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ABSTRACT
As the next generation of diverse workloads like autonomous driv-
ing and augmented/virtual reality evolves, computation is shifting
from cloud-based services to the edge, leading to the emergence
of a cloud-edge compute continuum. This continuum promises a
wide spectrum of deployment opportunities for workloads that
can leverage the strengths of cloud (scalable infrastructure, high
reliability), edge (energy efficient, low latencies), and endpoints
(sensing, user-owned). Designing and deploying software in the
continuum is complex because of the variety of available hardware,
each with unique properties and trade-offs. In practice, developers
have limited access to these resources, limiting their ability to create
software deployments. To simplify research and development in the
compute continuum, in this paper, we propose Continuum, a frame-
work for automated infrastructure deployment and benchmarking
that helps researchers and engineers to deploy and test their use
cases in a few lines of code. Continuum can automatically deploy a
wide variety of emulated infrastructures and networks locally and
in the cloud, install software for operating services and resource
managers, and deploy and benchmark applications for users with
diverse configuration options. In our evaluation, we show how our
design covers these requirements, allowing Continuum to be (i)
highly flexible, supporting any computing model, (ii) highly con-
figurable, allowing users to alter framework components using an
intuitive API, and (iii) highly extendable, allowing users to add sup-
port for more infrastructure, applications, and more. Continuum is
available at https://github.com/atlarge-research/continuum.

CCS CONCEPTS
• Computer systems organization → n-tier architectures; •
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Figure 1: The compute continuum with different key proper-
ties for cloud, edge, and endpoint devices and networks.

1 INTRODUCTION
The compute continuum contains an unprecedented variety of het-
erogeneous cloud, edge, and endpoint devices, as well as networks
connecting them. These three tiers of devices represent a trade-off
in resource capacity, scale, network latency, privacy, energy, and
cost (Figure 1). The cloud offers large-scale infrastructure and a
wide array of computing, storage, and resource management ser-
vices through providers such as AWS and GCP. Meanwhile, the edge
brings compute resources closer to users on a smaller scale with
less powerful devices but with lower access latencies and increased
privacy. Finally, endpoint devices such as sensors and smart devices
are heavily resource constrained and located at the far end of the
network. They are operated by users and can offload workload
to the cloud or edge to leverage their resources and services. By
including cloud, edge, and endpoint, the continuum spawns a large
array of use cases, including, but not limited to, content delivery
networks, self-driving vehicles, and IoT [6].

Designing and deploying software for a specific compute contin-
uum use case is very complex because of the variety of available
networks and resources, each with unique properties. Additionally,
service providers need to adapt their services to support many use
cases across the continuum, requiring new solutions. Developers
need access to all these hardware resources to consider all available
deployment models, such as cloud computing, edge computing,
or fog computing [17]. Each deployment (or computing) model
presents its guidelines on how to deploy software across cloud, edge,
and endpoints, and has specific assumptions and requirements on
device and network properties, data flow, multi-tenancy, privacy
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requirements, and more. In practice, developers have limited access
to hardware and are therefore restricted in the deployment models
they can consider, resulting in possible suboptimal deployments.
Furthermore, deployment models also restrict what software can be
used, such as operating systems and services, resource managers,
and application back-ends, influencing and further complicating
software deployments (Figure 2). This raises the question of how
developers should design, test, and deploy software in the complex
environment of the compute continuum.

In this paper, we propose Continuum, a framework that combines
automated infrastructure deployment with application benchmark-
ing in the compute continuum to help researchers and engineers
deploy and test their use cases with a few lines of code. Continuum
can automatically deploy a wide variety of cloud, edge, and end-
point infrastructures and networks, install software for operating
services and resource managers, and benchmark applications for
users with a collection of configuration options. To guarantee that
Continuum covers all concerns of developers wanting to create
software for cloud, edge, or endpoint, we analyze the SPEC-RG
reference architecture for the compute continuum [4] in Figure 2
and synthesize a list of key requirements. We show how our design
covers these requirements, allowing Continuum to be (i) highly
flexible, supporting any computing model, (ii) highly configurable,
allowing users to alter each framework component using an intu-
itive API, and (iii) highly extendable, allowing users to add support
for more infrastructure, resource managers, applications, and more.

Continuum uses virtual machines (VM) to emulate infrastructure
and currently supports infrastructure deployment on local hard-
ware using QEMU and in the cloud using Google Cloud Platform
(GCP). We show how (i) Continuum’s virtualized infrastructure
performs similarly to bare-metal deployments while (ii) provid-
ing increased flexibility by allowing users to change per VM CPU,
memory, storage, and network resources, and (iii) allows users to
emulate any device on general-purpose hardware. Continuum can
automatically set up advanced software stacks on the provided vir-
tualized infrastructure, such as distributed resource management
deployments with Kubernetes and KubeEdge [16] or serverless de-
ployments with OpenFaaS [2], and allows users to switch between
them on the fly. Finally, we demonstrate how Continuum combines
its unique hardware and software provisioning tools with applica-
tion benchmarking functionalities using a machine learning use
case and show how the framework provides key metrics to help
users make more informed decisions.

Our key contributions in this paper include:
(1) We synthesize a list of key requirements and concerns for

software development in the continuum by analyzing the
SPEC-RG compute continuum reference architecture (§2).

(2) We present the design of Continuum, a framework for auto-
mated infrastructure, software, and application deployment
in the compute continuum (§3). We show how this design
allows users to freely explore the compute continuum design
space using a simple but expressive API, and switch between
deployments in a few lines of code.

(3) We demonstrate how Continuum virtualizes infrastructure
with QEMU and Google Cloud for near-bare-metal perfor-
mance while allowing users to benchmark cloud, edge, and
endpoint deployments using advanced containerized and
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Figure 2: The SPEC-RG reference architecture for the com-
pute continuum [4].

serverless resource management software such as Kuber-
netes and OpenFaaS, helping users make informed decisions
on how, where, and when to offload workload (§4).

2 MOTIVATION FOR A CONTINUUM
DEVELOPMENT FRAMEWORK

The compute continuum spawns a large design space with various
complex trade-offs that are difficult to navigate, even for those with
expert knowledge. Therefore, new workloads need to be tested on
various hardware (e.g., ARM or x86 devices) and software configu-
rations (e.g., different operating services and resource managers)
to find an optimal deployment, which costs a significant amount of
time and money. Consequently, there is an important opportunity
to create a tool that helps developers quickly iterate through de-
ployment configurations without advanced hardware requirements
to understand the available trade-offs better. In this section, we
present the motivation for such a tool.

2.1 Requirement Selection
We analyze the SPEC-RG reference architecture for the compute
continuum, as shown in Figure 2 [4]. This architecture is unique
because it lists common components in continuum deployment
models, such as cloud or edge computing, each with a distinct set
of requirements. These requirements are explicit when developers
create software for these components or implicit when developers
rely on other components (e.g., deploy an application via a resource
manager). Both requirement sets should be considered during de-
velopment as all architecture components rely on each other to
function. We analyze the components and their requirements as
described in [4] and split the components up into three categories,
being hardware (P4, E5, C5), applications (P1-2, E1, C1), and the
multiple software layers in between that support executing applica-
tions on hardware in a distributed environment (P3, E2-4, C2-4). We
explain these categories in detail below, list their requirements in
Table 1, and argue that these requirements are mandatory when de-
signing a framework that allows users to navigate all infrastructure
deployment, software installation, and application benchmarking
steps needed to develop software for the continuum.
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Table 1: Required components for a continuum development
framework, derived from the reference architecture (RA).

ID Requirement RA Component
R1 Cloud, edge, and endpoint resources

P4, E5, C5R2 Network resources
R3 Configurable resources
R4 Flexible deployment options
R5 Automated software stack installation P3, E2-4, C2-4R6 Configurable software stack
R7 Automated application deployment P1-2, E1, C1R8 Advanced observability
R9 Accurate deployments

-R10 Performant framework
R11 Extendable components

2.2 Infrastructure Requirements
The first set of requirements relates to the presence and configura-
tion of continuum hardware and networks. Developers may need to
explore what infrastructure works best for their use case or need to
emulate a particular environment in the absence of specific physical
hardware.
R1: Cloud, edge, and endpoint resources Users should be able
to use cloud (C5 in Figure 2), edge (E5), and endpoint devices (P4),
either through physical or virtual hardware. Both hardware types
have important advantages: Physical hardware guarantees correct
performance and behavior similar to bare-metal production en-
vironments, while virtual resources such as VMs offer access to
resources without needing corresponding physical resources (e.g.,
emulate ARM devices on x86 hardware).
R2: Network resources Devices in the continuum are connected
through various types of networks, leveraging Ethernet, Bluetooth,
WiFi, and cellular technologies. These networks vary in communi-
cation latency, throughput, and packet drop rate, and are critical to
consider when designing software [1]. The envisioned tool should
recreate these networks with various properties, even in the absence
of physical networking infrastructure.
R3: Configurable resourcesDevices in the continuum vary signif-
icantly in compute, memory, storage, and network capacity. There-
fore, the tool should allow users to configure these resources on a
per-device basis to create deployments based on computing models
such as fog or mist computing [11].
R4: Flexible deployment options Today, developers can choose
between a vast amount of infrastructure to buy or use via a cloud
service provider. For developers to reuse existing infrastructure
to save time and money, or test deployment in a production-like
environment, the framework must support different hardware and
cloud providers such as AWS or Google Cloud Platform.

2.3 Software Requirements
Software and middleware such as resource managers like Kuber-
netes or operating services like Apache Kafka (P3, E2-4, C2-4) are
vital for software deployment in the continuum as they help users
manage highly distributed infrastructure and tackle concerns like
scalability, availability, and consistency.

R5: Automated software stack installation Not only are dis-
tributed environments challenging to operate, but distributed soft-
ware is also complex to set up. Consequently, our framework should
include software management tools to automate this process and
promote reproducibility for rapid deployment exploration.
R6: Configurable software stack Users should be able to switch
between software components and configurations to suit the un-
derlying hardware, e.g., use a lightweight edge resource manager
like KubeEdge [16] when deploying on edge infrastructure instead
of cloud-native alternatives.

2.4 Application and Benchmark Requirements
The third set of requirements relates to application deployment
and benchmarking (P1-2, E1, C1) on the provided hardware and
software stack. This step is essential as it determines the ability of
the framework to help users improve their deployment.
R7: Automated application deployment Applications can be
deployed as is on bare-metal or encapsulated in VMs, containers,
serverless functions, or language-specific VMs like WebAssem-
bly [10]. Furthermore, application deployment requires a new con-
figuration for each resource manager. The framework should auto-
matically detect and support these deployment options to help users
quickly iterate on deployments with minimal manual involvement.
R8: Advanced observability With infrastructure set up, software
configured, and applications deployed, monitoring, tracing, and
logging systems such as Prometheus need to be in place to pro-
vide feedback to the user on the performance and behavior of all
components and help them make informed decisions.

2.5 Framework Requirements
The final set of requirements relates to the functionality and im-
plementation of the framework, and determines its ease of use and
accuracy of recommendations.
R9: Accurate deployments For the framework’s recommenda-
tions to apply one-on-one to real-world scenarios, its feedback to
users should accurately represent the state of the user’s targeted
production environment, or else recommendations result in subop-
timal real-world deployments instead.
R10: Performant framework The discussed phases of infras-
tructure, software, and application deployment should have low
overhead compared to the desired production deployment to allow
users to explore as many configurations in as little time as possible.
Moreover, high overhead in one of the framework’s components
could skew recommendations and hurt accuracy.
R11: Extendable components Finally, it is critical for all hardware,
software, and benchmarking components to be easily extendable
by users, as without, design space exploration is limited to the
out-of-the-box functions of the framework.

3 CONTINUUM DESIGN
Based on the requirements described in the previous section, we
present the design of Continuum, a framework for automated infras-
tructure deployment and benchmarking in the compute continuum
(Figure 3). Continuum’s design is split into three parts, following
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Table 2: Selection of Parameters Offered by the Framework.

Parameter (group) Requirement Description
Provider R4,R9-11 Infrastructure provider for VMs, e.g., QEMU.
Devices per tier R1,R3 Number of cloud, edge, and endpoint devices to emulate.
Resources per device R1,R3 Per VM CPU cores, CPU quota, and memory and storage capacity.
Network per tier R2 Throughput and latency between VMs.
Resource manager R5-6,R9-11 Resource manager to deploy in the continuum.
Execution model R5-6,R9-11 Optional enhancement of resource manager functionality
Application R7,R11 Application to deploy and benchmark.
Application resources R7 Maximum allowed CPU and memory usage of the application
Applications per device R7 Number of applications to deploy per device
Application parameters R7 Application-specific parameters
Network benchmark R8-9 Perform a network benchmark between devices using Netperf
Observability R8-9 Deploy software for extra observability
Machine addresses R9-10 IP addresses of local, physical hardware for large-scale experiments

VM
Endpoint

Physical machine 1

Infrastructure
Provider
1

Benchmark
Tool

Software
Installer

2

VM
Cloud

Network Bridge

Continuum
API

VM
Endpoint

VM
Edge

4 6

3 5

Figure 3: Design of the Continuum framework.

the sets of requirements related to hardware, software, and applica-
tion deployment. We explain our design and implementation and
demonstrate how users can configure the framework in Table 2.

3.1 Infrastructure Deployment
Continuum deploys infrastructure as virtual machines on one or
multiple physical devices via an infrastructure provider (require-
ment R4 in Table 1). Currently, Continuum supports QEMU for
deployment on local hardware and Google Cloud for deployment
in the cloud; this can be easily extended (R11). This VM approach
allows users to emulate any target architecture on any physical
hardware for a performance penalty (e.g., ARM on x86), no mat-
ter if the user does or does not own the physical hardware. To
achieve accurate and performant deployments (R9-10), users can
emulate on the same physical hardware architecture (e.g., x86 on
x86) for close-to-bare-metal performance [10]. We use VMs over
other virtual resources like containers as they allow emulation of
the entire operating system, contrary to containers, which is critical
for users seeking to develop software there. Users can configure the
provided infrastructure in terms of the number of cloud, edge, and
endpoint VMs deployed (R1), resources per VM (R3), including CPU,
memory, and storage characteristics, and the networks connecting

VMs, including latency and throughput (R2). Continuum passes the
configuration to the infrastructure provider of choice (component
1 in Figure 3), which starts the desired virtual infrastructure ( 2 ).

3.2 Software Deployment
Continuum uses the software automation as a service tool Ansible
to install and configure software for resource managers, operat-
ing services, and application back-ends in the provided VMs (R5,
R9-10). Ansible uses a declarative interface that perfectly suits Con-
tinuum’s requirements: Users define the desired state of a particular
software package through a single Ansible file ( 3 ), including all
configuration options; these files can then be reused (R5) and mixed
(R6) to create a complex and reproducible software stack ( 4 ). The
framework does support any other software automation tool or
language however, such as Bash scripts, with minimal changes
required. Continuum currently supports the resource managers
Kubernetes and KubeEdge for containerized applications and Open-
FaaS for serverless functions, and the operating services Eclipse
Mosquitto for MQTT communication, Prometheus for monitoring,
and Grafana for data visualization. We demonstrate in Section 4
how these packages allow users to deploy applications in containers
and serverless functions across the compute continuum.

3.3 Application Deployment
Finally, Continuum deploys applications via a resource manager
such as Kubernetes, via a virtualization platform such as Docker, or
directly as is using provided Ansible deployment files ( 6 , R7). Users
can specify the deployment via the API, which includes the number
of application instances per device, resources per application, and
application-specific parameters ( 5 ). Continuum then benchmarks
the application and underlying systems and presents key metrics,
such as resource usage, to the user (R9-10). Continuum supports
Prometheus for general-purpose data gathering (R8) and helps
users integrate application-specific metric gathering with Ansible
(R11). This approach does not bind users to specific Continuum
implementations for benchmarking and metric gathering, which
related benchmarking tools suffer from (Section 5), and helps them
to integrate custom solutions.
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Table 3: Experimental setup for the computing model com-
parison in Figure 4.

Parameter Cloud Edge Mist Endpoint
(#cloud, #edge, #endpoint) (3, 0, 4) (1, 2, 2) (0, 2, 2) (0, 0, 1)
Worker location Cloud Edge Endpoint Endpoint
Workers 2 2 2 1
Endpoints per worker 2 1 1 -
Data generation rate 5 3 3 3
Resource manager Kubernetes KubeEdge - -

Table 4: VM and network configuration for the infrastructure
provider comparison in Figure 4 (top) and the software and
application deployment evaluation in Figures 5-7 (bottom).

Parameter Cloud Edge Endpoint
CPU Cores 4 2 2
Memory (GB) 16 8 4
Quota 1.0 1.0 0.5
Latency per tier (ms) 0/7.5/45 7.5/7.5/7.5 45/7.5/7.5
CPU Cores 4 2 1
Memory (GB) 4 2 1
Quota 1.0 0.75 0.5
Latency per tier (ms) 0/7.5/45 7.5/7.5/7.5 45/7.5/7.5

4 EVALUATION
In this section, we design and perform various experiments with
Continuum to show how the framework helps developers create
and test software in the compute continuum, and more specifi-
cally, how Continuum satisfies the requirements listed in Table 1.
Through 4 experiments, we wish to answer the following funda-
mental questions:

(1) First, how does Continuum help users deploy cloud, edge, and
endpoint infrastructure on general-purpose hardware? We de-
ploy virtualized infrastructure on local hardware with QEMU
and in the cloud with Google Cloud and show through an
in-depth performance analysis how differences in physical
infrastructure affect Continuum’s performance (Figure 4).

(2) Second, does Continuum allow for the exploration of differ-
ent computing models? We explore various cloud and edge
computing deployments (Figure 5) and show how users can
switch between them in a few lines of code (Listing 1).

(3) Third, how does our framework help users make task-offloading
decisions in a heterogeneous compute continuum? We demon-
strate how Continuum offers fine-grained hardware and
network configuration options to help users compare deploy-
ment options and offers detailed system and application-level
metrics to guide users to an optimal deployment (Figure 6).

(4) Fourth, does Continuum’s design allow for efficient naviga-
tion of complex software stacks? We deploy containerized
applications with Kubernetes and serverless functions with
OpenFaaS, and show how Continuum’s modular design al-
lows users to explore and answer the same fundamental
questions for different software deployments (Figure 7).

1 [infrastructure]
2 provider = qemu
3

4 # VM settings for cloud, edge, endpoint
5 devices_per_tier = 3,0,4
6 cores_per_device = 4,0,2
7 memory_per_device = 16,0,4
8 quota_per_cpu = 1.0,0,0.5
9

10 # Latency (ms): average,variability
11 cloud_to_cloud = 0,0
12 cloud_to_endpoint = 45,5
13

14 # Throughput (Mbit): average
15 cloud_to_cloud = 1000
16 cloud_to_endpoint = 7.5
17

18 [benchmark]
19 resource_manager = kubernetes
20 application = image_classification
21 data_generation_frequency = 5

Listing 1: Framework configuration for the cloud deployment
with QEMU presented in Tables 3 and 4 and Figure 4.

4.1 Experimental Setup
Tables 3 and 4 list our experimental setup. We deploy Continuum
locally on a cluster of Xeon Silver 4210R machines connected with a
1 Gbps link and create virtual infrastructure using the QEMU/KVM
hypervisor (v6.0). We use multiple physical machines in setups
that require many virtual resources to prevent performance degra-
dation due to oversubscription. To emulate network and storage
resources, we utilize the software tools tc and blkiotune. We also
use Google Cloud Platform (GCP) for virtual machines in the cloud,
and compare GCP to QEMU in Figure 4 using the same resource
configuration (top half of Table 4). These resources differ from the
remaining experiments (bottom half of Table 4) due to restrictions
in deployment options in Google Cloud. In general, cloud VMs
have the most processing power and memory, followed by edge
and endpoint, but also have the highest communication latency
and lowest throughput to the endpoint data source.

For our experiments, we use a machine learning use case that
emulates a security camera endpoint generating a constant number
of images per second, which then need to be processed with image
classification algorithms. The processing can happen locally on an
endpoint or can be offloaded to the cloud or edge for increased
performance. Communication between cloud, edge, and endpoint
applications is handled by Eclipse Mosquitto, a communication ser-
vice for the lightweight pub/sub MQTT network protocol that can
function with minimal network resources, such as those available
at the edge or endpoint. In general, by splitting our application into
a data generation and processing component, our findings apply to
any application that follows the same split of responsibilities.

We deploy Kubernetes as the resource manager of choice in the
cloud and KubeEdge on the edge. Endpoint devices are typically
single-tenant [11] and therefore do not need advanced resource
management software. For Figure 7, we use serverless computing
with OpenFaaS deployed on top of Kubernetes. We provide more
detailed information on our setup in the following section.
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Figure 4: End-to-end latency breakdown for diverse deploy-
ments with QEMU and GCP as infrastructure providers.

4.2 Infrastructure Provisioning
For our first experiment, we show Continuum’s infrastructure pro-
visioning on local hardware and remote clouds.We deploy the afore-
mentioned machine learning application on four different hardware
deployments: (i) cloud computing, offloading workload from end-
points to cloud, (ii) edge computing, offloading from endpoints
to edge, (iii) mist computing, offloading from endpoints to more
powerful endpoints, and (iv) a baseline of processing on endpoints
without offloading. The exact configurations are shown in Tables 3
and 4. We provide Continuum’s configuration file for the cloud
computing deployment in Listing 1. This configuration describes
how image processing tasks are offloaded from four endpoint VMs
to two cloud VMs, with the third cloud VM exclusively running
Kubernetes. Each cloud VM runs one instance of our processing ap-
plication and is connected to two data-offloading endpoints. Users
can easily switch to an edge computing deployment by changing
the𝑑𝑒𝑣𝑖𝑐𝑒𝑠_𝑝𝑒𝑟_𝑡𝑖𝑒𝑟 to 1, 2, 2 as shown in Table 3, and the resources
per device and network between devices accordingly. We provide
more examples in our open-source code.

We deploy and emulate deployments for the four computing
models on local hardware with QEMU and with GCP in the cloud,
and provide a breakdown of end-to-end latency in Figure 4, the time
between the generation of a data element and its processed output
being available to the original data source device. The breakdown
consists of 3 parts: First, network communication between endpoint
and offload target and vice versa. Second, queuing delays, the time
between data arriving on the offload target and the processing
application starting to process the data element. Third, processing
time per data element. The endpoint baseline processes data locally
and therefore has no network communication.

GCP is faster in all processing tasks in Figure 4 due to the use of
more performant physical hardware compared to our local setup.
Communication delays are similar for cloud and edge but signif-
icantly differ for GCP’s mist deployment: We argue that this and
other performance variations for GCP that occurred over multiple
repetitions of this experiment (these are omitted from Figure 4
for clarity) are caused by the multi-tenant environment of Google
Cloud as performance variations on our local setup are negligi-
ble. Finally, the queuing overhead differs significantly between
deployments and does not follow a clear pattern, e.g., QEMU has
less overhead for cloud and more for mist. The implementation of
the ML application most likely causes this: Endpoints generate a

Cloud Edge Endpoint
Endpoints connected per worker 

Figure 5: System load and end-to-end latency when offload-
ing from an increasing number of endpoints to cloud or edge
workers, compared to local processing on an endpoint.

constant number of images per second and offload these images
without waiting on the offloading result. The data processing appli-
cation maintains a queue of incoming images to process, and if it
can process each data element before the next one arrives, queuing
delays will be minimal, and real-time processing is guaranteed. The
deployments in Figure 4 have been configured to achieve real-time
processing and so minimize queuing delays. However, a queue can
still form for a limited time due to performance fluctuations, which
then significantly increases the reported average queuing delay.

In conclusion, we show that Continuum helps users to emulate
infrastructure and networks on general-purpose hardware using
QEMU and GCP, and achieves close-to-bare-metal performance by
leveraging hardware acceleration technology [10].

4.3 Exploration of Computing Models
For our second experiment, we show Continuum’s ability to de-
ploy applications with various computing models and offloading
variations. Our results in Figure 4 show an expected increase in
communication overhead when offloading further away from the
endpoint, with cloud offloading having the highest overhead, as
defined in Listing 1. On the other hand, the difference in processing
time is only apparent when comparing cloud, edge, and mist to the
endpoint baseline, which is set up to be resource constrained. To
make the difference in processing powermore apparent, we increase
the number of endpoints connected per offload target in Figure 5
and report both end-to-end latency and system load. Here, a system
load of less than 100% signifies that the processing application has
enough resources to process an offloading request before the next
one comes in; see our previous discussion on queuing overheads.
We see that the cloud deployment can process offloaded workload
from up to four endpoints in real-time, however, when increas-
ing the number of endpoints beyond four, the required processing
capacity for real-time processing exceeds the available cloud re-
sources, indicated by the system load of 105%. This results in offload
tasks queuing up at the cloud and end-to-end latency exponentially
increasing. We can see similar results for edge computing, where
workload queues start forming with two simultaneously connected
endpoints, albeit temporarily due to performance fluctuations as
the average system load is still below 100%. To prevent this, one
should either reduce the processing requirement (by reducing the
number of endpoints or the data generation rate) or increase the
processing capacity (by using more cloud or edge resources). Users
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Figure 6: End-to-end latency when offloading from 4 end-
points to a single cloud worker with a variable network la-
tency as well as CPU cores and memory on the cloud worker.

can explore these parameters in Continuum to iteratively search
for suitable deployments, as displayed in Listing 1.

In conclusion, we show that Continuum simplifies the explo-
ration and deployment of computing models based on cloud, edge,
and endpoint resources, and helps users determine if task offloading
is required for their use case, and if so, where to offload to.

4.4 Exploration of Deployment Requirements
For our third experiment, we show how users can iteratively update
their infrastructure configuration to find a deployment that satisfies
their desired target metrics. We provide an example in Figure 6:
We offload workload from four endpoints to one cloud machine
and vary the communication latency between the two types of
machines and the processing power of the cloud machine in terms
of CPU cores and memory. We use 1 GB of memory per CPU core.
For the variation in processing power on the cloud, configurations
with less than four CPU cores and four GB of memory have very
high end-to-end latency, indicating large queuing delays. Therefore,
in this case, users are recommended to use cloud VMs with at
least four CPU cores and four GB of memory; more processing
power does not significantly improve performance but can reduce
performance variability. For this reason, we only see the effect of
varying communication latency on the configurations with four
or more CPUs. The end-to-end latency steadily increases when
increasing network delay as expected, allowing users to accurately
determine what network latency is tolerable for their use case. For
example, VR and AR applications require much lower end-to-end
latency for a satisfactory user experience than smart farming and
weather monitoring applications [9].

In conclusion, we demonstrate Continuum’s ability to quickly
emulate and benchmark various hardware and software deploy-
ments, allowing users to iterate through various configurations in
search of one that matches their desired requirements.

4.5 Deployment Flexibility
For our final experiment, we deploy and benchmark a serverless
software stack with OpenFaaS as an alternative to the previously
used container deployments with Kubernetes and KubeEdge to
show how Continuum’s modular design allows users to switch
between software components on the fly while providing the same
system and application metrics to the user. Serverless computing
requires different deployment logic and application architecture for
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Figure 7: Serverless application deployment with varying
compute resources and endpoints connected per worker.

optimal performance: For our previous container deployment, we
used a client-server model for the machine learning use case, with
data-generating applications at the endpoint offloading images to a
permanently running data processing server for analysis. With the
serverless paradigm however, a single instance of the data process-
ing application is started on the cloud or edge for every incoming
image offloaded from the endpoint, and every instance only pro-
cesses a single image. This also means that offloaded tasks can no
longer queue up in the data processing application; endpoints now
have to wait for their offloaded data to be processed before offload-
ing a new item, moving the queuing delay to the endpoint. This
approach simplifies application deployment as many distributed
system concerns like scalability and availability are moved from
the user to the serverless resource manager.

We implement our machine learning use case as a serverless
application, deploy it on the cloud with OpenFaaS, and show our
results in Figure 7. We vary the number of endpoints connected to
a single cloud worker and cloud CPU and memory resources with 1
GB of memory per CPU core. A key difference between serverless
and container deployments shows: Even with sufficient resource
capacity, the end-to-end latency is never lower than 1000 ms com-
pared to latencies of 200 to 300 ms for containerized deployments
previously shown in Figure 4. This is because OpenFaaS has to start
the data processing application for each incoming task offloading
request, which was previously not needed due to our client-server
operation model. Unsurprisingly, we also see that as soon as more
endpoints connect to a single cloud worker than resources available
to that worker, end-to-end latency increases due to endpoints hav-
ing to wait longer for their offloaded processing tasks to complete,
delaying the offloading of newly generated images. This shows the
complexity of comparing various distributed application deploy-
ments and again confirms that Continuum is vital for accelerating
software development in the compute continuum.

In conclusion, we prove that Continuum helps users switch
between and compare complex distributed software stacks, such
as containerized or serverless application benchmarks, without
altering the framework’s core functionality that assists users in
improving and iterating on their deployments.

5 RELATEDWORK
The main related work of Continuum comprises tools and frame-
works that offer (i) infrastructure emulation for the compute con-
tinuum, (ii) automatic software installation for application and
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Table 5: Requirement analysis for selected infrastructure emulators and simulators as well as application benchmarking
frameworks for the compute continuum. Symbols:  : Requirement covered; #: Not covered; G#: Partially covered.

ID Requirement [14] [3] [13] [7] [8] [5] [12] This work
R1 Cloud, edge, and endpoint resources     # # #  
R2 Network resources  G#   # # #  
R3 Configurable resources     # # #  
R4 Flexible deployment options  #    G#   
R5 Automated software stack installation G# G# # # # # #  
R6 Configurable software stack G#  # # # # #  
R7 Automated application deployment G#  # #  G#   
R8 Advanced observability   # #     
R9 Accurate deployments G#  # # # # #  
R10 Performant framework     # # #  
R11 Extendable components   G# G#  G#   

system-level software, and (iii) application benchmarking and ob-
servability. We select prominent related work in these fields and
analyze if they satisfy our requirements for such tools in Table 5.

Symeneonides et al. present Fogify, a framework for emulating
edge and fog deployments using containers [14]. Fogify allows
for advanced configuration options, but its reliance on containers
over virtual machines limits the software that can be deployed on
it, and therefore may not give an accurate representation of the
user’s targeted deployment. Hasenburg et al. present MockFog,
a tool for the automated execution of applications on emulated
fog devices [3]. Mockfog deploys virtual machines similarly to
Continuum but only uses cloud services. Furthermore, it heavily
relies on Docker for application execution, similar to Fogify, and
does not leverage resource managers or distributed services within
VMs, limiting the types of deployments that can be tested.

EdgeCloudSim [13] and iFogSim [7] are examples of simulators
for compute continuum deployments and provide an easy-to-use
but simplified view of hardware and software. These simulators
should therefore only be used in an initial exploratory phase before
an emulator such as Continuum [15].

Many benchmark suites have been published that consider con-
tinuum resources, systems, and applications, such as DeFog [8],
CoAP [5], and RIoTBench [12]. These tools do not offer any in-
frastructure or software provisioning services but focus on the
deployment and benchmarking of applications instead. For exam-
ple, DeFog can automatically offload applications to user-provided
cloud and edge devices and advise a particular scenario using sys-
tem and application-level metrics, similar to what we have shown
in Figure 4. We argue that the coupling of infrastructure emulation
and benchmarking that our framework offers is key in efficiently
exploring the design space of workload deployments in the compute
continuum and that Continuum is unique in this offering; special-
ized benchmarking tools offer more application and observability
choices out of the box, but limit users in benchmarking on their
existing physical hardware.

6 CONCLUSION
In this paper, we present Continuum, a framework for (i) cloud,
edge, and endpoint infrastructure emulation, (ii) automatic soft-
ware installation and configuration, and (iii) application bench-
marking. We make a case that these three components are essen-
tial for exploring the compute continuum design space and that

missing one of these significantly limits a developer’s ability to
quickly iterate between deployments with reliable performance
data. We analyze the SPEC-RG compute continuum reference ar-
chitecture and synthesize a list of key requirements that back this
claim. Then, we present Continuum’s design that implements these
requirements and present an intuitive API for users to configure
their deployment. We demonstrate Continuum’s ability to guide
users towards more informed offloading decisions by deploying
container and serverless-based application benchmarks with Ku-
bernetes and OpenFaaS on local and remote hardware using QEMU
and Google Cloud. Our future work includes extending Contin-
uum’s out-of-the-box infrastructure and software support to more
cloud providers and resource managers and diversifying the avail-
able metrics to better assist more users. Continuum is available at
https://github.com/atlarge-research/continuum.
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