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ABSTRACT
Survival analysis studies time-modeling techniques for an event of
interest occurring for a population. Survival analysis found wide-
spread applications in healthcare, engineering, and social sciences.
However, the data needed to train survival models are often dis-
tributed, incomplete, censored, and confidential. In this context,
federated learning can be exploited to tremendously improve the
quality of the models trained on distributed data while preserving
user privacy. However, federated survival analysis is still in its early
development, and there is no common benchmarking dataset to
test federated survival models. This work provides a novel tech-
nique for constructing realistic heterogeneous datasets by starting
from existing non-federated datasets in a reproducible way. Specif-
ically, we propose two dataset-splitting algorithms based on the
Dirichlet distribution to assign each data sample to a carefully cho-
sen client: quantity-skewed splitting and label-skewed splitting.
Furthermore, these algorithms allow for obtaining different lev-
els of heterogeneity by changing a single hyperparameter. Finally,
numerical experiments provide a quantitative evaluation of the het-
erogeneity level using log-rank tests and a qualitative analysis of
the generated splits. The implementation of the proposed methods
is publicly available in favor of reproducibility and to encourage
common practices to simulate federated environments for survival
analysis.
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1 INTRODUCTION
Survival analysis [21, 42] is a subfield of statistics focused on mod-
eling the occurrence time of an event of interest for a population.
In particular, its goal is to exploit statistical and machine learning
techniques to provide a survival function, i.e., a function that es-
timates the event occurrence probability with respect to time for
an individual. Survival analysis has been successfully applied in
many healthcare, engineering, and social science applications [14].
However, the data to train survival models are often distributed,
incomplete, inaccurate, and confidential [3, 36]. On top of that,
survival data may include a considerable portion of censored ob-
servations, i.e., instances for which the event of interest has yet to
occur. In censored samples, the observed time is an underestima-
tion of the actual occurrence time of the event. As a result, data
scarcity, censorship, and confidentiality can hinder the applicabil-
ity of survival analysis when addressing real-world, large-scale
problems.

In this context, Federated Learning (FL) [17, 26] holds tremen-
dous potential to improve the effectiveness of survival analysis
applications. FL is a subfield of distributed machine learning that
investigates techniques to train machine learning models while
preserving user privacy. In FL, data information never leaves the
device in which it is produced, collected, and stored. FL allows
for training on large-scale data, improving the quality, fairness,
and generalizability of the resulting models with respect to the
non-distributed counterparts.

Federated survival analysis studies the relationship between fed-
erated learning and survival analysis. In particular, survival models
present structural components that make their inclusion into exist-
ing federated learning algorithms non-trivial [3, 29, 35, 43]. Since
this field is in its early development, reproducible and standardized
simulation environments are paramount for the comparability of
results. Simulation environments mimic one or many aspects of
real-world federations, such as client availability, communication
constraints, computation constraints, and data heterogeneity. Some

173

https://orcid.org/0000-0003-3826-4645
https://orcid.org/0000-0003-4007-3207
https://orcid.org/0000-0002-3569-4976
https://orcid.org/0000-0002-7135-6288
https://orcid.org/0000-0002-8306-6739
https://doi.org/10.1145/3578245.3584935
https://doi.org/10.1145/3578245.3584935
https://doi.org/10.1145/3578245.3584935


ICPE ’23 Companion, April 15–19, 2023, Coimbra, Portugal Alberto Archetti, Eugenio Lomurno, Francesco Lattari, André Martin, & Matteo Matteucci

existing works provide simulation environments for standard feder-
ated learning applications [5, 6]. However, these environments have
no direct support for survival analysis problems. Other works imple-
ment algorithms for non-federated survival models [11, 15, 23, 33]
based on centralized survival datasets [13]. Recently, a benchmark-
ing suite for federated healthcare problems has been developed,
including a single federated survival dataset with a predefined data
split among 6 clients [39].

The goal of this work is to extend the benchmarking ground for
federated survival models. To this end, we present a novel tech-
nique for constructing realistic federated datasets from existing
non-federated survival datasets in a flexible and reproducible way.
Realistic federated datasets mimic real-world heterogeneity by ex-
hibiting non-identically distributed (non-IID) data among clients.
More specifically, we provide two algorithms for assigning each
data sample from a centralized survival dataset to a carefully chosen
client. The proposed algorithms are based on the Dirichlet distri-
bution [16, 25], as it can induce distribution skewness by tuning a
single parameter. The first algorithm focuses on building federated
datasets with a non-uniform number of samples. We call this algo-
rithm quantity-skewed splitting. The second one, instead, builds
client datasets with different label distributions. We call this algo-
rithm label-skewed splitting. The heterogeneity level introduced
by each algorithm in the resulting data assignments can be tuned
with a parameter 𝛼 > 0, such that for 𝛼 → 0 data are more skewed,
while for 𝛼 → ∞ data are more uniform. The ability to tune the
heterogeneity level allows for federated simulations with differ-
ent environmental conditions. This aspect is essential to test the
resilience of federated survival models to non-IID realistic data
distributions.

The presented techniques have been tested on a collection of
datasets for survival analysis, providing visual insights about the
level of heterogeneity induced in each setting. Also, the level of
heterogeneity is numerically investigated with log-rank tests [7]
within client distributions. The experimental evaluation demon-
strates that the proposed techniques are able to build heteroge-
neous federated datasets starting from non-federated survival data.
Moreover, the numerical analysis shows how the 𝛼 parameter can
effectively control the heterogeneity level induced by each split.

The implementation of quantity-skewed and label-skewed split-
ting is publicly available [4] in favor of reproducibility and to en-
courage the usage of common practices in the simulation of feder-
ated survival environments.

2 BACKGROUND AND RELATEDWORKS
This section summarizes the main aspects of survival analysis and
federated learning and reviews the state-of-the-art on federated
survival analysis.

2.1 Survival Analysis
Survival analysis, also known as time-to-event analysis, is a statis-
tical machine learning field that models the occurrence time of an
event of interest for a population [42]. The distinctive feature of
survival models is the handling of censored data. With censored
data, we refer to samples for which the event occurrence was not

observed during the study. A survival dataset 𝐷 is a set of 𝑁 triplets

(x𝑖 , 𝛿𝑖 , 𝑡𝑖 ), 𝑖 = 1, . . . , 𝑁 s.t.

• x𝑖 ∈ R𝑑 is a 𝑑-dimensional feature vector, also called co-
variate vector, that retains all the input information for a
sample;

• 𝛿𝑖 is the event occurrence indicator. If 𝛿𝑖 = 1, then the 𝑖-th
sample experienced the event, otherwise the 𝑖-th sample is
censored and 𝛿𝑖 = 0;

• 𝑡𝑖 = min
{
𝑡𝑒
𝑖
, 𝑡𝑐
𝑖

}
is the minimum between the actual event

time 𝑡𝑒
𝑖
and the censoring time 𝑡𝑐

𝑖
.

This setting refers to right-censoring [24], where the censoring
time is less than or equal to the actual event time. This is the case,
for instance, of disease recurrence under a certain treatment [38]
or patient death [12]. Indeed, right-censoring is the most common
scenario in real-world survival applications [42]. Therefore, we
limit the discussion to the right censoring setting for the rest of the
paper.

The goal of survival analysis is to estimate the event occurrence
probability with respect to time. In particular, the output of a sur-
vival model is the survival function

𝑆 (𝑡 |x) = 𝑃 (𝑇 > 𝑡 |x) .
Survival models are classified into three types: non-parametric,

semi-parametric, and parametric [42]. In this work, we include non-
parametric models in the analysis of the proposed data splitting
algorithms, as these are the only models that make no assumption
about the underlying event distribution over time. Moreover, non-
parametric models are well-suited for survival data visualization.
Indeed, non-parametric models encode the overall survival behavior
of a population by predicting a survival function 𝑆 (𝑡) which is not
conditioned on x.

Non-parametric models are Kaplan-Meier (KM) [18], Nelson-
Aalen [1, 32], and Life-Table [10]. Among those, the KM estimator
is the most widely spread in survival applications due to its intuitive
interpretation. The KM estimator starts from the set of unique event
occurrence times𝑇𝐷 = {𝑡 𝑗 : (x𝑖 , 𝛿𝑖 , 𝑡 𝑗 ) ∈ 𝐷}. Then, for each 𝑡 𝑗 ∈ 𝑇𝐷
it computes the number of observed events 𝑑 𝑗 ≥ 1 at time 𝑡 𝑗 and
the number of samples 𝑟 𝑗 that did not yet experience an event. The
KM estimator is computed as

𝑆 (𝑡) =
∏
𝑗 :𝑡 𝑗<𝑡

(
1 −

𝑑 𝑗

𝑟 𝑗

)
.

2.2 Federated Learning
Federated Learning (FL) [17, 26] is a machine learning setting in
which a set of agents jointly train a model without sharing the data
they store locally. FL algorithms rely on a central server for message
exchange and agent coordination. A federation is composed of 𝐾
clients, each holding a private dataset 𝐷𝑘 , 𝑘 = 1, . . . , 𝐾 . The goal
of a FL algorithm is to find the best parameters𝑤 that optimize a
global loss function L:

min
𝑤

L(𝑤) = min
𝑤

𝐾∑︁
𝑘=1

_𝑘L𝑘 (𝑤).

L𝑘 is the local loss function computed by client 𝑘 . _𝑘 is a set of
parameters weighting the contribution of each client to the global
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loss. Usually, _𝑘 is proportional to the number of samples on which
each client 𝑘 evaluated L𝑘 (𝑤) locally. This weighting strategy
favors contributions from clients holding more private data, which
are more likely to be representative of the entire data distribution.

Federated Averaging (FedAvg) [30] is the first algorithm devel-
oped to minimize L. It relies on iterative averaging of model pa-
rameters trained locally on random subsets of clients. However,
FedAvg is not always suited to face system security and confiden-
tiality preservation challenges in real-world applications [31, 34].
Moreover, real-world applications present multiple levels of hetero-
geneity. First, system heterogeneity constraints FL algorithms to
comply with the hardware limitations of the network channel and
the clients’ devices. Second, datasets are not guaranteed to contain
identically distributed data. In fact, in most real-world scenarios
data are likely to be non-IID. In order to handle data heterogeneity
in federated environments, several non-survival federated algo-
rithms have been proposed [2, 19, 27].

2.3 Federated Survival Analysis
Federated learning provides key advantages for the future of health-
care applications [36]. In particular, federated survival analysis
investigates the opportunities and challenges related to the inte-
gration of federated learning into survival analysis tasks. However,
few works specifically tackle federated survival analysis applica-
tions. Some works [3, 43] provide solutions for the non-separability
of the partial log-likelihood loss, used to train Cox survival mod-
els [9]. Indeed, non-separable loss functions are not suited for fed-
erated learning algorithms, as their evaluation requires access to all
the available data in the federation. Other works [29, 35] provide
federated versions of classical survival algorithms asymptotically
equivalent to their centralized counterparts. Within these works,
data federations are built with uniform data splits or with entirely
simulated datasets.

2.4 Federated Datasets
Concerning the available datasets for federated simulation, LEAF [8]
is the most widely spread dataset collection for standard federated
learning applications. It provides several real-world datasets cov-
ering classification, sentiment analysis, next-character, and next-
word prediction. Secure Generative Data Exchange (SGDE) [28]
is a recent framework to build synthetic datasets in a privacy-
preserving way. SGDE provides inherently heterogeneous datasets
composed of synthetic samples provided by client-side data gen-
erators. Currently, SGDE has been applied to classification and
regression problems only. Other studies [16, 25] investigate the
taxonomy of data heterogeneity and provide techniques to emulate
non-IID data splits starting from centralized classification datasets.
Recently, FLamby [39] provided a set of benchmarking tools for
cross-silo federated applications concerning healthcare. Among
those, Fed-TCGA-BRCA is a federated survival dataset collecting
the data of 1066 patients geographically grouped into 6 clients.

To the best of our knowledge, Fed-TCGA-BRCA is the only fed-
erated survival dataset proposed to date. Moreover, existing data-
splitting techniques are tailored for non-survival problems only.

This is the first study extending data-splitting techniques to sur-
vival analysis, providing greater flexibility for modeling simulated
survival environments.

3 METHOD
This paper presents a set of techniques to split survival datasets
into heterogeneous federations. We start from a survival dataset 𝐷
and a number of clients 𝐾 . The goal is to assign to each sample in
𝐷 a client 𝑘 ∈ {1, . . . , 𝐾}, such that federated survival algorithms
can leverage the set of 𝐷𝑘s to simulate heterogeneous learning
scenarios. The work proposes two splitting techniques: quantity-
skewed and label-skewed splitting.

3.1 Quantity-Skewed Splitting
Quantity-skewed splitting pertains to a scenario where the number
of samples for each client 𝑘 , represented as |𝐷𝑘 |, varies among
clients. In such a scenario, clients with a limited number of samples
may generate gradients that are inherently noisy, which can impede
the convergence of federated learning algorithms. This is due to
the fact that clients with a smaller number of samples tend to
exhibit higher variance in their gradients, leading to instability in
the federated learning process and hampering convergence rate.

Simulation of quantity-skewed scenarios is essential in assess-
ing the robustness of federated survival algorithms. It enables re-
searchers to evaluate the algorithm’s ability to handle the imbalance
in sample distribution across clients and its impact on algorithm
performance.

Similarly to [16, 25], the proportion of samples p to assign to
each client follows a Dirichlet distribution

p ∼ D(𝛼 · 1𝐾 ).

Here, 1𝐾 is a vector of 1s of length𝐾 . p ∈ [0, 1]𝐾 such that ⟨1𝐾 , p⟩ =
1. 𝛼 > 0 is a similarity parameter controlling the similarity between
client dataset cardinalities |𝐷𝑘 |. For 𝛼 → 0, the number of samples
for each𝐷𝑘 are heterogeneous. Conversely, for 𝛼 → ∞, the number
of samples for each 𝐷𝑘 tends to be similar. With quantity-skewed
splitting, each sample (x𝑖 , 𝛿𝑖 , 𝑡𝑖 ) is assigned to a client dataset 𝐷𝑘
with probability

𝑃 ((x𝑖 , 𝛿𝑖 , 𝑡𝑖 ) ∈ 𝐷𝑘 ) = p[𝑘] .

3.2 Label-Skewed Splitting
Label-skewed splitting pertains to scenarios in which the distribu-
tion of labels differs among client datasets. This type of distribution
heterogeneity is commonly encountered in real-world federated
learning scenarios. The non-IID distribution can be attributed to
various factors, including variations in data collection and storage
processes, the use of different acquisition devices, and variations
in preprocessing or labeling techniques. Additionally, clients may
have different label quantities due to domain-specific factors. For
instance, in a federated healthcare scenario for treatment risk as-
sessment, one client may have a dataset of records from a rural
hospital, while another client may have data from an urban hospital.
These datasets from different locations may exhibit heterogeneous
label distributions due to disparities in patient demographics and
healthcare access.
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Table 1: Survival datasets involved in the experiments.

Dataset Samples Censored Features

GBSG [38] 686 44% 8
METABRIC [20] 1904 58% 8
AIDS [37] 2839 62% 4
FLCHAIN [40] 7874 28% 10
SUPPORT [41] 9105 68% 35

To produce a label-skewed data split, first, the timeline of the
original survival dataset is divided into 𝐵 bins, obtaining a set of
time instants {𝜏0, . . . , 𝜏𝐵}. The bin identification can be uniform or
quantile-based, as in [22]. Then, each sample (x𝑖 , 𝛿𝑖 , 𝑡𝑖 ) is assigned
a class that corresponds to the 𝑏-th bin, such that 𝑡𝑖 ∈ (𝜏𝑏−1, 𝜏𝑏 ].
Following [16, 25], the Dirichlet distribution is used to identify
heterogeneous splitting proportions according to the sample class
as

p1 ∼ D(𝛼 · 1𝐾 )
.
.
.

p𝐵 ∼ D(𝛼 · 1𝐾 )
Finally, each sample (x𝑖 , 𝛿𝑖 , 𝑡𝑖 ) assigned to label 𝑏 is added to 𝐷𝑘
with probability

𝑃 ((x𝑖 , 𝛿𝑖 , 𝑡𝑖 ) ∈ 𝐷𝑘 ) = p𝑏 [𝑘] .

The 𝛼 parameter controls the level of similarity between label dis-
tributions. For 𝛼 → ∞, client label distributions are similar, while
for 𝛼 → 0 label distributions differ. The numerical dependency
between 𝛼 and the data heterogeneity level is discussed in detail
using log-rank tests [7] in Section 4.

4 EXPERIMENTS
This section presents the experiments carried out to evaluate the
proposedmethods for building heterogeneous datasets for federated
survival analysis.

4.1 Datasets
Each of the experiments involves the following survival datasets:
the German Breast Cancer Study Group 2 (GBSG2) [38], the Molecu-
lar Taxonomy of Breast Cancer International Consortium (METABRIC) [20],
the Australian AIDS survival dataset (AIDS) [37], the assay of serum-
free light chain dataset (FLCHAIN) [40], and the Study to Under-
stand Prognoses Preferences Outcomes and Risks of Treatment
(SUPPORT) [41]. The dataset summary statistics are collected in
Table 1.

4.2 Visualizing Splitting Methods
This section describes the visual results obtained from the splitting
methods under different 𝛼 parameters. In particular, Figure 1 shows
the results of the quantity-skewed splitting algorithm described
in Section 3.1. Splits are generated for a federation of 10 clients
(𝐾 = 10), each identified by a different color in the plots. In Figure 1,
each row corresponds to one of the example datasets described
in Section 4.1. Columns, instead, refer to different values of the
similarity parameter 𝛼 , ranging from 𝛼 = 1000 (low heterogeneity)

to 𝛼 = 0.5 (high heterogeneity). Each plot shows the client dataset
cardinalities |𝐷𝑘 | with respect to clients 𝑘 = 1, . . . , 10. By looking at
the plots on the left of Figure 1, higher values of 𝛼 tend to produce
similar dataset cardinalities |𝐷𝑘 |. Conversely, for lower 𝛼 values,
|𝐷𝑘 |s considerably differ between clients. This trend is confirmed
for all the datasets involved in the experiments.

Figure 2 shows the results of the label-skewed splitting algo-
rithm described in Section 3.2. Each plot shows the Kaplan-Meier
estimators 𝑆𝑘 (𝑡) of each client dataset 𝐷𝑘 , 𝑘 = 1, . . . , 10. The KM
estimator an excellent tool for survival function visualization, as it
encodes the summary information concerning the survival labels in
the dataset. Following the structure of Figure 1, in Figure 2 each row
corresponds to a specific dataset from Section 4.1 and each column
corresponds to an 𝛼 value, decreasing from 1000 to 0.5. From the
left column to the right column, the KM estimators of each client
tend to separate, as 𝛼 decreases. This is expected, as for lower 𝛼
values, the Dirichlet distribution assigns non-uniform proportions
of samples from each time bin to the clients. In this way, decreasing
the 𝛼 parameter results in heterogeneous federated distributions.

4.3 Numerical Analysis of Heterogeneity
This section provides the quantitative analysis carried out to evalu-
ate the level of heterogeneity induced by each splitting method. A
high level of data heterogeneity entails different client data distribu-
tions, which leads to more realistic federations. We use the log-rank
test [7] to determine whether the event occurrence distribution is
the same for two clients. This test verifies the null hypothesis that
there is no statistically significant difference between the survival
distributions of two given populations. We consider the distribution
difference between two clients 𝑘1, 𝑘2 statistically significant if the
p-value 𝑝𝑘1,𝑘2 resulting from the test is ≤ 0.05.

In order to summarize the results for a federation, we define
the heterogeneity score ℎ of a federation as the fraction of client
pairs P = {(𝑘1, 𝑘2 : 𝑘1 < 𝑘2 ∧ 𝑘1, 𝑘2 = 1, . . . , 𝐾)} for which the
distribution difference is statistically significant, i.e.,

ℎ =
1
|P |

∑︁
(𝑘1,𝑘2 ) ∈P

1(𝑝𝑘1,𝑘2 ≤ 0.05) .

Table 2 collects the ℎ values for quantity-skewed and label-skewed
splits under several 𝐾 and 𝛼 values. Each result is averaged over
100 runs.

Concerning quantity-skewed splitting, each setting presents
an average heterogeneity score smaller than 5%. In other words,
quantity-skewed survival data does not present statistically signifi-
cant label distribution differences when comparing pairs of client
datasets. This implies that quantity-skewed splitting is well suited
to test the resilience of a federated algorithm to data imbalance, but
not to heterogeneous data distributions.

Conversely, label-skewed splitting exhibits noticeable differences
in ℎ scores depending on the value of 𝛼 . In fact, for all the tested
datasets, the ℎ score with 𝛼 = 1000 is almost zero, and decreasing
𝛼 affects the number of different label distributions among clients.
For datasets with smaller total cardinalities (GBSG2, METABRIC,
and AIDS) 𝛼 must be smaller than 10 in order to detect noticeable
differences between client distributions. Instead, datasets with more
total samples (FLCHAIN and SUPPORT) present high heterogeneity
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Figure 1: Number of samples |𝐷𝑘 | for each client 𝑘 = 1, . . . , 10. Each row refers to one of the datasets described in Section 4.1.
Each column corresponds to a quantity-skewed split (Section 3.1) with a fixed similarity parameter 𝛼 .

Figure 2: Kaplan-Meier estimators 𝑆𝑘 (𝑡) for each client 𝑘 = 1, . . . , 10. Each row refers to one of the datasets described in Section 4.1.
Each column corresponds to a label-skewed split (Section 3.2) with a fixed similarity parameter 𝛼 .
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Table 2: Heterogeneity score ℎ for several clients 𝐾 and similarity parameters 𝛼 . Heterogeneity scores ℎ are averaged over 100
runs and scaled by 100 for better readability.

Quantity-Skewed Split, 𝐾 = 5

Dataset 𝛼 = 1000.0 𝛼 = 100.0 𝛼 = 10.0 𝛼 = 1.0 𝛼 = 0.5 𝛼 = 0.1

GBSG2 2.6±6.0 3.1±7.1 3.4±8.2 2.1±5.9 4.3±9.3 2.2±6.6
METABRIC 2.8±7.3 3.3±7.9 3.1±7.6 2.9±8.3 1.5±5.4 2.2±7.5
AIDS 1.4±5.3 2.8±6.5 2.1±5.0 4.6±10.5 4.6±9.8 2.3±5.8
FLCHAIN 1.9±4.6 3.2±6.9 2.3±6.0 3.8±8.4 2.9±9.8 2.6±6.8
SUPPORT 3.0±6.9 2.0±4.7 2.5±6.7 3.3±7.4 3.7±9.4 0.3±2.2

Quantity-Skewed Split, 𝐾 = 10

Dataset 𝛼 = 1000.0 𝛼 = 100.0 𝛼 = 10.0 𝛼 = 1.0 𝛼 = 0.5 𝛼 = 0.1

GBSG2 4.1±4.8 3.9±5.0 3.0±4.9 3.0±4.3 3.0±4.5 1.9±3.3
METABRIC 3.6±5.3 4.7±6.0 4.4±5.9 3.5±5.6 3.6±4.7 1.7±4.0
AIDS 4.1±5.6 4.5±5.5 3.8±5.4 4.5±6.4 4.5±6.3 2.3±3.6
FLCHAIN 3.7±4.8 3.4±5.0 3.6±4.5 5.5±6.7 4.2±6.2 2.3±4.0
SUPPORT 4.1±5.8 3.4±4.6 4.0±4.8 3.9±5.7 4.2±6.5 1.0±2.3

Quantity-Skewed Split, 𝐾 = 50

Dataset 𝛼 = 1000.0 𝛼 = 100.0 𝛼 = 10.0 𝛼 = 1.0 𝛼 = 0.5 𝛼 = 0.1

GBSG2 3.9±2.0 3.4±1.8 3.5±2.0 3.0±1.8 2.6±1.7 1.6±1.0
METABRIC 4.6±2.3 4.7±2.6 4.4±2.0 3.9±2.1 3.2±1.8 1.5±1.1
AIDS 4.5±2.2 4.9±2.5 4.4±2.1 4.6±2.4 4.2±2.4 2.0±1.1
FLCHAIN 4.8±2.4 5.0±2.4 4.6±2.2 4.7±2.6 4.8±2.7 2.1±1.5
SUPPORT 4.5±2.2 4.5±2.3 4.8±2.3 3.9±2.1 3.4±2.1 0.8±0.8

Label-Skewed Split, 𝐾 = 5

Dataset 𝛼 = 1000.0 𝛼 = 100.0 𝛼 = 10.0 𝛼 = 1.0 𝛼 = 0.5 𝛼 = 0.1

GBSG2 0.2±2.0 0.1±1.0 5.8±9.4 46.7±20.9 58.2±17.0 73.8±18.2
METABRIC 0.0±0.0 0.5±2.2 20.9±17.2 66.1±19.0 76.7±14.5 82.3±13.3
AIDS 0.3±1.7 3.1±7.2 37.5±21.9 75.1±16.2 81.5±14.4 86.6±11.3
FLCHAIN 0.3±1.7 12.6±14.9 58.8±17.6 83.9±12.4 88.0±11.4 94.1±7.0
SUPPORT 0.5±2.2 29.6±20.8 74.3±15.7 91.3±9.7 92.5±7.4 94.0±6.4

Label-Skewed Split, 𝐾 = 10

Dataset 𝛼 = 1000.0 𝛼 = 100.0 𝛼 = 10.0 𝛼 = 1.0 𝛼 = 0.5 𝛼 = 0.1

GBSG2 0.4±1.5 0.6±1.5 2.8±4.3 32.2±11.7 43.7±11.5 63.2±12.9
METABRIC 0.1±0.4 0.2±1.0 10.6±8.4 54.6±13.6 66.5±10.1 76.7±8.7
AIDS 0.3±1.0 1.4±2.7 24.7±12.6 68.1±9.0 74.0±9.1 77.7±8.4
FLCHAIN 0.4±1.2 4.2±5.5 42.8±13.0 78.2±8.8 84.9±5.6 89.3±5.8
SUPPORT 0.1±0.4 14.7±9.7 63.2±10.5 87.0±4.9 88.5±4.7 89.7±6.1

Label-Skewed Split, 𝐾 = 50

Dataset 𝛼 = 1000.0 𝛼 = 100.0 𝛼 = 10.0 𝛼 = 1.0 𝛼 = 0.5 𝛼 = 0.1

GBSG2 0.5±0.6 0.6±0.6 0.5±0.6 5.7±2.2 10.8±3.3 23.8±4.2
METABRIC 0.2±0.3 0.3±0.5 1.3±1.2 21.7±4.5 33.1±5.2 48.8±5.5
AIDS 0.6±0.5 0.8±0.8 4.5±2.3 34.6±5.2 45.3±4.4 49.8±4.9
FLCHAIN 0.2±0.3 0.6±0.6 10.6±3.7 55.4±4.1 64.8±2.6 72.4±3.6
SUPPORT 0.0±0.0 0.5±0.6 29.0±5.5 69.9±2.7 75.5±2.3 73.4±4.2

even for𝛼 = 100. For all the dataset splits in small federations (𝐾 = 5
and 𝐾 = 10), 𝛼 values smaller than 1 result in ℎ > 50%. The trend

does not apply to federations with more clients (𝐾 = 50), where
even 𝛼 = 0.1 is not enough to obtain ℎ > 50%.
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5 CONCLUSION
This paper proposes two algorithms to simulate data heterogeneity
in survival datasets for federated learning. Federated simulation is
an important step in survival analysis toward the implementation
and production of more accurate, fair, and privacy-preserving sur-
vival models. The presented splitting techniques are based on the
Dirichlet distribution. Quantity-skewed splitting produces datasets
with variable cardinalities, while label-skewed splitting relies on
time binning to split samples according to different label distri-
butions. Visual insights are provided to show the behavior of the
proposed methods under hyperparameter change. Moreover, log-
rank tests are reported to provide a quantitative evaluation of the
degree of heterogeneity induced by each data split. To encourage
the adoption of common benchmarking practices for future experi-
ments on federated survival analysis, we make the source code of
the proposed algorithms publicly available.
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