
On the Acceleration of FaaS Using Remote GPU Virtualization
Diana M. Naranjo Delgado

Manuel Contreras
Germán Moltó
Sebastián Risco
Ignacio Blanquer

Instituto de Instrumentación para Imagen Molecular (I3M)
Centro mixto CSIC - Universitat Politècnica de València

Valencia, España
dnaranjo@i3m.upv.es
gmolto@dsic.upv.es
srisco@i3m.upv.es

iblanque@dsic.upv.es

Javier Prades
Federico Silla

Dpto. Informática de Sistemas y Computadores
Universitat Politècnica de València

Valencia, España
japraga@gap.upv.es

fsilla@upv.es

ABSTRACT
Serverless computing and, in particular, Function as a Service (FaaS)
has introduced novel computational approaches with its highly-
elastic capabilities, per-millisecond billing and scale-to-zero capaci-
ties, thus being of interest for the computing continuum. Services
such as AWS Lambda allow efficient execution of event-driven short-
lived bursty applications, even if there are limitations in terms of
the amount of memory and the lack of GPU support for accelerated
execution. To this aim, this paper analyses the suitability of includ-
ing GPU support in AWS Lambda through the rCUDA middleware,
which provides CUDA applications with remote GPU execution
capabilities. A reference architecture for data-driven accelerated
processing is introduced, based on elastic queues and event-driven
object storage systems to manage resource contention and GPU
scheduling. The benefits and limitations are assessed through a use
case of sequence alignment. The results indicate that, for certain
scenarios, the usage of remote GPUs in AWS Lambda represents a
viable approach to reduce the execution time.

CCS CONCEPTS
•Computingmethodologies→Distributed computingmethod-
ologies.

KEYWORDS
Serverless, CUDA, GPU, FaaS, AWS Lambda

ACM Reference Format:
Diana M. Naranjo Delgado, Manuel Contreras, Germán Moltó, Sebastián
Risco, Ignacio Blanquer, Javier Prades, and Federico Silla. 2023. On the
Acceleration of FaaS Using Remote GPU Virtualization. In Companion of the
2023 ACM/SPEC International Conference on Performance Engineering (ICPE

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
ICPE ’23 Companion, April 15–19, 2023, Coimbra, Portugal
© 2023 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 979-8-4007-0072-9/23/04. . . $15.00
https://doi.org/10.1145/3578245.3584933

’23 Companion), April 15–19, 2023, Coimbra, Portugal. ACM, New York, NY,
USA, 8 pages. https://doi.org/10.1145/3578245.3584933

1 INTRODUCTION
Serverless [6] has revolutionized computing in the last years with
its ability to use managed services offered by Cloud providers to
support event-driven computations on finely-grained auto-scaled
platforms. Function as a Service (FaaS), the main service model that
supports serverless, is most notably exemplified by AWS Lambda
[3], Azure Functions [5] and Google Cloud Functions [14].

AWS Lambda allows executing user-defined functions in re-
sponse to events such as file uploads to an object storage system
(e.g. Amazon S3 [4]) or HTTP-based requests via Amazon API Gate-
way [1]. Its highly-elastic capacity allows executions of up to 3000
concurrent invocations for up to 15 minutes using at most 10240
MB of RAM in 1-MB increments. By providing scale-to-zero capabil-
ities, no infrastructure pre-provision is required, thus dynamically
scaling computational workloads using unprecedented levels of
elasticity. Finally, its fine-grained billing approach, in milliseconds
of execution time and depending on the amount of RAM allocated,
introduces advantages for applications that show disparate com-
putational requirements over time. The generous free tier allows
developers to deploy applications in the Cloud at zero cost when
they are not being used, which can dynamically scale to support
heavy workloads and remain at zero cost if the free tier is not
exceeded.

These advantages have propelled the adoption of serverless com-
puting in different areas such as inference of Machine Learning
(ML) models [30], linear algebra [37] and microservices-based ap-
plications [17], among many others. It is an essential layer in the
computing continuum.

However, these advantages come with certain limitations. An
ephemeral storage of [512,10240] MB leads to the creation of state-
less functions with no affinity with the underlying hardware plat-
form. This storage may be shared among invocations of the same
function, depending on the provider’s resource provisioning strat-
egy. Stateful persistence of data generated in each Lambda function
invocation can be achieved via a durable managed shared file sys-
tem provided by Amazon EFS [33], which provides NFS (Network
File System) as a service with a non-negligible additional cost.

157

https://doi.org/10.1145/3578245.3584933
https://doi.org/10.1145/3578245.3584933

ICPE ’23 Companion, April 15–19, 2023, Coimbra, Portugal Diana M. Naranjo Delgado et al.

In turn, GPU computing has demonstrated its ability to accelerate
intensive computations in areas as diverse as genetic algorithms [8],
medical image reconstruction [11], and privacy-preservingmachine
learning [39], among many others. It is precisely this hardware
acceleration that led to the proliferation of these use cases since
the usage of CPUs made it unfeasible to perform data processing
in reasonable times.

However, one of the main limitations of FaaS services is the lack
of support to use accelerated hardware, such as GPUs, to speed up
the executions, thus preventing users from exploiting the versatility
and high elasticity of these managed platforms to run the afore-
mentioned applications. It is possible to deploy Virtual Machines
(VMs) using Kubernetes-based managed services such as Amazon
EKS [34] or Azure AKS [19] with instances (Virtual Machines) that
support GPUs and then install existing open-source FaaS platforms
such as OpenFaaS [12], Nuclio [15] or OSCAR1 [23]. However, this
approach relies on traditional auto-scaling approaches for virtual
machines, thus hindering the ability to rapidly scale upon sudden
workload increases.

With the advent of remote GPU virtualization techniques, such
as those provided by rCUDA2 [16], new avenues open up to accel-
erate the execution of FaaS-based invocations for workloads that
can benefit from this support, such as sequence alignment or the
inference of Machine Learning (ML) models. Indeed, rCUDA allows
remote GPU sharing across function invocations. Therefore, it is
essential to evaluate potential integration techniques to enable re-
mote GPU virtualization on managed FaaS platforms to understand
its benefits and limitations for accelerating applications running
on public FaaS-based services such as AWS Lambda.

After the introduction, the remainder of the paper is structured
as follows. First, section 2 describes the related work in using GPUs
to accelerate serverless applications. Next, section 3 describes the
components and introduces the proposed architecture to exploit re-
mote GPUs by developing a technology demonstrator that involves
AWS Lambda and rCUDA. Then, section 4 evaluates the platform
with a use case of sequence alignment using GPU-Blast and dis-
cusses its advantages and drawbacks. Finally, section 5 summarizes
the main contributions and points to future works.

2 RELATEDWORK
Several works in the area are related to the usage of GPU-based
computing in serverless platforms. A previous work in the area, by
Risco et al. [29] provided the integration of the SCAR3 framework
for container-based computing in AWS Lambda and AWS Batch
[2], to dynamically deploy virtualized elastic clusters with GPU
support. This allowed to support event-driven workflows to effi-
ciently process multimedia data where the short jobs are executed
in AWS Lambda, and long-running jobs requiring GPU acceleration
are executed in AWS Batch. Another work, by Naranjo et al. [20],
introduced support for GPU resources on dynamically provisioned
clusters configured with the OSCAR serverless platform, where
resources were made available via PCI passthrough to accelerate
inference on deep learning models for image classification.

1OSCAR - https://oscar.grycap.net
2rCUDA - http://www.rcuda.net/
3SCAR - https://github.com/grycap/scar

Several works introduce support for GPU computing into open-
source serverless frameworks. This is the case of the work by Kim
et al. [18], where the Iron.io framework is used to integrate NVIDIA-
Docker as the underlying mechanism to use GPUs. The work by
Satzke et al. [31] extends the open-source KNIX serverless frame-
work to execute functions on shared GPU cluster resources. They
execute Python KNIX functions by using NVIDIA GPU resources.

Previous work is also related to designing improved approaches
for GPU scheduling, with potential applications to FaaS frameworks.
For example, the work by Garg et al. [13] proposes a solution for the
scheduling of predefined GPU functions in heterogeneous multi-
GPU setups. They created a discrete-event simulator-based proto-
type, but no open-source implementation was provided. The work
by Prakash et al. [26] uses a software-based task slicing technique
to determine task sizes for scheduling on vGPUs so that most of the
functions can successfully complete by the deadlines. The approach
is evaluated with different heuristics, but no direct application to
an existing FaaS framework is provided.

This paper proposes an architecture and a reference implemen-
tation in AWS Lambda to exploit remote GPUs using the rCUDA
middleware. To the best of the authors’ knowledge, this is the first
paper that evaluates the feasibility of using remote GPU virtual-
ization techniques to accelerate workloads that run on a managed
FaaS service, in this case, AWS Lambda. Indeed GPU support is not
available in the public FaaS services. Still, there is a need to acceler-
ate new workloads being deployed in AWS Lambda, such as AI/ML
model inference. Indeed, the lack of GPU support is identified in the
work by Christidis et al. et al. [9] as a limiting factor in serverless
platforms.

3 COMPONENTS AND ARCHITECTURE
Figure 1 summarises the main approach envisaged to support re-
mote GPU virtualization for accelerating function invocations in a
managed FaaS service. We focus on event-driven data-processing
applications to adopt a widely used computing paradigm. A user up-
loads a file to an object storage system in the Cloud (step 1), which
enqueues a job execution request in an elastic queue (step 2) to
process that file with a user-defined set of GPU-based requirements.
The GPU-aware Resource Contention Manager is responsible for
contacting the remote GPU virtualization layer to determine if there
are free resources, in which case it reserves them (step 4) and it
triggers the invocation of a previously-defined function in the FaaS
service (step 5). The function’s application code uses CUDA and
profits from the reserved remote GPU resources to accelerate its
execution (step 6), releasing the resources once the execution has
finished. The output data files are stored in the object storage for
long-term persistence (step 7).

From this initial view, this section describes the primary compo-
nents used to support remote GPU virtualization in AWS Lambda
through the rCUDA framework. Notice that a similar approach
can be extrapolated to alternative FaaS services such as Microsoft
Azure Functions or Google Cloud Functions. For the sake of clarity,
Figure 2 provides an interaction diagram.

158

https://oscar.grycap.net
http://www.rcuda.net/
https://github.com/grycap/scar

On the Acceleration of FaaS Using Remote GPU Virtualization ICPE ’23 Companion, April 15–19, 2023, Coimbra, Portugal

FaaS
 Service

User
Object Storage

GPU-aware Resource
Contention Manager

Function

Function
Invocation Function

Invocation Function
Invocation Remote GPU

Virtualization

Remote GPU
Virtualization

User

Queue

1. File upload
2. Enqueue

request

3. Request
GPU resources

4. Reserve
GPU resources

5. Trigger execution with
reserved GPU resources

7. Store output data results

6. Accelerated
execution

CUDA

Figure 1: Generic approach to integrate remote GPU virtualization support in a managed FaaS service.

3.1 SCAR (Serverless Container-aware
ARchitectures)

SCAR [22] is an open-source framework for building event-driven
file-processing serverless applications on public FaaS platforms,
supporting AWS Lambda. SCAR simplifies running container-based
applications in AWS Lambda as event-driven applications triggered
via an HTTP call to API Gateway or in response to file uploads to a
file storage system, such as Amazon S3. Created in 2017, it pioneered
using Docker images as a runtime in AWS Lambda. Functions in
SCAR are created using a Functions Definition Language (FDL)
in a YAML configuration file, where the parameters required for
creating the SCAR function are specified.

Recall that AWS Lambda has strict computational limits regard-
ing the amount of RAM, ephemeral storage potentially shared
across invocations, and execution time. For those applications that
do not satisfy these requirements, SCAR provides seamless inte-
gration with AWS Batch. This AWS Elastic Cluster-as-a-Service
product runs applications packaged in Docker containers. It can
grow and shrink based on the number of jobs in the queue and the
available resources. This allows exceeding the maximum execution
limit of 15 minutes imposed by AWS Lambda or even the use of
GPU for an accelerated execution [29] by resorting to executing on
dynamically provisioned virtual machines from Amazon EC2.

In this work, SCAR is employed to facilitate the deployment of
the Docker-based Lambda functions, as shown in Figure 2. There-
fore, it is a convenient tool, but not mandatory, to introduce the
support for remote GPU via rCUDA in AWS Lambda functions.

3.2 rCUDA
rCUDA [38] is a middleware that allows using remote devices com-
patible with CUDA (Compute Unified Device Architecture) [40]
in a completely transparent way to the programmer without the
need to modify the source code written for CUDA. This way, CUDA
applications being executed in a computer without a GPU can use
one located in a remote computer. In this regard, rCUDA virtual-
izes GPUs that are physically located on a remote machine, thus
turning that computer into a GPGPU (General Purpose Computing
on Graphics Processing Units) server [27]. rCUDA presents a client-
server architecture that supports most CUDA APIs and operations.
On the client side, rCUDA is a library with the very same interface
as the NVIDIA CUDA library. Thus, the CUDA application is un-
aware of using a remote GPU managed by rCUDA. On the server

side, there is a daemon that receives requests from the client side
and forwards them to the physical GPU. Communication between
the client (CUDA application being executed in a node without
GPU) and the server (remote node where the physical GPUs are
located) can be done through TCP/IP (Ethernet) or Infiniband [24]
to minimize network latency [28]. One of the most prominent fea-
tures of rCUDA is concurrent remote GPU sharing among multiple
applications, which encourages the development of a multitenant
environment and the efficient use of GPUs [20].

rCUDA’s scheduler (SSGM, Simple Scheduler for GPU Manage-
ment) allows allocating GPU resources to jobs [25], and it is not
part of the client-server rCUDA architecture described above. The
SSGM scheduler consists of three processes that run on different
nodes:

• SSGMD is the scheduler daemon. This process implements
the GPU allocation logic based on the configured policy. It
is responsible for the allocation of resources. This daemon
is executed in one of the nodes of the cluster of machines
(regardless of where physical GPUs are located) and gathers
allocation requests from the SSGM process and GPU status
information from the SSGM GPU Monitor (see below). With
the information from the SSGM GPU Monitor and the allo-
cation requests from the SSGM process, the SSGMD daemon
performs the best job-resource matching available at that
moment. Once the matching is carried out, the SSGMD dae-
mon provides the required information to the SSGM process.
The SSGMD daemon has two working modes: blocking and
non-blocking. In non-blocking mode, the scheduler immedi-
ately returns a response, which can be either positive if the
requested resources were allocated or negative if it could not
assign the requested resources. In the blocking mode, the
scheduler does not provide a response until the allocation is
carried out (notice that in case an impossible allocation is re-
quested, then the scheduler immediately provides a negative
answer).

• SSGM GPU Monitor is a small daemon that runs on every
node with GPUs to be used by the rCUDA middleware in
the set of machines. A given SSGM GPU Monitor daemon
running in a node communicates to the SSGMD, in real-
time, information related to the GPUs available in that node,
such as the number of jobs running in the GPU, available
GPU memory, GPU utilization, etc. As stated earlier, the
SSGMD scheduler uses that information to carry out the

159

ICPE ’23 Companion, April 15–19, 2023, Coimbra, Portugal Diana M. Naranjo Delgado et al.

S3 Input Bucket SQS Queue

S3 Output Bucket

CLIENT

SSGM

orchGPU

CUDABLAST
APPLICATION

Input
File

S3 Intermediate
 BucketOutput

File

User

SCAR Function

SSGMD

SERVER

SSGM GPU
monitor

EC2 Instance

SERVER

SSGM GPU
monitor

SERVER

SSGM GPU
monitor

EC2 Instance

EC2 Instance

SERVER

SSGM GPU
monitor

EC2 Instance

Figure 2: Architectural approach to support GPU virtualization on AWS Lambda via rCUDA.

match between jobs and GPUs according to the scheduling
policy configured in the cluster.

• SSGM is the interface between the SSGMD daemon and
users. The SSGM process acts as a client of the SSGMD
scheduler daemon and can be used to modify configuration
parameters in the scheduler as well as to submit requests to
it. In the latter case, the SSGM program is executed in the
node where the CUDA application using a remote GPU will
be used. In this scenario, every time a user wants to submit a
job to the scheduler, the user leverages the SSGM application
to send the request information to the scheduler daemon
(amount of requested GPUs, amount of requested GPU mem-
ory, etc). The SSGM application waits for the answer from
the scheduler. If the resource allocation can be performed,
the data received from the SSGMD daemon is used by the re-
questing application to determine, among other parameters,
the IP addresses of the remote rCUDA servers to be used.

In this work, the rCUDA server is employed to virtualize the
remote GPUs. There is one instance of the rCUDA server per node
with GPUs, while there is only an instance of the rCUDA’s scheduler
(SSGM) for all the group of nodes to be used. Even if the rCUDA
framework was initially designed to virtualize GPUs in physical
resources it can seamlessly run on GPU-enabled virtual machines,
such as the p2 family of instances in AWS, which support up to 16
NVIDIA K80, 64 vCPU and 732 GiB of RAM with 192 GB of GPU
memory. Notice that additional GPU-enabled instance types are
available with different types of GPUs.

3.3 orchGPU: GPU orchestrator
OrchGPU is an open-source software developed by our research
group in Go4 that relies on asynchronous programming techniques
to coordinate the GPU usage requests into the rCUDA scheduler
for managing resource contention. Indeed, the highly-elastic ca-
pabilities of AWS Lambda, which can run up to 3000 concurrent
invocations can rapidly introduce a bottleneck in the set of GPU-
based computing resources.
4Go - https://go.dev/doc/

To this aim, orchGPU uses an elastic job queue created on Ama-
zon SQS [35] that queues up the job execution requests that are
triggered in response to file uploads to an Amazon S3 input bucket.
After reserving the corresponding GPU resources via the rCUDA
scheduler, it delegates the job request into an S3 intermediate bucket
to trigger the Lambda function that uses the rCUDA client to use the
reserved remote GPU resources. Note that orchGPU relies on Ama-
zon S3 as the source and target of events in order to match the file
processing model introduced by SCAR. However, it could be easily
adapted to accommodate other event-driven services through the
cloud provider’s interfaces. This program is one of the fundamental
elements of the designed architecture, since it is in charge of com-
municating several modules of the architecture. The functionalities
of orchGPU can be summarized as follows:

• Initialize the AWS environment and get the URL of the job
queue.

• Execute an infinite loop with the following actions:
(1) Get a message from the queue.
(2) Make a request to the rCUDA’s scheduler (SSGM).
(3) Process the data received from the scheduler, specifically

the number of available GPUs and the IP address of the EC2
where the GPUs are located. This information is needed
by the rCUDA client to establish the connection with the
rCUDA server.

(4) Save the information of the environment variables needed
by the rCUDA client, as well as the input file, compressed
in a zip file, which is stored in an intermediate bucket. This
will trigger the Lambda function invocation to process the
CUDA application that will use the remote GPU resources
reserved.

(5) Wait for the result of the file processing.
(6) Release the GPU resources that were allocated for the

execution of the application.
(7) Delete the message from the SQS queue.

The actions described above are executed continuously, so when
there are several messages in the queue, orchGPU detects these
messages and asks the scheduler for available resources. If GPU

160

https://go.dev/doc/

On the Acceleration of FaaS Using Remote GPU Virtualization ICPE ’23 Companion, April 15–19, 2023, Coimbra, Portugal

resources are available, orchGPU will execute the same procesfs of
creating the zip file with the environment variables needed by the
rCUDA client and the input file. This allows parallel execution of
multiple jobs as long as computing resources are available.

Figure 2 shows the interaction among the aforementioned com-
ponents to support remote GPU virtualization in AWS Lambda.
This is based on SCAR for the deployment and processing of the
serverless functions in AWS Lambda, rCUDA for the virtualization
of the GPUs and orchGPU to create and manage the file-processing
requests. In this prototype design, orchGPU runs on an Amazon
EC2 instance and the current multi-threaded implementation par-
tially alleviates the bottleneck introduced by orchGPU acting as a
resource scheduler.

However, in order to overcome this issue, nothing prevents run-
ning orchGPU as a Lambda function that is triggered in response
to the messages arriving at the SQS queue. Notice that SQS queues
have a visibility window, defined in time units, so that messages
that are extracted from the queue, but are not explicitly deleted, au-
tomatically reappear in the queue thus triggering again the Lambda
function invocation. This would allow retrying GPU allocation
requests to the rCUDA scheduler in case of a temporary lack of
resources.

In fact, multiple EC2 instances can be used, each one reporting
GPU resources to the SSGMD component. In combination with the
auto-scaling capability of Amazon EC2 and the ability to scale on
user-defined metrics in CloudWatch, the AWS monitoring service,
the back-end of GPU-based compute resources can grow and shrink
depending on the number of messages in the SQS queue (e.g. us-
ing the metric ApproximateNumberOfMessagesVisible). However,
in this particular scenario, since Lambda functions are ephemeral,
the release of GPU resources should be performed by the Lambda
function invocation with the CUDA application, once it has finished
the execution, thus requiring support by the application developer.

The design of this architecture enables GPU allocation support
in executing Lambda functions, a capability not yet supported on
AWS Lambda.

4 USE CASE: GPU-BLAST
In order to evaluate the benefits of the proposed approach in terms
of jobs processed per time unit, a case study has been designed
that uses the GPU-Blast5 application. GPU-Blast is a version of the
popular NCBI-BLAST6 application that makes use of acceleration
devices to improve the processing times of the original application.
NCBI-BLAST is a local alignment search (BLAST) tool for finding
regions of similarity between sequences. The program compares
nucleotide or protein sequences with sequence databases and cal-
culates the statistical significance of the matches [21]. The input
file of GPU-Blast is a text file with information about the sequence
and the output file generated after the execution process shows the
result of the sequences in the database that are similar according to
a weight matrix and the editing distance to the searched sequence.

Figure 3 shows the interaction diagram among the components
of the proposed architecture. These are the steps taken during the
processing of a file:

5GPU-Blast - https://sahinidis.coe.gatech.edu/gpublast
6BLAST - https://blast.ncbi.nlm.nih.gov

Amazon
S3

orchGPUAmazon
SQS

rCUDA
scheduler

SCAR
FUNCTION

INPUTInput
File

Data received

Ask for resources

Output
File

INTERMEDIATE

OUTPUT

EC2
Instance

Accelerate the
execution

Detect the
output file

release the
resources

remove the message
from the queue

Figure 3: Interaction diagram to process a file.

(1) Through the SCAR command-line interface, the user creates
the function with the application to process the file, in this
case, GPU-Blast. It is necessary to define the input bucket
together with the intermediate bucket, which is the one that
will generate the event to trigger the processing of the input
file. The output file can be any bucket selected by the user.
The code shown in Figure 4 displays the YAML file needed to
create this function. Note that the user defines the memory
requirements and the container image available in Amazon
ECR [32], a registry for Docker images.

(2) The user uploads a file to the input bucket to trigger the
processing of the file, which introduces a message in the
SQS queue indicating that there is a new input file ready
to be processed. The orchGPU gets the message from the
queue.

(3) orchGPU requests a reservation of GPU resources to the
rCUDA scheduler (SSGM) for processing the input file. Or-
chGPU combines the data received by the scheduler, i.e. the
connection details to the remote rCUDA server, and the input
file and stores it in an intermediate bucket.

(4) Uploading this file to the intermediate bucket generates an
event that triggers the execution of the Lambda function
created by the user in step 1. This script first decompresses
the file to obtain the necessary data to locate the rCUDA
server. Then creates the necessary environment variables
to make the connection between the rCUDA client and the
rCUDA server, processes the input file and, finally, stores
the result in the output bucket.

(5) Once orchGPU detects that the file resulting from the align-
ment process is in the output bucket, it releases the resources
and removes the message from the queue.

(6) In the last step, the user downloads the output file generated
after the inference process.

The objective of the experiment is fundamentally to assess the
efficiency of the system in terms of execution time. To that end,
files with several sequence lengths are used and the execution time
is measured considering different scenarios:

• Scenario 1 (CPU): The execution is performed on the CPU
provided by the Lambda runtime environment. This baseline

161

https://sahinidis.coe.gatech.edu/gpublast
https://blast.ncbi.nlm.nih.gov

ICPE ’23 Companion, April 15–19, 2023, Coimbra, Portugal Diana M. Naranjo Delgado et al.

functions:

aws:

- lambda:

runtime: image

name: scar-rcuda-cudablast-orchgpu

memory: 3072

init_script: script.sh

container:

image: rcuda-lambda-cudablast

create_image: false

input:

- storage_provider: s3

path: scar-rcuda/intermediate

output:

- storage_provider: s3

path: scar-rcuda/output

ecr:

delete_image: false

Figure 4: Functions Definition Language file to deploy the
function through SCAR.

will be used to compare how much the processing time can
be improved by using (remote) GPUs.

• Scenario 2 (Native GPU): The execution is carried out on a
native GPU, specifically a 32GB Tesla V100 located in an on-
premises cluster belonging to our research group, connected
via PCI passthrough to a virtual machine with 8 vCPUs and
8GB RAM. It is important to point out that in this scenario,
networking is not involved, so there will be no latency due
to the communication between client and server, just pre-
tending to illustrate the performance of a dedicated GPU
interface for the processing of this use case.

• Scenario 3 (Lambda + SCAR + rCUDA): This refers to the
architecture described in Figure 2. Execution times in this
scenario will be compared with the worst expected times
(Scenario 1, CPU only) and the best expected times (Scenario
2, native GPU).

GPU-Blast allows you to specify the number of threads in the
alignment process, so we have run the tests in the three scenarios
with both 1 thread and 6 threads, to determine the influence of
multi-threading in the processing times. The upper limit to the
number of threads is due to AWS Lambda assigning 6 vCPUS when
allocating the maximum amount of RAM to the Lambda function
[10].

As previously mentioned, rCUDA is a client-server middleware.
For this case study, the rCUDA server is located on an Amazon
EC2 p2.xlarge instance that has one GPU and is the cheapest based
on price. This instance has 1 GPU, 4 vCPUs and 61 GiB of RAM
and is priced at $0.9/hour in the N. Virginia region. In addition
to the rCUDA server in the instance, the SSGM GPU Monitor for
GPU monitoring is also executed, together with orchGPU. Notice
that this approach allows performing a technology demonstration

2 100 500 1000 5000 10000

0

50

100

150

200

250

300

350

400

5
13

37

65

205

368

5 6 12
22

48

89

19 24 29
41

76

118

Sequence length

T
im

e
(s
ec
on

d
s)

Scenario 1: CPU
Scenario 2: Native GPU
Scenario 3: Lambda + SCAR + rCUDA

Figure 5: Execution times for different sequence lengths in
the scenarios analyzed (using 1 thread).

with reduced costs, even if the centralized approach is not the best
approach in terms of performance.

Moreover, a Lambda function is used in the proposed architec-
ture with 3072 MB of RAM with a cost of $0.0000000333/ms. The
amount of RAM required to execute the application was empiri-
cally estimated. The function runs the rCUDA client library and the
GPU-Blast application. There is also a job queue in Amazon SQS
to process incoming messages and three S3 buckets, one for input
files, another for the output files and an intermediate bucket (its
use is explained below). The three S3 buckets (input, intermediate
and output) deliver a cost of $0.023/GB for data storage. Notice that
all of these AWS services have a free tier that reduces the overall
cost. For example, AWS Lambda allows 1M free requests per month
and in Amazon S3 the first 12 months are free.

4.1 Results
In order to test the efficiency of the proposed approach, different
sequence lengths were used to assess the behaviour with different
execution times: 2, 100, 500, 1000, 5000, and 10000. The longer
the sequence, the longer the execution time. Four executions were
performed for each sequence length, so the times shown in the
following graphs correspond to an average of the values obtained.

Figure 5 shows the times obtained in each of the considered
scenarios when a single-thread configuration is used in the GPU-
Blast application. Figure 6 shows the same experiment, but in this
case, six threads were specified when executing the GPU-Blast
application.

The results depicted in Figure 5 show that CPU processing, in
Scenario 1, is less efficient than in Scenarios 2 and 3 where acceler-
ation devices are used. The best processing times are obtained in
Scenario 2 where the execution process is performed natively on
the GPU. In Scenario 3, where the proposed architecture is used,

162

On the Acceleration of FaaS Using Remote GPU Virtualization ICPE ’23 Companion, April 15–19, 2023, Coimbra, Portugal

2 100 500 1000 5000 10000

0

20

40

60

80

100

120

140

160

180

200

220

240

4 8

26

41

125

225

5 6 9
15

35

61

19 23 23
29

76

119

Sequence length

T
im

e
(s
ec
on

d
s)

Scenario 1: CPU
Scenario 2: Native GPU
Scenario 3: Lambda + SCAR + rCUDA

Figure 6: Execution times for different sequence lengths in
the scenarios analyzed (using 6 threads).

the processing times greatly improve the times obtained in CPU,
although they are larger than the times obtained in Scenario 2. Note
that for the case where the length of the sequence of the input file is
higher, the results obtained with the proposed architecture greatly
improve CPU processing times and are quite close to the times
obtained with the native GPU even if delays are introduced in the
proposed architecture due to the component interaction.

The results obtained in Figure 6 are approximately the same as
those obtained in the previous figure. Remember that AWS Lambda
proportionally allocates the CPU power in correspondence with
the selected memory, with a maximum of 10GB of memory with 6
vCPU [36]. We determined that, for the case study, three cores were
allocated to the Lambda function. Notice that the usage of remote
GPUs in Scenario 3 outperforms Scenario 1, while the latencies
introduced by the usage of remote GPUs cannot deliver a reduced
execution time compared to Scenario 2.

In addition to the experiments described here, other sequence
lengths were used, but for these values, the processing time ex-
ceeded the 15-minute maximum execution time imposed by the
AWS Lambda environment. Although the processing times obtained
in Scenario 3 are higher than the times obtained where the pro-
cessing is done on the native GPU, Scenario 2, the results show
that GPU virtualization in AWS Lambda can broaden the range of
applications that they can benefit from the FaaS model. Moreover,
researchers usually search for sequences smaller than 10.000 nu-
cleotides. As an example, the Spike protein of the SARS-COV-2 is
on the order of 4.000 base pairs.

An analysis of execution time and cost was carried out. For the
analysis of the cost when running exclusively in the CPU (Scenario
1), the execution time of the Lambda function is taken into account,
and for the usage of a remote GPU (Scenario 3), the cost of the
Lambda function and the EC2 instance with the GPU are considered.

For the highest execution time on CPU and GPU, in the case
of executing with 1 thread, that is, 368 and 118 seconds, the cost
per execution was determined to be 0.0184 USD and 0.0354 USD,
respectively. For the case of executing with 6 threads in the CPU,
the cost was 0.011 USD. The GPU processing times are lower than
the times obtained for the CPU, especially for longer sequences,
which require a greater execution time. However, the costs when
using a GPU with respect to Scenario 1, where CPU is used, are
higher, also taking into account the selected instance.

Although times obtained in AWS Lambda are longer than with
native GPUs, the new architecture improves times in Lambda with-
out investing in local GPUs. Indeed, this contribution has assessed
that it is technically viable to introduce remote GPU support in
the constrained execution environment provided by AWS Lambda.
However, further analyses should be carried out to determine the
cost-effectiveness of this approach. First, increasing the amount
of RAM in the Lambda function increases the price (billed in mil-
liseconds), but it also affects the underlying number of vCPUs and
computing power, which also reduces the execution time. This is
why tools such as AWS Lambda Power Tuning [7] help visualize and
fine-tune the memory/power configuration of Lambda functions in
terms of cost and speed.

Direct concurrent execution of multiple applications on a GPU
is not always possible, justifying the need for a virtualization layer.
Since rCUDA allows to share the GPUs among multiple Lambda
function invocations, the cost of provisioning GPU-enabled EC2
instances can be also distributed among the invocations. Extending
such tools to consider the cost of remote GPU sharing would be
beneficial to determine the cost-effectiveness of this approach.

5 CONCLUSIONS AND FUTUREWORK
This article has proposed an architecture to support remote GPU
execution in managed FaaS services, exemplified in AWS Lambda,
a feature that is unavailable. The components involved are SCAR,
which executes applications packaged in Docker containers as func-
tions in AWS Lambda and which are triggered in response events
such as file uploads to Amazon S3; rCUDA, a tool that allows the vir-
tualization and sharing of GPUs; and orchGPU, to manage resource
contention and scheduling on the available GPU resources.

Integrating GPUs as back-end resources is key for improving fast
execution and resource provisioning in serverless functions. GPU
resources are expensive, and one of the advantages of using the
designed architecture is the ability to share the same GPU between
multiple executions, thanks to the use of rCUDA and the developed
tools. The proposed architecture extends the SCAR framework by
including GPU virtualization in Lambda functions.

The implemented development constitutes a step forward in
the adoption of the serverless model in relation to the use of ac-
celeration devices for the execution process of applications that
support CUDA. The processing times obtained for this type of appli-
cation in GPU environments show an improvement in performance
compared to the exclusive use of CPU. With the proposed design,
processing time can be reduced without investing in local GPUs.

There are several fundamental lines in which we intend to con-
tinue to improve the design of the designed system. First, we plan
to further automate the deployment of an auto-scaled back-end so

163

ICPE ’23 Companion, April 15–19, 2023, Coimbra, Portugal Diana M. Naranjo Delgado et al.

that additional EC2 instances are deployed upon workload incre-
ments, measured as increments in the number of messages in the
queue. Second, we plan to further explore additional applications
that can benefit from the remote GPU acceleration within AWS
Lambda, as is the case of inference of ML models. Finally, we plan
to extend the cost analysis to additional instance types in order to
find cost-effective scenarios that benefit from the integration of
GPU support in AWS Lambda.

ACKNOWLEDGMENTS
Grant PID2020-113126RB-I00 funded by
MCIN/AEI/10.13039/501100011033 and Project PDC2021-120844-
I00 funded by
MCIN/AEI/10.13039/501100011033 funded by the European Union
NextGenerationEU/PRTR. The European Commission has partially
funded this work under the H2020 grant 101016577 AI-SPRINT: AI
in Secure Privacy-pReserving computINg conTinuum.

REFERENCES
[1] Amazon Web Services. [n. d.]. Amazon API Gateway. https://aws.amazon.com/

api-gateway/
[2] Amazon Web Services. [n. d.]. AWS Batch — Easy and Efficient Batch Computing

Capabilities. https://aws.amazon.com/batch/
[3] Amazon Web Services. [n. d.]. AWS Lambda. https://aws.amazon.com/lambda
[4] Amazon Web Services. [n. d.]. Cloud Object Storage | Store & Retrieve Data

Anywhere | Amazon Simple Storage Service (S3). https://aws.amazon.com/s3/
[5] Microsoft Azure. [n. d.]. Azure Functions. https://azure.microsoft.com/es-

es/services/functions/{#}overview
[6] Ioana Baldini, Paul Castro, Kerry Chang, Perry Cheng, Stephen Fink, Vatche

Ishakian, NickMitchell, VinodMuthusamy, Rodric Rabbah, Aleksander Slominski,
and Philippe Suter. 2017. Serverless computing: Current trends and open prob-
lems. In Research Advances in Cloud Computing. Springer Singapore, Singapore,
1–20. https://doi.org/10.1007/978-981-10-5026-8_1 arXiv:1706.03178

[7] Alex Casalboni. [n. d.]. AWS Lambda Power Tuning. https://github.com/
alexcasalboni/aws-lambda-power-tuning

[8] John Runwei Cheng and Mitsuo Gen. 2019. Accelerating genetic algorithms with
GPU computing: A selective overview. Computers and Industrial Engineering 128
(2019), 514–525. https://doi.org/10.1016/j.cie.2018.12.067

[9] Angelos Christidis, Roy Davies, and Sotiris Moschoyiannis. 2019. Serving
machine learning workloads in resource constrained environments: A server-
less deployment example. Proceedings - 2019 IEEE 12th Conference on Service-
Oriented Computing and Applications, SOCA 2019 (11 2019), 55–63. https:
//doi.org/10.1109/SOCA.2019.00016

[10] Robert Cordingly, Navid Heydari, Hanfei Yu, Varik Hoang, Zohreh Sadeghi, and
Wes Lloyd. 2021. Enhancing observability of serverless computing with the
serverless application analytics framework. In ICPE 2021 - Companion of the
ACM/SPEC International Conference on Performance Engineering. ACM, New York,
NY, USA, 161–164. https://doi.org/10.1145/3447545.3451173

[11] Philippe Després and Xun Jia. 2017. A review of GPU-based medical image
reconstruction. Physica Medica 42 (oct 2017), 76–92. https://doi.org/10.1016/j.
ejmp.2017.07.024

[12] Alex Ellis. [n. d.]. OpenFaaS. https://www.openfaas.com/
[13] Anshuj Garg, Purushottam Kulkarni, Umesh Bellur, and Sriram Yenamandra. 2021.

FaaSter: Accelerated Functions-as-a-Service with Heterogeneous GPUs. In 2021
IEEE 28th International Conference on High Performance Computing, Data, and
Analytics (HiPC). IEEE, 406–411. https://doi.org/10.1109/HiPC53243.2021.00057

[14] Google Cloud. [n. d.]. Cloud Functions - Event-driven Serverless Computing.
https://cloud.google.com/functions/

[15] Iguazio. [n. d.]. Nuclio. https://nuclio.io/
[16] Sergio Iserte, Javier Prades, Carlos Reaño, and Federico Silla. 2016. Increasing

the Performance of Data Centers by Combining Remote GPU Virtualization with
Slurm. In 2016 16th IEEE/ACM International Symposium on Cluster, Cloud and
Grid Computing (CCGrid). 98–101.

[17] Zhipeng Jia and Emmett Witchel. 2021. Nightcore: Efficient and scalable server-
less computing for latency-sensitive, interactive microservices. In International
Conference on Architectural Support for Programming Languages and Operat-
ing Systems - ASPLOS, Vol. 15. ACM, New York, NY, USA, 152–166. https:
//doi.org/10.1145/3445814.3446701

[18] Jaewook Kim, Tae Joon Jun, Daeyoun Kang, Dohyeun Kim, and Daeyoung Kim.
2018. GPU Enabled Serverless Computing Framework. In Proceedings - 26th

Euromicro International Conference on Parallel, Distributed, and Network-Based
Processing, PDP 2018. Institute of Electrical and Electronics Engineers Inc., 533–
540. https://doi.org/10.1109/PDP2018.2018.00090

[19] Microsoft. [n. d.]. Azure AKS. https://azure.microsoft.com/services/kubernetes-
service/{#}overview

[20] Diana M. Naranjo, Sebastián Risco, Carlos de Alfonso, Alfonso Pérez, Ignacio
Blanquer, and Germán Moltó. 2020. Accelerated serverless computing based
on GPU virtualization. J. Parallel and Distrib. Comput. 139 (may 2020), 32–42.
https://doi.org/10.1016/J.JPDC.2020.01.004

[21] National Library of Medicine. [n. d.]. BLAST: Basic Local Alignment Search Tool.
https://blast.ncbi.nlm.nih.gov/Blast.cgi

[22] Alfonso Pérez, Germán Moltó, Miguel Caballer, and Amanda Calatrava. 2018.
Serverless computing for container-based architectures. Future Generation Com-
puter Systems 83 (jun 2018), 50–59. https://doi.org/10.1016/j.future.2018.01.022

[23] Alfonso Perez, Sebastian Risco, Diana Maria Naranjo, Miguel Caballer, and Ger-
mán Moltó. 2019. On-premises serverless computing for event-driven data
processing applications. In IEEE International Conference on Cloud Computing,
CLOUD, Vol. 2019-July. 414–421. https://doi.org/10.1109/CLOUD.2019.00073

[24] Javier Prades, Carlos Reaño, and Federico Silla. 2019. On the effect of using rCUDA
to provide CUDA acceleration to Xen virtual machines. Cluster Computing 22, 1
(2019), 185–204. https://doi.org/10.1007/s10586-018-2845-0

[25] Javier Prades and Federico Silla. 2018. Made-to-Measure GPUs on Virtual Ma-
chines with rCUDA. In The 47th International Conference on Parallel Processing,
ICPP 2018, Workshop Proceedings, Eugene, OR, USA, August 13-16, 2018. ACM,
19:1–19:8. https://doi.org/10.1145/3229710.3229741

[26] Chandra Prakash, Anshuj Garg, Umesh Bellur, Purushottam Kulkarni, Uday
Kurkure, Hari Sivaraman, and Lan Vu. 2021. Optimizing Goodput of Real-time
Serverless Functions using Dynamic Slicing with vGPUs. In Proceedings - 2021
IEEE International Conference on Cloud Engineering, IC2E 2021. Institute of Elec-
trical and Electronics Engineers Inc., 60–70. https://doi.org/10.1109/IC2E52221.
2021.00020

[27] Carlos Reano and Federico Silla. 2015. A Performance Comparison of CUDA
Remote GPU Virtualization Frameworks. In 2015 IEEE International Conference
on Cluster Computing. IEEE, 488–489. https://doi.org/10.1109/CLUSTER.2015.76

[28] Carlos Reaño, Federico Silla, Gilad Shainer, and Scot Schultz. 2015. Local and
Remote GPUs Perform Similar with EDR 100G InfiniBand. In Proceedings of
the Industrial Track of the 16th International Middleware Conference on ZZZ -
Middleware Industry ’15. ACM Press, New York, New York, USA, 1–7. https:
//doi.org/10.1145/2830013.2830015

[29] Sebastián Risco and Germán Moltó. 2021. GPU-Enabled Serverless Workflows
for Efficient Multimedia Processing. Applied Sciences 11, 4 (feb 2021), 1438.
https://doi.org/10.3390/app11041438

[30] Sebastián Risco, Germán Moltó, Diana M. Naranjo, and Ignacio Blanquer. 2021.
Serverless Workflows for Containerised Applications in the Cloud Continuum.
Journal of Grid Computing 19, 3 (sep 2021), 30. https://doi.org/10.1007/s10723-
021-09570-2

[31] Klaus Satzke, Istemi Ekin Akkus, Ruichuan Chen, Ivica Rimac, Manuel Stein,
Andre Beck, Paarijaat Aditya, Manohar Vanga, and Volker Hilt. 2021. Efficient
GPU Sharing for Serverless Workflows. In HiPS 2021 - Proceedings of the 1st
Workshop on High Performance Serverless Computing, co-located with HPDC 2021.
ACM, New York, NY, USA, 17–24. https://doi.org/10.1145/3452413.3464785

[32] Amazon Web Services. [n. d.]. Amazon ECR. https://aws.amazon.com/ecr/
[33] Amazon Web Services. [n. d.]. Amazon EFS. https://aws.amazon.com/efs/
[34] Amazon Web Services. [n. d.]. Amazon EKS. https://aws.amazon.com/eks/
[35] Amazon Web Services. [n. d.]. Amazon SQS. https://aws.amazon.com/sqs/
[36] Amazon Web Services. 2020. AWS Lambda now supports up to 10 GB of memory

and 6 vCPU cores for Lambda Functions. https://aws.amazon.com/about-
aws/whats-new/2020/12/aws-lambda-supports-10gb-memory-6-vcpu-cores-
lambda-functions/

[37] Vaishaal Shankar, Karl Krauth, Kailas Vodrahalli, Qifan Pu, Benjamin Recht, Ion
Stoica, Jonathan Ragan-Kelley, Eric Jonas, and Shivaram Venkataraman. 2020.
Serverless linear algebra. In SoCC 2020 - Proceedings of the 2020 ACM Symposium
on Cloud Computing, Vol. 15. Association for Computing Machinery, Inc, New
York, NY, USA, 281–295. https://doi.org/10.1145/3419111.3421287

[38] Federico Silla, Sergio Iserte, Carlos Reaño, and Javier Prades. 2017. On the benefits
of the remote GPU virtualization mechanism: The rCUDA case. Concurrency and
Computation: Practice and Experience 29, 13 (2017), e4072. e4072 cpe.4072.

[39] Sijun Tan, Brian Knott, Yuan Tian, and David J. Wu. 2021. CryptGPU: Fast
privacy-preserving machine learning on the GPU. In Proceedings - IEEE Sym-
posium on Security and Privacy, Vol. 2021-May. Institute of Electrical and Elec-
tronics Engineers Inc., 1021–1038. https://doi.org/10.1109/SP40001.2021.00098
arXiv:2104.10949

[40] Manuel Ujaldón. 2016. CUDA achievements and GPU challenges ahead. In
Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial
Intelligence and Lecture Notes in Bioinformatics), Vol. 9756. 207–217. https:
//doi.org/10.1007/978-3-319-41778-3_20

164

https://aws.amazon.com/api-gateway/
https://aws.amazon.com/api-gateway/
https://aws.amazon.com/batch/
https://aws.amazon.com/lambda
https://aws.amazon.com/s3/
https://azure.microsoft.com/es-es/services/functions/{#}overview
https://azure.microsoft.com/es-es/services/functions/{#}overview
https://doi.org/10.1007/978-981-10-5026-8_1
https://arxiv.org/abs/1706.03178
https://github.com/alexcasalboni/aws-lambda-power-tuning
https://github.com/alexcasalboni/aws-lambda-power-tuning
https://doi.org/10.1016/j.cie.2018.12.067
https://doi.org/10.1109/SOCA.2019.00016
https://doi.org/10.1109/SOCA.2019.00016
https://doi.org/10.1145/3447545.3451173
https://doi.org/10.1016/j.ejmp.2017.07.024
https://doi.org/10.1016/j.ejmp.2017.07.024
https://www.openfaas.com/
https://doi.org/10.1109/HiPC53243.2021.00057
https://cloud.google.com/functions/
https://nuclio.io/
https://doi.org/10.1145/3445814.3446701
https://doi.org/10.1145/3445814.3446701
https://doi.org/10.1109/PDP2018.2018.00090
https://azure.microsoft.com/services/kubernetes-service/{#}overview
https://azure.microsoft.com/services/kubernetes-service/{#}overview
https://doi.org/10.1016/J.JPDC.2020.01.004
https://blast.ncbi.nlm.nih.gov/Blast.cgi
https://doi.org/10.1016/j.future.2018.01.022
https://doi.org/10.1109/CLOUD.2019.00073
https://doi.org/10.1007/s10586-018-2845-0
https://doi.org/10.1145/3229710.3229741
https://doi.org/10.1109/IC2E52221.2021.00020
https://doi.org/10.1109/IC2E52221.2021.00020
https://doi.org/10.1109/CLUSTER.2015.76
https://doi.org/10.1145/2830013.2830015
https://doi.org/10.1145/2830013.2830015
https://doi.org/10.3390/app11041438
https://doi.org/10.1007/s10723-021-09570-2
https://doi.org/10.1007/s10723-021-09570-2
https://doi.org/10.1145/3452413.3464785
https://aws.amazon.com/ecr/
https://aws.amazon.com/efs/
https://aws.amazon.com/eks/
https://aws.amazon.com/sqs/
https://aws.amazon.com/about-aws/whats-new/2020/12/aws-lambda-supports-10gb-memory-6-vcpu-cores-lambda-functions/
https://aws.amazon.com/about-aws/whats-new/2020/12/aws-lambda-supports-10gb-memory-6-vcpu-cores-lambda-functions/
https://aws.amazon.com/about-aws/whats-new/2020/12/aws-lambda-supports-10gb-memory-6-vcpu-cores-lambda-functions/
https://doi.org/10.1145/3419111.3421287
https://doi.org/10.1109/SP40001.2021.00098
https://arxiv.org/abs/2104.10949
https://doi.org/10.1007/978-3-319-41778-3_20
https://doi.org/10.1007/978-3-319-41778-3_20

	Abstract
	1 Introduction
	2 Related Work
	3 Components and Architecture
	3.1 SCAR (Serverless Container-aware ARchitectures)
	3.2 rCUDA
	3.3 orchGPU: GPU orchestrator

	4 Use Case: GPU-Blast
	4.1 Results

	5 Conclusions and Future Work
	Acknowledgments
	References

