
Event-based Simulation for Transient Systems with Capture
Replay to Predict Self-Adaptive Systems (Work in Progress Paper)

Sarah Stieß

sarah.stiess@iste.uni-stuttgart.de

Institute of Software Engineering, University of Stuttgart

Stuttgart, Baden-Württemberg, Germany

Stefan Höppner

stefan.hoeppner@uni-ulm.de

Institute of Software Engineering and Programming

Languages, Ulm University

Ulm, Baden-Württemberg, Germany

Steffen Becker

steffen.becker@iste.uni-stuttgart.de

Institute of Software Engineering, University of Stuttgart

Stuttgart, Baden-Württemberg, Germany

Matthias Tichy

matthias.tichy@uni-ulm.de

Institute of Software Engineering and Programming

Languages, Ulm University

Ulm, Baden-Württemberg, Germany

ABSTRACT
Cloud-native systems are dynamic in nature as they always have

to react to changes in the environment, e.g., how users utilize the

system. Self-adaptive cloud-native systems manage those changes

by predicting how future environmental changes will impact the

system’s service level objectives and how the system can subse-

quently reconfigure to ensure that the service level objectives stay

fulfilled. The farther the predictions look into the future, the higher

the chance that good reconfigurations can be identified and applied.

However, this requires efficient exploration of potential future sys-

tem states, particularly exploring alternative futures resulting from

alternative system reconfiguration. We present in this paper an ex-

tension to the Slingshot simulator for Palladio component models

to efficiently explore the future state space induced by environmen-

tal changes and reconfigurations. The extension creates snapshots

of simulation states and reloads them to explore alternatives. We

show that Slingshot’s event-based publish-subscribe architecture

enables us to extend the simulator easily and without changes to

the simulator itself.

KEYWORDS
event-based simulation, capture-replay, Palladio, Slingshot, self-

adaptive system

ACM Reference Format:
Sarah Stieß, Stefan Höppner, Steffen Becker, and Matthias Tichy. 2023.

Event-based Simulation for Transient Systems with Capture Replay to

Predict Self-Adaptive Systems (Work in Progress Paper). In Companion of
the 2023 ACM/SPEC International Conference on Performance Engineering
(ICPE ’23 Companion), April 15–19, 2023, Coimbra, Portugal. ACM, New York,

NY, USA, 7 pages. https://doi.org/10.1145/3578245.3585029

This work is licensed under a Creative Commons Attribution

International 4.0 License.

ICPE ’23 Companion, April 15–19, 2023, Coimbra, Portugal
© 2023 Copyright held by the owner/author(s).

ACM ISBN 979-8-4007-0072-9/23/04.

https://doi.org/10.1145/3578245.3585029

1 INTRODUCTION
Cloud-native systems are subject to continuous changes to their

environment, e.g., the rate of user requests, the type of user re-

quests, and the amount of stored data. In spite of all those changes,

systems still need to satisfy service level objectives (SLOs) [4] while

minimizing cost. Due to all those continuous changes, such systems

may not have a steady-state.

Self-adaptive cloud-native systems use reconfigurations to adapt

themselves w.r.t. those environment changes by employing a dig-

ital twin architecture as we described in a previously published

paper [13]. They can do this particularly well if they predict the ef-

fects of multiple environmental changes and reconfiguration rules,

capturing them in a tree containing future states and changes be-

tween them. They then use those predictions to choose the best

reconfigurations responding to upcoming environmental changes.

The Palladio ecosystem, its component model [11], and simula-

tion approaches such as Slingshot [8] already enable predicting the

effect of individual rules and sequences of rules on the system’s

behavior and SLOs.

In this paper we present ongoing work on developing such a self-

adaptive cloud-native System based on the the Slingshot simulator

and the Palladio component model. An exploration component sys-

tematically executes simulations to predict how the system fares

after different environmental changes and how executing different

reconfiguration rules as reactions improve (or worsen) the sys-

tem’s behavior. The result of the exploration component is a graph

of states resulting from sequences of environmental changes and

reconfiguration rules. Creating this graph efficiently is the key

challenge as conducting the simulations is very costly. Hence, our

aim is to avoid beginning the simulation from the starting state

for each different sequence of environmental changes and recon-

figuration rules. The contribution of this paper is an extension

of the Slingshot simulator which allows to snapshot simulation

states and restart a simulation from the snapshot. The introduced

exploration component can simulate one sequence of changes and

rules, backtrack to a previous state in the tree, re-load the snapshot,

and continue the simulation with a different change. As this is still

work in progress, we cannot yet provide concrete result regarding

efficiency and performance.

17

https://doi.org/10.1145/3578245.3585029
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1145/3578245.3585029

ICPE ’23 Companion, April 15–19, 2023, Coimbra, Portugal Sarah Stieß, Stefan Höppner, Steffen Becker, and Matthias Tichy

Exploration

start

Simulation

create,
readGraphExplorer

SnapshotExtension

Planning

RawGraph

update

describe

PCM

read

Rules

generateread Preparator

read

decide
onPlanner

Execution

Real System

execute

Executor

read

monitor

trigger

retrigger

Watchdog

StateGraph
with utilities

Component action
Artifact flow
Artifact description

Legend

Plan

retrigger

Figure 1: System architecture overview.

The remainder of this paper is structured as follows: Section 2

gives an overview of the complete self-adaptive system we are de-

veloping and presents details on simulation and exploration and the

involved artifacts. Afterwards, in Section 3, we detail our approach

of using snapshots and simulation to explore a number of potential

future system developments. Section 4 discusses related works and

Section 5 presents a conclusion of our work and outlines future

work based on our current results.

2 ARCHITECTURE
In this section, we outline all parts of our self-adaptive system

to allow an understanding of the system as a whole and the role

simulation plays in it.

The architecture of our self-adaptive system is centered around

the four main activities of the system, namely Simulation, Explo-
ration, Planning and Execution, as depicted in Figure 1. Simulation

is focused on simulating how the system might develop over the

next few minutes based on an arbitrary start state. Exploration uses

simulation to explore several potential futures and aggregates them

into a directed acyclic graph that depicts which different system de-

velopments are possible. The artefact that holds this graph is called

RawStateGraph. We explain the makeup of the RawStateGraph in

more detail in Section 2.2. Planning is concerned with using the

results from Exploration to decide on optimal system actions, and

Execution applies planned actions to the real system at appropriate

times. The former step requires some pre-processing to compact

the RawStateGraph into a format that is better manageable.

In the remainder of this section, we give a detailed description

of the simulation and involved artifacts . Details on the other com-

ponents are given throughout the remainder of this paper.

2.1 Simulation
We use the Slingshot Simulator [8], that simulates a systemwith dis-

crete event-simulation [1] and queueing networks (QN) [5]. Using

QNs implies that the simulator implements modeled resources as

queues. Discrete event-simulation entails that all things that might

happen during interpretation of a system model — such as a user

request entering or leaving the system, or a user request requesting

request

suspend

resume

t = 0

t = 10

Event
Scheduler request

t = 0

t = 10

Event
Proc.Requested

Event:
Proc. Finished

schedule(Proc.Requested, 10)

Figure 2: Simulation worldviews, as described in [6]. Process-
oriented on the left and event-oriented on the right.

a resource — are described with events. As this is about discrete
event-simulation, each event occurs at a certain point in time.

There are different views on discrete event-simulation. A process-

oriented view, as sported, e.g., by Simulizar [2] and an event-oriented

view, as sported, e.g., by Slingshot [8]. Understanding the differ-

ences between them is helpful for understanding the following

sections. Thus, we recap the worldviews as described by Carson [6],

in the following paragraphs.

For the process-oriented worldview, each user request is a sep-

arate process. As depicted on the right of Figure 2, a user request

traverses the simulated model and requests a resource at point in

time 𝑡 = 0. The resource — which behaves like a queue — calculates

how long it takes to process the user request, sends the request’s

process to sleep and wakes it up after the calculated amount of time

units passed (10 for this example), thereby simulating the process-

ing time. Once the processing time is over, the user request resumes

the traversal of the simulated model.

In the event-oriented worldview, each user request is an en-

tity. Events describe how the user request traverses the simulated

model. As depicted on the right of Figure 2, a user request en-

queues at a resource at point in time 𝑡 = 0, as represented by the

event Proc.Requested. Just as with process-orientation, the resource

calculates the duration until the request is processed. However,

instead of sending a process to sleep, the simulation adds the event

Proc.Finished, representing the end of the processing, to the future

event list. Once the simulation time reaches the respective point in

time the event is consumed, in this example at 𝑡 = 10. Importantly,

each entity carries its context, e.g. a request knows which resource

to request, and what the next processing step is.

The event-oriented worldview fits our purpose better. It enables

us to create a system where we can resume simulation from any

state of the simulated system. This process is detailed in Section 3.

We therefore settled on using the Slingshot Simulator [8].

In addition to the event-oriented worldview, Slingshot has an

event-driven architecture [8], i.e., Slingshot uses Publish-Subscribe

to distribute events. The performance impact of this design is not yet

evaluated. Slingshot consists of a core component that manages the

future event list and distributes the events, and arbitrary extensions

that may subscribe to events and process them. The extensions

are either stateless or stateful. The latter are, e.g., for processing

resources that must remember the enqueued requests.

2.2 RawStateGraph and RawModelState
As depicted in Figure 1, the RawStateGraph exists as the central

artifact inside Exploration and is the link between Exploration and

18

Event-based Simulation for Transient Systems with Capture Replay to Predict
Self-Adaptive Systems (Work in Progress Paper) ICPE ’23 Companion, April 15–19, 2023, Coimbra, Portugal

s3s1 s2

Reconfiguration execution Response time

RawModelState State transitions

re
sp

on
se

 ti
m

e,

re
co

nfi
g.

 e
xe

c.

time

Figure 3: Excerpt of a RawStateGraph (lower half) and the
underlying runtime measurements (upper half).

Planning. It is also a data structure we designed to represent states

of our self-adaptive system and transitions between the states. We

use the prefix “Raw” because Planning processes the raw graph

further into the actual StateGraph.

The RawStateGraph consists of RawModelStates and transitions.

A RawModelState represents one state of the self-adaptive system.

It consists of an architecture configuration, an environment context,

runtime measurements, and a snapshot of the simulator state.

Figure 3 visualizes the relation between runtime measurements

and the RawStateGraph. The upper half of the figure shows re-

sponse time measurements, marked with ♢ and ♦. The ♦ marks

values with a significant difference from the previous values. In real-

ity, we would measure other runtime measurements as well. The □
in the diagram marks the execution of a reconfiguration. The lower

half of the figure shows an excerpt of a RawStateGraph, consisting

of three successive RawModelStates (𝑠1, 𝑠2 and 𝑠3) and a bit of 𝑠3’s

successor state, as well as the transitions between the states. Each

RawModelState encompasses multiple runtime measurement val-

ues, as indicated by the dotted vertical lines. The system transition

into a new state, if a runtime measurement changes significantly,

e.g. the ♦ that caused the transition from 𝑠1 to 𝑠2 and from 𝑠2 to 𝑠3,

or the architecture configuration changes, e.g. the □ that caused

the transition 𝑠2 to 𝑠3. Both are marked with a dashed arrow. Envi-

ronment changes cause transitions as well, but are not depicted.

Regarding the snapshot, it contains the state of a simulator’s

stateful constituents, such as the queues. We take it just before

the transition to the next RawModelState, e.g., for the state 𝑠2 in

Figure 3, a snapshot is taken just before the execution of the recon-

figuration. The snapshot can be used to restore the simulator to that

point in time. We have multiple possible snapshots for each Raw-

ModelState, because RawModelStates last a certain duration, such

that the state of the simulator changes while we stick to the same

RawModelState. There is only one possible architecture configu-

ration and environment context for each RawModelState because

changes in either cause a transition. The next RawModelStates then

contains the changed architecture configuration or environmental

context.

3 STATE GRAPH EXPLORATION
This section covers Exploration and Simulation (c.f. Figure 1). Fig-

ure 3 from the previous section shows a linear sequence of states,

i.e. one future, no alternatives. However, we want to continue into

alternative futures as well, e.g. by branching off after 𝑠2. To achieve

this, we must restore the stateful constituents of the simulator to

what they were like when transitioning from 𝑠2 to 𝑠3, select a differ-

ent change, based on probabilities provided by the user, and apply

the selected change. After the new change, the system will likely

behave differently, i.e. ends up in a new state, leaving us with a

different future to save and explore.

The crucial aspect of the exploration is to restore the stateful

constituents of the simulator to a previous state. We achieve this

with the snapshots we take of previous simulator states.

We realize snapshots with an approach based on the event-

oriented Slingshot Simulator [8]. We named the approach capture-
replay.

In Slingshot, we can snapshot the state of the simulator by cap-
turing a set of simulation events. The set does not contain all past

events, but only those required for restoring. Later on, we can re-
play the captured events on an empty simulation run to restore

the simulator state at the time of capturing. After restoring we can

continue the simulation.

Alternative approaches have been considered and are discussed

in Section 3.3.

3.1 How does this work in detail?
In this section, we describe how we realized the capture-replay

approach with Slingshot [8] and discuss how it works in detail.

As shown in Figure 1, Exploration uses Simulation to gather

information about the system behavior. In addition, we hook a com-

ponent for snapshots into Simulation. Due to using the Slingshot

simulator and Slingshot’s Event-driven architecture, hooking into

the simulation is easy. The snapshot component is designed as a

Slingshot Extension. It subscribes to events, that might trigger a

snapshot and introduces additional snapshot-related events and the

logic to take a snapshot.

The SnapshotExtension is designed to be as noninvasive as pos-

sible. We restricted changes to the Slingshot simulator to a few

additional access operations to extract the upcoming events from

the future event list. For the simulation itself, our SnapshotExten-

sion is purely optional. We can detach it and still use the simulator.

The Snapshot Extension is split into three parts: one part, to

check for snapshot triggers, a Camera to take the snapshots, and a

Recorder to remember important events of the past.

The trigger-checking part subscribes to measurement and recon-

figuration related events, evaluates them, and triggers a snapshot,

if necessary. Once the snapshot creation got triggered, the Camera

creates a snapshot with the events from the future event list.

If all extensions involved in the simulation of a system were

stateless, events from the future event list would be sufficient to ini-

tialize the next simulation run. However, in Slingshot, the queues

for the processing resources and the calculators for monitoring

durations, e.g., response time, are stateful. To restore their states

as closely as possible, we introduce the Recorder. We record past

events, instead of accessing the queues directly because it offers

19

ICPE ’23 Companion, April 15–19, 2023, Coimbra, Portugal Sarah Stieß, Stefan Höppner, Steffen Becker, and Matthias Tichy

ResourceSimulation

t = 10

t = 10

t = 20

t = 20

update
statesEvent e1 : Elem. Passed

update
statesEvent e2 : Proc. Requested

update
states

Event e1' : Proc. Finished

update
states

Event e2' : Elem. Passed

Calculator

Req1

ResourceSimulation

R
eq

1

Calculator

Req1

ResourceSimulationCalculator

Req1

ResourceSimulationCalculator

Req1

Req1

Req1

Req1

t = 17 Event e4 : Proc. Requested
Req2

t = 15
Event e3 : SnapshotTaken

Event
Scheduler

ResourceSimulationCalculator

Req1

R
eq

1

R
eq

2

R
eq

2
R

eq
2

update
statesno

w
fu

tu
re

 e
ve

nt
 li

st

(not yet scheduled)

Figure 4: Events of an event-oriented Simulation. Two re-
quests enter a queue, one request leaves. At 𝑡 = 15 a snapshot
is taken.

more independence. We need not alter any existing Slingshot com-

ponent, and are less likely to be affected by changes of Slingshot’s

internal implementation. Currently, the Recorder remembers events

about a request arriving at a resource until the request is processed

and events that start a duration calculation until the duration is cal-

culated. Both are observed by subscribing to the respective events.

Figure 4 shows an event trace on the left, and stateful resources

on the right. The current simulation time is 𝑡 = 15 and the Snap-
shotTaken event is the latest published event. Thus 𝑒1 and 𝑒2 are

in the past, 𝑒4 and 𝑒
′
1
are in the future event list and 𝑒′

2
is not yet

scheduled, as it is only created after consumption of 𝑒′
1
. For the

snapshot at 𝑡 = 15, the Recorder remembers 𝑒1 until 𝑒
′
1
is published

and 𝑒2 until 𝑒
′
2
is published .

Without the Recorder, a Snapshot created at 𝑡 = 15 in Figure 4

consists of the events 𝑒4 and 𝑒′
1
. Event 𝑒′

2
is only scheduled after

consumption of 𝑒′
1
and thus not yet in the future event list. Upon

initializing a Simulation run on {𝑒4, 𝑒′
1
}, the following would hap-

pen: At 𝑡 = 2 of the new run, 𝑒4 requests the resource for Req2. The
resource deems itself idle and schedules an event at the end of the

processing. At 𝑡 = 5, 𝑒′
1
announces, that the user request Req1 is

done processing. However, the resource does not know about Req1,
because the resource’s pre-replay state got lost. As a result, some

measurements are incorrect or missing.

With the Recorder, the Snapshot at 𝑡 = 15 consists of 𝑒4 from

the future event list and the recorded 𝑒1 and 𝑒2. Upon initializing

a new Simulation on these events, the following would happen:

At 𝑡 = 0 of the new run, we schedule 𝑒1 and 𝑒2. Event 𝑒1 puts an

entry for Req1 into the Calculator and 𝑒2 puts the request into the

resource’s queue, thereby recreating the state of the stateful com-

ponents as close as possible. The resource schedules a new event

(not in the figure) to announce when Req1 is processed. The new

event replaces 𝑒′
1
, which we excluded from the snapshot. At 𝑡 = 2

of the new run, 𝑒4 requests the resource for Req2. The resource has

Req1 in the queue and schedules the next event with the appro-

priate delay. Later on, when the replacement event for 𝑒′
1
and 𝑒′

2

are published, the stateful extensions have the correct states and

can process the events. Finally, the measurements taken from the

decide on state and
change to explore

[else]
[horizon
reached]

change + snapshot

start simulation

simulate more

[else]

take snapshot

[snapshot
triggered]

update
RawStateGraph

snapshot

stop simulation

Planning

Exploration Simulation

Figure 5: Exploration / Simulation loop.

initialized simulation run are similar to the measurements of the

initial simulation run after 𝑡 = 15. For models without randomness,

the measurements may be identical except for minor errors due to

disarray in the queues of FCFS resources.

On an additional note, we do not replay all events as an exact

copy of their original. Some events require slight changes, e.g., for

a partially processed processing request, we reduce the demand to

reflect the ongoing processing at the time of the snapshot.

3.2 Exploration of the RawStateGraph
The exploration involves the activities Exploration and Simulation

depicted in Figure 1. It loops across Exploration and Simulation

as depicted in Figure 5. At first, the GraphExplorer component

decides on the change to explore, feeds the change as well as the

snapshot to start on into the simulator, and starts a simulation.

The simulation runs until a snapshot gets triggered. Then, the

SnapshotExtension takes the snapshot, updates the RawStateGraph,

and stops the simulation. This repeats until the time horizon is

reached, in which case the explorer hands the graph to Planning.

Planning dictates the time horizon.

The change to explore is either an architecture reconfiguration or

an environmental change. The GraphExplorer decides on the next

change based on probabilities that the user provides. The likelier a

change in reality, the likelier its exploration.

We derive the snapshot triggers from the possible transitions.

We have three types of transitions in the RawStateGraph: reconfigu-

rations, context changes, and significant changes in measurements.

The significance level is a parameter provided by the user. With

these transitions, we need three types of triggers for snapshots:

(1) significant runtime measurement changes.

(2) reactive reconfigurations.

(3) time intervals (proactive reconfiguration/context change).

We observe (1) and (2) during the simulation. In both cases we

take a snapshot, stop the simulation and continue with the explo-

ration loop. The rationale behind (1) is, a significant change in

measurements might be the prelude to a reconfiguration soon after,

and we want to see what happens if we reconfigure proactive be-

fore a reactive reconfiguration is required. The rationale behind (2)

is, in case of a reactive reconfiguration, we want to explore what

happens if we ditch the reconfiguration or if we replace it with

another change. The alternatives will either support the decision to

20

Event-based Simulation for Transient Systems with Capture Replay to Predict
Self-Adaptive Systems (Work in Progress Paper) ICPE ’23 Companion, April 15–19, 2023, Coimbra, Portugal

do the reconfiguration, or provide better decisions. They are also

useful to reason about the decision later on.

If neither (1) nor (2) are observed for some time, i.e. nothing

new happens, we do not gain any knowledge, therefore we have

trigger (3). We take a snapshot after a predefined interval and

enforce either an environmental change or reconfiguration. The

rationale for the environmental change is to disturb the system,

e.g. with a sudden spike of user requests. The rationale for the

reconfiguration is to figure out whether additional reconfigurations

may optimize the system further, or not.

3.3 Discarded alternatives
Aside from the capture-replay approach, we considered two other

approaches. The other approaches do not require the event-oriented

simulation worldview. Instead, they might work with both event-

and process-oriented worldviews. In addition, they use less and

also less specific data. Mostly, because we assume that specific

information about the user requests, as we use them for the capture-

replay approach, is not available. Consequently, we assume that the

discarded approaches would produce worse results than the capture-

replay approach, yet would require more effort to implement them.

Thus, we discarded them.

Both of the discarded approaches have the same base idea. The

second one is an improvement of the first one. The underlying

assumption is, all knowledge about the state of the simulation is

obtained throughmonitoring. We simulate the processing resources

with QNs, thus we can measure the length of the queues. However,

we cannot know which requests were waiting, because the sim-

ulators tend to capsule the queues in such a way that we cannot

directly access their content without further effort. As we do not

know the requests, we cannot put them back into the queues when

attempting to restore a previous state. Instead, we try to at least

recreate the former length of the queues. If the simulated PCM

instances contain randomness, this introduces errors, e.g. if the size

of a user request is determined randomly.

The first discarded alternative was an approach where a new

simulation would started and run until the run passes through the

previous state once again. It is the most straightforward and least-

effort approach. During the new simulation run, we would monitor

the queue lengths until they are the same as in the state we want

to recreate. Then we would apply the change and continue into the

alternative future, just as described earlier in this paper. The main

disadvantage of this first approach is that starting the simulation

anew for each future takes a lot of time.

The second discarded approach was an attempt to counter this

disadvantage. We considered to ignore the time it takes to process

requests, until we would have the correct queue lengths. Instead

of starting the simulation with the incoming user requests as they

are modelled, we would modify the first few requests, such that

they pass through some of the queues without delay. We would

send these delayless user requests in until the queues would have

the desired length. Then we would start the actual simulation with

processing time and everything.

Compared to the first discarded approach, we expect this ap-

proach to be faster. However, we assume the approach to require

a lot of effort to correctly tweak the delayless user requests. In

addition, up to here we thought about queues only and did not yet

consider other stateful constituents of the simulation, such as the

calculators for response time and other duration.

4 RELATEDWORK
The related work is structured into three areas, namely simulation,

state-space exploration, and formalisms for self-adaptive systems.

We excluded works, whose results cannot contribute to the creation

of the state graph we desire. In particular, the excluded works en-

compass AI-based approaches to planning for self-adaptive systems,

or simulation approaches with steady-state analyses, as those only

deliver results, but no intermediate steps to create a state graph.

In the area of simulation, we looked into existing simulators such

as SimuLizar [2], Slingshot [8], and line [10]. They are of interest

because they simulate the behavior of self-adaptive systems based

on Palladio models. SimuLizar [2] is a process-oriented simulator

and Slingshot [8] is an event-oriented simulator. Both procure mea-

surements for transient states as well, instead of only one average

measurement value for the steady-state, as analytical solutions usu-

ally do. Measurements for transient states are important to us, as

we need them to build a state graph. Line [10] transforms the Pal-

ladio models into fluid models and applies math to solve them for

different points in time, thereby getting both transient and steady-

state measurements [10]. However, neither of the three simulators

is sufficient for our intention, at least not with their current fea-

tures. They consider one path through the state space only and do

not explore alternatives. We also looked into parallel discrete event
simulation (PDES) [7]. In PDES a simulation is split into multiple,

parallel process. With an optimistic PDES approach, events may get

out of order. To cope with such errors, the PDES regularly save the

simulation state, and restores the simulation to an earlier state if

an out of order event occurs. The method, i.e., saving and restoring

states, is similar to our approach. However their motivation and

goals differ from ours. PDES uses snapshots only to rollback an

erroneous simulation. We restore a simulation to previous states to

explore different futures.

In the second area, state-space exploration, we looked into Per-

Opteryx [9] and work of Smit and Stroulia [12]. PerOpteryx [9] is

a tool to explore and compare different architecture configurations.

It is also based on Palladio. However, it is intended to optimize a

system at design-time and does not consider reconfigurations at

runtime. Thus, it differs from our desire to explore architecture

configurations of self-adaptive systems at runtime. Smit and Strou-

lia [12] make reconfiguring decision for a self-adaptive system

based on a state space graph of the system’s states. They construct

the graph from simulation results, though they do not state which

simulation tool they use. Their states consist of performance mea-

surements, the degree of satisfaction of service level objectives, etc.,

and are merged based on similarity, such that the total number of

states is reduced. During runtime they monitor the system, match

the runtime states to the simulated states and decide reconfiguration

based on the state-space graph. Thus, their general idea is similar

to ours. In addition, they support our argument, that knowing inter-

mediate and alternative system states improves explainability [12].

Regarding the state graph, they create it a priori and schedule sim-

ulations to update the graph for later, such that they need not care

21

ICPE ’23 Companion, April 15–19, 2023, Coimbra, Portugal Sarah Stieß, Stefan Höppner, Steffen Becker, and Matthias Tichy

about the time it takes to run the simulations [12]. Updates are

necessary in case of unknown states that are not yet in the state

graph. As a downside, their planning is always limited to the known

states. Contrary to them, our approach attempts to run simulations

for state graph updates immediately. To make this work, our simu-

lation must be fast. However, if successful, this generates a more

accurate plan.

In the area of formalisms for self-adaptive systems, Becker [3]

formalize the states of a self adaptive system as a tuple of architec-

ture configuration, context scenario, and runtime measurements.

Transitions from one state to the next are caused by changes in

either of them. We partially based our RawModelState on Becker’s

formalization. However, we do not transition on every change in

measurement values. Thus, our states are coarser-grained than

theirs.

5 CONCLUSION & FUTUREWORK
In this paper, we presented a novel approach for simulating and

exploring the behavior of a self-adaptive system. The approach

is based on an event-based simulation. We create snapshots of a

system and record currently active events to resume simulation

from any given system state. This capture-replay mechanism is

used to explore multiple potential future system developments,

enabling more robust planning of reconfigurations.

At this time our simulation can produce a raw state graph con-

taining all explored system states and transitions between them.

We are currently working on fully implementing the self-adaptive

system, as outlined in Section 2. This includes implementation of

planning that takes the RawStateGraph as input and produces a

plan and execution which takes the plan and uses it to control the

system.

Planning is separated into two different phases (see Planning in

Figure 1) First the state graph is compacted by removing duplicate

states and a utility for each state within the graph is calculated that

describes how desirable the state is. Then, based on the state graph

with utilities, an optimal path to follow is selected and passed to

the executor.

Compacting the state graph is done to reduce the overall size

of the state graph that needs to be analyzed. States are considered

duplicates if the difference between system measures within them

lies below a threshold for all measures, and they follow one another

based on changes in the system environment. Chains of such states

are condensed into a single state. In this phase, we also intend to

analyze the state graph to detect emergent effects such as e.g., bottle-

neck shifts [14]. If such effects are detected, the affected section of

the state graph is labeled accordingly so it can be considered during

the creation of the optimal path.

The utility of a state is calculated via a function that takes all

measurement data within the state as input. It also incorporates

the utilities of states that follow after the considered state. This is

done to enable greedy planning.

Planning then starts from the source state of the state graph. The

utility of all following states are considered and the state with the

highest utility is selected. This process is repeated until the simula-

tion horizon is reached. If a graph section is selected that is labeled

as containing emergent behaviors an appropriate countermeasure

is applied to it before adding it to the selected path.

After a complete path is selected this path is passed on for appli-

cation to the system.

Execution of an optimal path takes the optimal path as input and

tries to follow this path by either waiting for system state changes

or applying the planned reconfigurations if a reconfiguration edge

is reached. To do so we constantly monitor the real system and

check if the system state matches the tip of the planned path (see

Watchdog in Figure 1). If this is the case the edge connecting the

tip and its following state is executed (see Executor in Figure 1). If

the edge represents an environment change this means waiting for

the change to occur. If the edge represents a reconfiguration this

means applying the reconfiguration to the system and then waiting

for the system the reach the predicted following state.

If the system state does not match the tip of the planned path we

either have to re-plan or redo simulation and planing completely.

Re-planning can be done if the system state matches a different

state within the state graph not present on the selected optimal

path. Redoing simulation and planning must be done if the state is

completely unknown.

As a further optimization we intend to use the waiting time

during execution to trigger further simulation and planning down

the currently followed path.

ACKNOWLEDGMENTS
This work was partially funded by the Deutsche Forschungsgemein-

schaft (DFG, German Research Foundation) – 453895475.

REFERENCES
[1] J. Banks, J. S. C. II, B. L. Nelson, and D. M. Nicol. Discrete-Event System Simula-

tion, 5th New Internatinal Edition. Pearson Education, 2010.

[2] M. Becker, S. Becker, and J. Meyer. Simulizar: design-time modeling and per-

formance analysis of self-adaptive systems. In SE’13, 2013.

[3] M. W. Becker. Engineering self-adaptive systems with simulation-based perfor-
mance prediction. PhD thesis, Dissertation, Paderborn, Universität Paderborn,

2017, 2017.

[4] S. Becker, G. Brataas, and S. Lehrig. Engineering Scalable, Elastic, and Cost-
Efficient Cloud Computing Applications - The CloudScale Method. Springer, 2017.
doi: 10.1007/978-3-319-54286-7.

[5] G. Bolch, S. Greiner, H. De Meer, and K. S. Trivedi. Queueing networks and
Markov chains: modeling and performance evaluation with computer science
applications. John Wiley & Sons, 2006.

[6] J. Carson. Modeling and simulation worldviews. In Proceedings of 1993 Winter
Simulation Conference - (WSC ’93), pages 18–23, 1993. doi: 10.1109/WSC.1993.

718024.

[7] R. M. Fujimoto. Parallel discrete event simulation. Commun. ACM, 33(10):30–53,

1990. doi: 10.1145/84537.84545.

[8] J. Katic, F. Klinaku, and S. Becker. The slingshot simulator: an extensible event-

driven PCM simulator (poster). In SSP’21, 2021.

[9] A. Koziolek, H. Koziolek, and R. Reussner. Peropteryx: automated application

of tactics in multi-objective software architecture optimization. In Proceedings
of the Joint ACM SIGSOFT Conference – QoSA and ACM SIGSOFT Symposium –
ISARCS on Quality of Software Architectures – QoSA and Architecting Critical
Systems – ISARCS, QoSA-ISARCS ’11, pages 33–42, Boulder, Colorado, USA.
Association for Computing Machinery, 2011. doi: 10.1145/2000259.2000267.

[10] J. F. Pérez and G. Casale. Assessing sla compliance from palladio component

models. In 2013 15th International Symposium on Symbolic and Numeric Algo-
rithms for Scientific Computing, pages 409–416, 2013. doi: 10.1109/SYNASC.
2013.60.

[11] R. H. Reussner, S. Becker, J. Happe, R. Heinrich, A. Koziolek, H. Koziolek, M.

Kramer, and K. Krogmann. Modeling and Simulating Software Architectures –
The Palladio Approach. MIT Press, 2016.

[12] M. Smit and E. Stroulia. Autonomic configuration adaptation based on simulation-

generated state-transition models. In 2011 37th EUROMICRO Conference on

22

https://doi.org/10.1007/978-3-319-54286-7
https://doi.org/10.1109/WSC.1993.718024
https://doi.org/10.1109/WSC.1993.718024
https://doi.org/10.1145/84537.84545
https://doi.org/10.1145/2000259.2000267
https://doi.org/10.1109/SYNASC.2013.60
https://doi.org/10.1109/SYNASC.2013.60

Event-based Simulation for Transient Systems with Capture Replay to Predict
Self-Adaptive Systems (Work in Progress Paper) ICPE ’23 Companion, April 15–19, 2023, Coimbra, Portugal

Software Engineering and Advanced Applications, pages 175–179, 2011. doi:
10.1109/SEAA.2011.36.

[13] S. Stieß, S. Becker, F. Ege, S. Höppner, and M. Tichy. Coordination and ex-

planation of reconfigurations in self-adaptive high-performance systems. In

Proceedings of the 25th International Conference on Model Driven Engineering

Languages and Systems: Companion Proceedings, MODELS ’22, pages 486–490,

Montreal, Quebec, Canada. Association for Computing Machinery, 2022. doi:

10.1145/3550356.3561555.

[14] B. Urgaonkar, P. Shenoy, A. Chandra, and P. Goyal. Dynamic provisioning of

multi-tier internet applications. In ICAC’05, 2005. doi: 10.1109/ICAC.2005.27.

23

https://doi.org/10.1109/SEAA.2011.36
https://doi.org/10.1145/3550356.3561555
https://doi.org/10.1109/ICAC.2005.27

	Abstract
	1 Introduction
	2 Architecture
	2.1 Simulation
	2.2 RawStateGraph and RawModelState

	3 State Graph Exploration
	3.1 How does this work in detail?
	3.2 Exploration of the RawStateGraph
	3.3 Discarded alternatives

	4 Related Work
	5 Conclusion & Future Work
	Acknowledgments

