates a risk of
unnecessary entry into mission-critical systems. Cloud
administrators generally enforce access management using
IAM (Identity Access Management) [2].

• Security of the generated IaC code: Security risks in
configuration include poor configuration, human input,
applications undergoing unintended changes, and manual
edits into the cloud terminal [2].

• Integration of the existing target code in the model or use in
the generated IaC code: If some other resources exist like
VMs, it is important how to reuse them in the models and in
the IaC code.

In the following section 3, we provide a discussion and indicate
how the ongoing PIACERE project adds to what is already
available on the topic. In particular, we advance the related state-
of-the-art by adopting an abstract modeling approach and trying
to generalize the common concepts from different cloud
applications and infrastructures.

3 KEY CHALLENGES TOWARDS MODELING
AND GENERATING INFRASTRUCTURE-AS-
CODE

The PIACERE project aims to increase the productivity of the
DevOps teams in the development and operation of IaC through
the provisioning of an integrated DevSecOps framework. DevOps

teams can program IaC as if they were programming any software
application. [8]

In view of the challenges indicated in Section 2, the PIACERE
project has been an insightful experience for us in dealing with
the modeling and generating of IaC. While we have managed to
cope with most of the challenges described in the Introduction and
discussed in this section, we foresee some more of those to tackle
towards the end of the project.

In the following subsections, we present the PIACERE DevOps
Modeling Language (DOML) deployment approach, as well as the
approach to generating IaC.

3.1 The PIACERE DOML approach

Modeling IaC means supplying IT environments with
machine-readable definition files and deploying them in a matter
of minutes. During the design time, in the PIACERE DOML
approach, we model the different elements of the application (as
data, and infrastructure) by making use of abstractions.

DOML is the end-user language enabling the modeling of
deployment and configuration of complex infrastructural
software in a way that can then be transformed by the
Infrastructure Code Generator (ICG) in executable IaC. Such a
language allows DevSecOps teams to select and combine
abstractions with the purpose of creating a proper infrastructure
provisioning, configuration, deployment, and self-healing model
[8], [5].

Generalization of IaC approaches: Modern IaC languages
(such as Terraform, TOSCA, Ansible, Chef, Puppet, etc.) facilitate
the provisioning, deployment, and configuration process of cloud
applications. However, building IaC models is not trivial work
since it requires in-depth knowledge about both the language
itself and the characteristics of the operating environment. The
PIACERE DOML [8] aims to generalize different IaC languages
and provide a user-friendly language model to manage the
development and operation process [9].

During the design time, we model the different elements of the
application, like data of the application and infrastructure, by
making use of abstractions. The problem that we are addressing is
to improve the ability of (non-)expert DevSecOps teams to model
provisioning, deployment, and configuration needs in complex
contexts by providing a set of abstractions of execution
environments and composing them into machine-readable
representations [8].

For example, Terraform is using a declarative approach while
Ansible follows a hybrid one. In comparison to those two
languages, DOML models the application in a multiple-layer
approach, e.g., application layer, abstract, and concrete
infrastructure layers. The advantage of this approach is to
separate the efforts of developing the application and maintaining
a clear model structure. In this way, different developers can be
dedicated to different layers, and different layers of code can also
be reused.

Despite this, there are still a couple of challenges to be tackled
with furtheron. DOML adopts an abstract modeling approach and

190

Challenges Towards Modeling and Generating Infrastructure-as-Code ICPE ‘23 Companion, April 15–19, 2023, Coimbra, Portugal

tries to generalize the common concepts from different cloud
applications and infrastructures. While the underlying different
techniques and architectures make it difficult to abstract the
common concepts, for instance, the concepts related to different
cloud providers vary a lot from each other.

The current compromised approach adopted in DOML is to
incorporate those special elements as properties. However, since
they are quite general concepts and have no standard, the
information cannot be easily passed to downstream tools, e.g.,
ICG, unless some particular agreements are reached separately
between DOML and ICG.

Integrating existing codes and handling existing
resources: In some cases, to successfully provision infrastructure
resources, deploy and configure applications, DOML still needs
the support of existing IaC languages, e.g., Terraform, Ansible, etc.
However, there is no unified and clean way to include the external
codes due to the different information required to be passed.
Meanwhile, it will introduce new problems in the execution order
as it is discussed in section 2.2.

Other than that, DOML should have a mechanism to handle
the existing resources. Different from the standard IaC languages
which have defined their specific way to declare the existing
sources in the model, DOML starts from a more abstract viewpoint
and tries to generalize the way to integrate the existing resources
of the different providers nonetheless, facing certain difficulties.
Particularly, there should be some spot to store the status of the
existing resources, and some way to query or keep track of the
information.

3.2 Generating Infrastructure-as-Code: The PIACERE ICG
approach

Generating IaC means producing machine-readable definition
files from a user intent expressed in a more abstract language
(DOML in the PIACERE project), to achieve this the PIACERE ICG
uses a template-based approach for code generation.

Despite the advantages of improved testability, reliability,
repeatability, versioning control, provisioning, and configuring
on demand, as well as proactive recovery from failures [6], [10],
[11] IaC faces also some challenges, such as the ones
acknowledged in our ongoing project, as follows [1]:

IaC template configuration: Adopting declarative and
imperative approaches and tools like Terraform, Ansible, and
AWS Cloudformation, etc., the transformation of complex and
interrelated objects and their dependencies into code is a
cumbersome task. Deploying IaC requires time and coordination
with others in the team, especially those responsible for security
and compliance. In the process of IaC adoption, it is necessary to
figure out where and how the resources are delivered and
managed [1], [12].

In the PIACERE, one of the objectives is to allow the end user
to seamlessly transition from one environment to another and be
capable of deploying an equivalent infrastructure. To allow for
this capability, each resource is categorized and standardized, and
code is produced for each resource on each provider.

This standardized code though is subject to obsolescence so, it
needs to be upgraded when new functionalities are available, also
vulnerabilities may appear in time if not updated.

Security of the generated IaC code: It is not always possible
to rely only on security measures in the IaC environment.
Moreover, it may take many cycles to check the supplied
resources and ensure they are operating properly with IaC while
using conventional security tools. In fact, IaC is more dynamic
than the provisioning practices, as such it has the potential either
to be utilized optimally or misused easily [1].

To handle this complexity, the PIACERE framework was
enriched with multiple tools (see Figures 1-2) dedicated to
validating the code, starting from the validation of the initial
model up to the scan for potential vulnerabilities, and the
monitoring of the generated infrastructure.

The main tools covering this functionality in the PIACERE
framework are as follows:
• The Model Checker which first validates the integrity of the

initial design also checks for any possible circular
dependencies.

• The IaC Scan Runner is tasked with the vulnerability
assessment of the images and libraries listed in IaC files.

• The Monitoring agents actively monitor the generated
infrastructure and can take also self-healing actions when
necessary.

Obscuration of the sensitive data is another relevant
challenge that we faced. This is handled in the PIACERE by having
the data stored in a secure Vault [13]. During the execution, the
data are instantiated and referenced in the IaC files as
environment variables. Once the execution is finished, the data
are cleaned up leaving no trace of them. We will extend this as the
project proceeds and experience is gathered.

Figure 1. The PIACERE Innovations [8]

Order of Execution: The execution of the IaC files created
needs to take care of the order of their execution. Actually, the
infrastructure resources probably have to be created before the
configuration and deployment of the applications. Moreover, the
applications themselves sometimes have to follow some specific
order for their release. For example, the database should be
installed before the application is going to connect to it.

This challenge is typically more related to the use of tools that
apply an imperative approach such as Ansible, while tools that use
a declarative approach are more resilient.

191

ICPE ‘23 Companion, April 15–19, 2023, Coimbra, Portugal Galia Novakova Nedeltcheva, Bin Xiang, Laurentiu Niculut, & Debora Benedetto

The PIACERE ICG [14] component currently solves this
challenge following the assumption that the infrastructure
resources are deployed before the applications and create
configuration files describing the order of execution. The ICG is a
code generator, built in the context of PIACERE, which will
transform the models into infrastructural code from different IaC
languages [6], [15].

Indeed, the ICG IaC files are organized in folders, i.e. there is
one dedicated folder for each application and another one for the
infrastructure resources. The root folder contains a configuration
file that describes the order of execution of all folders.

As for the definition of the infrastructure resources, tools that
use a declarative approach are chosen in the PIACERE, this takes
away the complexity of having to define the correct order of
deployment of the infrastructural elements.

This approach solves just part of the problem but does not
consider the order of execution of the applications themselves.
The solution implemented in the PACERE to define the proper
order of execution of the applications is to do a thorough analysis
of all the possible dependencies between the applications during
the modeling process and have them properly defined. To this end,
in DOML there are multiple terms and structures dedicated to
handling dependencies, given that DOML is generated and new
and better solutions to handle dependencies are implemented with
every new DOML version.

Selection of the target language for a specific task: There
is a wide selection of IaC tools that focus on a single or small set
of automation steps. For example, one can set up the
infrastructure using Terraform or Chef, and configure it using
Ansible or Puppet, or either release the framework on a virtual
Kubernetes environment.

The current version of the PIACERE ICG supports the two
most popular IaC tools: Terraform for automation of the
provisioning infrastructure, and Ansible for its configuration. This
approach is strictly bound to the definition of the DOML model
which defines the “infrastructure” and the “application” layers.
The ICG parses the DOML model and chooses the IaC tool
depending on which layers the resources belong to. This is the first
implementation of the ICG, and further releases will support other
IaC languages such as Docker and Kubernetes.

Another approach that can be adopted is to leave the user to
choose the target language to be used. This approach requires a
higher level of knowledge of the IaC languages by the user, i.e. it
is up to the user to choose which one fits better for the specific
task. On the other hand, this procedure gives much more
flexibility to the user.

Figure 2. The Design Time of DevSecOps [11]

Integrating existing resources and existing target code:
The deployment and configuration of new infrastructure can
leverage existing resources. In the PIACERE, it comes out that the
provisioning of a use case relies on some existing private
resources. In that example, the VMs are linked to a network and
the storage is provided by another team in the company. Thus, the
user defines in the DOML model the VM to be created and the
Network to be used. The IaC file generation must take care of this
distinction: the resources to be created have a different IaC code
than the existing ones. In the PIACERE, we solve this challenge
by introducing in DOML the “preexisting” concept. For the
resources labeled as “preexisting”, the ICG is going to generate
IaC, mostly dedicated to retrieving the related data and
connecting these existing resources to the new ones.

Such a challenge raises also for the existing target code: the
user may have defined some configuration or IaC files to be
executed which are required for the complete application
deployment. In the PIACERE, the current version of the ICG takes
as input the user’s IaC folder and imports it into its code-
generated folder. The ICG knows the location of these external
files thanks to the DOML model definition and fulfills the
information for its execution.

Table 1. Summary of the challenges in the modeling and
generating of IaC addressed by the PIACERE solution

 The PIACERE key challenges towards IaC

DOML
approach

Generalization of IaC approaches
Integrating existing codes and handling existing
resources

IaC
approach

IaC template configuration

Security of the generated IaC code
Obscuration of the sensitive data

Order of execution
Selection of the target language for a specific task

Integrating existing resources and existing target
code

Access management
Standardization

Reliable IaC implementations

192

Challenges Towards Modeling and Generating Infrastructure-as-Code ICPE ‘23 Companion, April 15–19, 2023, Coimbra, Portugal

4 CONCLUSION

In the development of the PIACERE solution, we faced a number
of challenges and issues (see Table 1) which led to a couple of
useful insights for the developers and researchers [3]:

• Configuring the IaC templates in a standardized manner
allows for easier conversion from one environment to
another.

• The generation of the IaC code faces risk vulnerabilities at
multiple stages. Thus, having appropriate tools to check the
consistency of the code at each stage is important.

• The IaC resources may have dependencies, due to this fact, a
need to handle the order of execution could arise. The
definition of proper structures can simplify this issue.

• There are different IaC tools to automate the different release
steps of the application. To avoid an inexperienced user to
study all of them, the PIACERE framework can choose the
appropriate IaC tool to use for each step.

• The IaC generation may need to integrate existing target code
or resources. In that case, the modeling process has to provide
adequate functionalities.

• Developing clean deployment templates. Using an integrated
developer environment (IDE) such as Eclipse to enhance the
development.

• Technology. The technology choice is an important one to
make, based on the experience and demand of the
development teams [3]. For instance, Terraform can provide
advantages with regard to readability and maintainability.

The future challenges that we foresee to deal with by the end
of our ongoing project are as follows:

• Affidability and resilience of the code: Improper interactions
of the user with the IaC code or not documented changes to
the infrastructure may cause unwanted results during the
IaC deployment. Having appropriate checks inside the IaC
code can help to avoid these circumstances.

• Access management: Allowing the developers to have access
only to the functionalities required by their role is important
to limit possible misuse of IaC.

• Standardization: IaC can assure reducing maintenance
efforts, increased stability, and security by using
standardization [1].

• Reliable IaC implementations: IaC requires consistent
implementation [3].

This paper contributes to the context of the challenges in our
DevOps practice, toward the modeling and generating of IaC. We
tried to provide a meaningful perspective of what issues we have
tackled during the ongoing project PIACERE. As discussed above,
IaC utilization requires awareness of security concerns, and not
following the best practices can introduce security risks to the
infrastructure. In fact, insecure IaC creates cloud environments
that could result in compliance violations and cloud data breaches
[4].

Also, the paper aims to foster discussion and collaboration
among practitioners and researchers from the computing
continuum, from Cloud to IoT. Despite the discussed difficulties,
the consistent use of IaC and other emerging DevOps approaches
is gaining more popularity in the practice [6].

ACKNOWLEDGMENTS
This work is partially funded by the EU Commission in the
Horizon 2020 research and innovation programme under grant
agreement No. 101000162.

REFERENCES

[1] “Infrastructure as Code: Challenges and How to Deal With Them,” [Online].
Available: https://www.iotforall.com/infrastructure-as-code-challenges.

[2] M. Langford, “Top 5 Infrastructure as Code Security Challenges,” [Online].
Available: https://www.trendmicro.com/en_us/devops/22/g/infrastructure-
as-code-iac-security.html.

[3] Pingen, Rene, “A reflection on the perceived benefits of Infrastructure as
Code,” Compact, KPMG Advisory, 2021.

[4] “3 Tips for Success with Infrastructure as Code (IaC),” [Online]. Available:
https://www.techadv.com/blog/3-tips-success-infrastructure-code-iac.

[5] D. Linthicum, “Will the private cloud disrupt your ‘infrastructure as code’
practice?,” [Online]. [Accessed 22 January 2023].

[6] S. Clauirton, “From theory to practice: the challenges of a DevOps
infrastructure as code implementation,” Porto: Portugal, July 2018.

[7] Artac, M., Borovssak, T., Di Nitto, E., Guerriero, M., & Tamburri, D. A.,
“DevOps: introducing infrastructure-as-code,” in IEEE/ACM 39th
International Conf. on Software Engineering Companion (ICSE-C), 2017.

[8] PIACERE project website:, [Online]. Available: https://piacere-project.eu/.
[Accessed 2023].

[9] Bin Xiang, Elisabetta Di Nitto, Galia N. Nedeltcheva, “Deliverable D3.1
PIACERE Abstractions, DOML, and DOML-E – v1,” PIACERE Project, 2022.

[10] C. Rong, “OpenIaC: open infrastructure as code-the network is my
computer.”,” Journal of Cloud Computing, vol. 11.1 (2022), pp. 1-13.

[11] Juncal Alonso, et al., “Embracing IaC through the DevSecOps philosophy:
Concepts, challenges, and a reference framework,” IEEE Software, vol. 1, pp.
56-62, 2022.

[12] Juncal Alonso, et al., “PIACERE: Programming Trustworthy Infrastructure-
As-Code in a Secure Framework,” in CEUR-WS Workshop Proceedings, 2021.

[13] Microsoft, “Use Azure Key Vault to pass secure parameter value during
deployment,” 17 December 2020. [Online]. Available:
https://docs.microsoft.com/en-us/azure/azure-resource-
manager/templates/key-vault-parameter?tabs=azure-cli.

[14] Lorenzo Blasi (HPE), “Deliverable D3.5 Infrastructural code generation - v2,”
PIACERE Project, 2022.

[15] Osaba Eneko, et al., “PIACERE project: description and prototype for
optimizing infrastructure as code deployment configurations,” in
Proceedings of the Genetic and Evolutionary Computation Conference
Companion, 2022.

193

