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ABSTRACT
This paper presents a novel methodology based on first principles of

statistics and statistical learning for anomaly detection in industrial

processes and IoT environments. We present a 5-level analytical

pipeline that cleans, smooths, and eliminates redundancies from the

data, and identifies outliers as well as the features that contribute

most to these anomalies. We show how smoothing can make our

methodology less sensitive to short-lived anomalies that might

be, e.g., due to sensor noise. We validate the methodology on a

dataset freely available in the literature. Our results show that

we can identify all anomalies in the considered dataset, with the

ability of controlling the amount of false positives. This work is the

result of a research project co-funded by the Tuscany Region and

a company leader in the paper and nonwovens sector. Although

the methodology was developed for this domain, we consider here

a dataset from a different industrial sector. This shows that our

methodology can be generalized to other contexts with similar

constraints on limited resources, interpretability, time, and budget.

CCS CONCEPTS
• Computing methodologies → Anomaly detection.
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1 INTRODUCTION
With the advent of Industry 4.0, industries have begun to make in-

tensive use of sensors to collect, archive, and analyze data. The goal

could be, e.g., to monitor the state of a process to identify anomalies

in the behavior or performance, or to compare the performance

of machines operating in different plants. From this perspective,

anomaly detection has become more and more a task of interest

to practitioners, but also to researchers in statistics, and computer

science. Anomaly detection is the process of identifying unexpected

values or events in data. This type of analysis can be useful in vari-

ous fields such as quality control, medicine, finance, image analysis,

and chemistry (see [16] for a selected list of papers on anomaly

detection in such fields).

As highlighted in [5], we can distinguish three main kinds of

anomaly: points anomaly, contextual anomaly and collective anom-

aly. Here we focus on point anomalies (hereafter anomalies), i.e.,

a sequence of points that abruptly deviates from the usual values.
For anomaly detection, practitioners traditionally set upper and

lower control limits, and values outside these limits are considered

anomalies. It is worth noting that anomalies can appear as temporal

noise, often caused by sensor errors (usually referred to as noise) or

147

https://doi.org/10.1145/3578245.3585036
https://doi.org/10.1145/3578245.3585036


ICPE ’23 Companion, April 15–19, 2023, Coimbra, Portugal Simone Tonini, Fernando Barsacchi, Francesca Chiaromonte, Daniele Licari, & Andrea Vandin

abnormal system operation (usually referred to as system anomaly).

The former are shocks of short duration, while the latter might

involve longer time intervals.

This paper introduces an empirical data-driven methodology

to identify anomalies in industrial contexts where the production

process is characterized by time series with unknown distribu-

tion. In particular, this paper shows the methodology currently

developed within the AutoXAI2 project, born from the coopera-

tion between Sant’Anna School for Advanced Studies of Pisa, and

the A.Celli company of Lucca, leader in the supply of machinery

and advanced technologies for the paper and nonwovens market
1
.

The project is co-funded by Tuscany region and the company. The

company also provided the data relating to a tissue paper machine.

The variables, approximately 300, were collected with a frequency

of approximately one observation per second. The data does not

have anomaly labels, and the objective of the study was to iden-

tify anomalies during the production process, both to monitor the

progress of a specific production line and to compare different pro-

duction lines to see how they differ although they should perform

in a similar way. In the initial validation phases, discussions with

domain experts are obviously needed to determine whether the

identified anomalies are real process anomalies or just noise. In this

paper we focus on the first problem, anomaly detection, validating

our proposed approach on a dataset equipped with anomaly labels

freely available online.

Related work. Researchers had developed various statistical tools
to classify observations into regular points and outliers. One of

them is the Mahalanobis distance [11], a useful way to determine

the similarity of an unknown sample space to a known one, based

on correlations between variables bywhich different patterns can be

identified and analyzed. In particular, Mahalanobis-type distances

are calculated and a limit value based on the distribution of these

distances is used to classify observations as anomalies [12, 13].

However, most applications assume that the variables follow a

Normal distribution or, in the most extreme cases, are skewed [3, 8,

10, 14, 17, 18].

In recent years, deep learning has attracted the attention of

anomaly detection scholars. Deep learning techniques have the

advantage of learning the complex dynamics in the data without

having to make assumptions about the underlying patterns within

the data. This property makes them an appreciated tool for anomaly

detection even in the case of time series. A recent and exhaustive

review of the state-of-the-art on deep learning-based anomaly de-

tection approaches for time-series data is provided by [2, 5].

However, although research on deep learning techniques has

reached the state of the art with respect to anomaly detection tasks,

there are contexts in which they are difficult to apply. In particular,

some of the limitations that most affect the use of such advanced

techniques are: lack of sufficient data, lack of adequate computa-

tional resources, time constraints for development or inference,

unknown distribution of data, interpretability of results, and high

cost.

Contribution. In this paperwe propose an agnostic 5-stepsmethod-

ology to classify one or more observations as anomalies, which

1
www.acelli.it

is based on first principles of statistical learning (variance infla-

tion factor, Mahalanobis distance, and Chebyshev’s inequality). The

proposed methodology solves most of the problems listed above,

namely it is easy to implement, fast to run and does not require to

know the distribution of the variables.

The first three steps refine the dataset to be used in later steps

to identify anomalies. In particular, the original data is cleaned

of irrelevant variables and filtered with a median smoothing pro-

cedure. Next, a selection of variables is made using the variance

inflation factor [6] to remove multicollinearity. The dataset defined

by these three steps is then used to estimate the Mahalanobis dis-

tance. Thanks to this, we can classify the observations as anomalies

if they exceed a certain threshold value of the standardized Ma-

halanobis distance, i.e., the Mahalanobis distance scaled to have

mean 0 and variance 1. The value of such threshold, say 𝑘 , can be

chosen by using first principles from statistics, i.e. Chebyshev’s

inequality [1]. Imposing a value 𝑘 as a threshold has the effect of

classifying as anomalies events with a probability of occurrence

less than or equal to 1/𝑘2. Thus, Chebyshev’s Inequality ensures

that the identified anomalies have a degree of rarity determined by

the tuning parameter 𝑘 . We will deepen the aspects of the adopted

methodology later.

To validate our methodology, we use a popular dataset from the

literature [15], the Server Machine Dataset (SMD), which comes

with labels to indicate whether an observation is an anomaly
2
.

Therefore, in this exercise the domain expert is replaced by the

labels provided in the SMD dataset, and we use them to validate

our methodology and to see how it behaves based on the varying

of some tuning parameters.

As discussed, the steps for constructing the analytical pipeline

are well established. However, to the best of our knowledge, they

have never been used in a combined and integrated manner as in

our methodology, which has therefore never been addressed in the

established literature.

In this paper we want to present the experiences encountered so

far in developing and applying our methodology, providing a first

validation of it.

2 THEORETICAL BACKGROUND
Some tools we use in this paper have critical issues that we try

to address through the proposed methodology. In particular, the

Mahalanobis distance is very sensitive to variations that are present

in the data, which can be considered as noise and not as anomalies

of the production process. We address this issue by using labeled

data that allow us to validate the impact on our procedure of a

smoothing step, where we consider a coarse-grained version of the

data using the median of windows (or steps) of𝑤 observations, with

𝑤 a parameter that can be set by the user. This can, e.g., remove very

short-lived anomalies that a domain expert might consider to be

noise. Obviously, the definition of process anomaly plays a key role

in setting the data smoothing step and, consequently, it determines

the performance of the proposed methodology. In this perspective,

using the aforementioned SMD labeled dataset, we show how the

estimation of anomalies can be controlled for different degrees of

smoothness and compare them with the true ones.

2
https://github.com/NetManAIOps/OmniAnomaly
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2.1 Technicalities and Challenges
Let X = {x𝑡 }𝑇𝑡=1 denote an 𝑛 ×𝑇 rectangular array of observations

concerning 𝑛 stationary time series (i.e. time series with finite vari-

ance). Given an𝑛-dimensional data point {x𝑖 } = {(𝑥1𝑖 , 𝑥2𝑖 , . . . , 𝑥𝑛𝑖 )′},
we focus on the basic question:

how distant is {x𝑖 } from the center of the distribution
of X?

To answer this question we consider the distance metric devel-

oped by Mahalanobis [11]. Let 𝜇𝜇𝜇 = {𝜇1, . . . , 𝜇𝑛}′ be the vector of
the arithmetic means of the 𝑛 variables, i.e. 𝜇𝑖 is the mean of x𝑖 ,
and let ΣΣΣ be the usual sample covariance matrix. The Mahalanobis

distance (𝑀𝐷) is defined as

𝑀𝐷𝑖 =

√︃
(x𝑖 − 𝜇𝜇𝜇)ΣΣΣ−1 (x𝑖 − 𝜇𝜇𝜇)′. (1)

𝑀𝐷𝑖 tell us how far x𝑖 is from the center of the data by taking

into account the covariance (or correlations if the x𝑖 ’s are re-scaled
to have variance 1). It is zero for x𝑖 at 𝜇𝜇𝜇, and grows as x𝑖 moves

away from 𝜇𝜇𝜇 along the principal component axis
3
. Note that, if the

distribution of the 𝑛 variables is exactly multivariate normal, then

𝑀𝐷𝑖 ≤ 𝜒2𝑛 (𝛼) (2)

with probability 1−𝛼 , where 𝜒2𝑛 (𝛼) is the Chi-Squared distribution
with 𝑛 degrees of freedom. Here we propose to use the𝑀𝐷𝑖 to iden-

tify anomalies in the production process. However, it is important

to highlight that the considered data presents critical issues and

challenges mitigated by the proposed methodology.

Challenges: (i) The masking effect. As for the MD, the authors of

[11] stress that (1) suffers from the so called masking effect, accord-
ing to which multiple anomalies do not necessarily have a large

𝑀𝐷𝑖 . This is due to the fact that 𝜇𝜇𝜇 and ΣΣΣ are not robust: a small

cluster of outliers will attract 𝜇𝜇𝜇 and will inflate ΣΣΣ in its direction.

We solve this issue by identifying a sufficient long portion of the

dataset where production was in line with expectation, i.e. a portion

of the dataset where all the variables move in an ideal range of

values. Our idea is to identify first such a dataset without anom-

alies, let us call it 𝑋𝐴 . This should be provided, e.g., by a domain

expert during initial analysis phases. Then, we iteratively merge

𝑋𝐴 to small pieces of new data, further portions of the dataset, that

we call 𝑋𝐵 , 𝑋𝐶 , . . . , obtaining datasets (𝑋𝐴, 𝑋𝐵), (𝑋𝐴, 𝑋𝐶 ), . . . . For
each such recombined dataset, we evaluate whether it contains

anomalies using our methodology. It is important to note that a

possible alternative solution is to consider robust estimates of 𝜇𝜇𝜇

and ΣΣΣ, i.e. resistant against the influence of clusters of anomalies,

giving rise to a robust Mahalanobis distance [3, 4]. However, in this

paper we want to show that if a large enough anomaly-free dataset

is identified, then the simple original version of the Mahalanobis

distance can detect anomalies in other small samples. We do not

rule out using robust versions of the Mahalanobis distance in future

works.

Challenges: (ii) Multicollinear variables. As reported in (1), the

Mahalanobis distance requires the covariance matrix to be invert-

ible. However, many variables may be multicollinear and this can

3
Note that if the principal component axes are re-scaled to have variance 1, then𝑀𝐷𝑖

correspond to the Euclidean distance.

prevent for the covariance matrix to be invertible. In order to re-

move multicollinear variables we apply the variance inflation factor

(VIF, [6]). The VIF consists of two steps. First, each variable is

regressed on the other 𝑛 − 1 variables. Second, the VIF for each

variable 𝑥𝑖 , 𝑖 = 1, . . . , 𝑛, is obtained as 1/(1 − 𝑅2
𝑖
), where 𝑅2

𝑖
is the

coefficient of determination of the regression model run at the pre-

vious step. We remove the variable with the largest VIF and run

again the algorithm until the largest VIF is less than 5, a threshold

value commonly used in the literature [9].

Challenges: (iii) Unknown distributions. Another issue regards
the fact that the distribution of the data of a production process

is typically undefined or unknown. It means that we can not use

the 𝜒2𝑛 distribution to define anomalies as in (2). We propose to

solve this limitation by using Chebyshev’s inequality. Let 𝜇𝑚𝑑 and

𝜎2
𝑚𝑑

be the mean and variance of the𝑀𝐷 obtained on a sample (for

example (𝑋𝐴, 𝑋𝐵)), respectively. The Chebyshev’s inequality says

that for 𝑍𝑚𝑑𝑖 =
𝑀𝐷𝑖−𝜇𝑚𝑑

𝜎𝑚𝑑
we have

𝑃{|𝑍𝑚𝑑𝑖 | ≥ 𝑘} ≤ 1

𝑘2
. (3)

The inequality in (3) says that, regardless of the distribution of the

data, the probability of a 𝑍𝑚𝑑𝑖 with an absolute value grater than or

equal to a value 𝑘 must be less than or equal to 1/𝑘2. Therefore, no
matter what the distribution of 𝑍𝑚𝑑𝑖 , the probability of observing,

for example, 𝑍𝑚𝑑𝑖 of 5 is no greater than 0.04 (i.e. 1/25).

3 METHODOLOGY
Let X𝐴 be an 𝑛×𝑇𝐴 array of observations relative to the production

process without anomalies. Let X𝐵 be an 𝑛 ×𝑇𝐵 array of observa-

tions relative to the production process. We want to detect possible

anomalies in X𝐵 . We recall that for the Mahalanobis distance we

need 𝑇𝐴 ≫ 𝑇𝐵 i.e. 𝑋𝐴 must be significantly larger than 𝑋𝐵 . For the

𝑛 ×𝑇𝑡𝑜𝑡 matrix X𝑡𝑜𝑡 = (X𝐴,X𝐵), with𝑇𝑡𝑜𝑡 = 𝑇𝐴 +𝑇𝐵 , the proposed
procedure is summarized as follows.

Step 1 - Data cleaning. We start by cleaning the dataset, i.e. we

remove all categorical variables that are constant in our subsample

X𝑡𝑜𝑡 , as well as the variables that are pointed out as irrelevant by

the domain expert, and therefore only bring noise.

Step 2 - Smoothing. We smooth the data through the median. let

us consider a window of size ℎ, a median filter applied to each of

the 𝑇𝑡𝑜𝑡 -dimensional vector x𝑖 ’s works as follows:

𝑤𝑖1 =𝑚𝑒𝑑 (𝑥1, . . . , 𝑥ℎ),
𝑤𝑖2 =𝑚𝑒𝑑 (𝑥2, . . . , 𝑥ℎ+1),

.

.

.

𝑤𝑖𝑇𝑡𝑜𝑡−ℎ+1 =𝑚𝑒𝑑 (𝑥𝑇−ℎ, . . . , 𝑥𝑇𝑡𝑜𝑡 ).

Therefore, given a window of size ℎ, we replace the 𝑛 ×𝑇𝑡𝑜𝑡 matrix

X𝑡𝑜𝑡 with the 𝑛×𝑇𝑡𝑜𝑡 −ℎ +1 matrixW. This step allows to tune our

methodology to specific considered domains. Indeed, our methodol-

ogy might be too sensitive, meaning that it might identify anomalies

that happen for very short amounts of time, and therefore are not

considered anomalies by the domain experts.
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Step 3 - VIF. As previously said, we remove the variable with the

largest VIF and run again the algorithm until the largest VIF is less

than 5. Thus, after this step we get the𝑚 ×𝑇𝑡𝑜𝑡 − ℎ + 1 matrix W̃,

where𝑚 ≤ 𝑛.

Step 4 - Anomalies detection. We calculate the Mahalanobis dis-

tance (1) relative to the dataset W̃, denoted as𝑀𝐷 (W̃), and re-scale
it to have 0 mean and variance 1, namely 𝑍𝑚𝑑 (w̃) . An observation

𝑖 is labeled as anomaly if its standardized re-scaled Mahalanobis

distance, i.e. 𝑍𝑚𝑑𝑖 (w̃) , is greater than 𝑘 , where 𝑘 is the tuning pa-

rameter which determines the upper bound on the probability of

occurring according to the Chebyshev’s inequality (3). Thus, we

obtain a new binary variable, named Y, equal to 1 if |𝑍𝑚𝑑𝑖 (w̃) | ≥ 𝑘

and 0 otherwise.

Step 5 - Variable detection. If we identify anomalies in the obser-

vations relating to the datasetX𝐵 , then we identify also the variable

that most contributes to those anomalies as

𝑚𝑎𝑥1≤ 𝑗≤𝑚𝐶𝑜𝑟𝑟 (𝑌,𝑋𝐵𝑗 ). (4)

This could be useful, e.g., to suggest to the domain expert how to

interpret the anomaly, and how to address it.

Discussion. The goal of the methodology just shown is to provide

an anomaly detection tool in a completely agnostic context where

data are not labeled. The anomalies identification process must be

supervised by a domain expert who must confirm whether they are

true anomalies, by checking whether the relevant variables have ex-

ceeded the upper and lower control limits. In particular, the domain

expert will determine whether some short duration shocks are true

system anomalies or simple sensor noises that can be ignored. In

this sense the procedure is adaptive. For example, let’s consider

the case where we do not apply Step 2 related to smoothing. Our

expectation is that the methodology is sensitive to short duration

shocks labeling them as anomalies, which however can be sensor

noise. If the domain expert will evaluate these anomalies as irrele-

vant, then we could set a middle-high value of the filtering window

ℎ and remove the noise.

Furthermore, it is important to underline that in this agnostic

context our methodology does not aim to perfectly estimate the

anomalies, but simply to give an indication of where they have oc-

curred in order to give the domain expert the possibility to: (𝑖) verify

if there are any regular patterns in the formation of anomalies (e.g.

there are particular variables that contribute to their formation); (𝑖𝑖)

being able to make a summary of the anomalies that each machine

has accumulated in a certain period and thus to compare machines

that should perform in the same way.

Therefore, assuming that the anomalies are of medium-long

duration, we expect that, once the smoothing parameter is well

set, our methodology does not lead to false positives, at the cost of

having false negatives. This means that we expect to find anomalies

that have a shorter duration than the true ones due to smoothing,

but which occur in a time interval where a real anomaly occurred.

4 VALIDATION
The Server Machine Dataset. To validate our methodology, we use

the Server Machine Dataset (SMD), a recent 5-week-long dataset

collected from a large Internet company [15] and composed by 38

variables. It is one of the largest public datasets currently available

for evaluating multivariate time-series anomaly detection. It con-

tains metrics like CPU load, network usage, memory usage, etc.

SMD is made up by data from 28 different machines where the

observations are collected per minute, and each of them is divided

into training and test set. It is important to note that there is no

information related to the variables involved in the SMD dataset. In

fact, the variables are labeled based on the number of the column

where they are located into the data matrix. For each anomaly,

these numbers are used to indicate the variables that caused it. The

dataset has been validated elsewhere [15], providing it with labels

to denote anomalies. The test set contains period with and without

anomalies, and therefore can be used to validate the methodology

presented in Section 3.

Setting. We try to identify anomalies for the first machine by

focusing on the test set only. In fact, the test set contains a large

first part with no anomalies (15800 timepoints) and a last part

with 8 clusters of anomalies (about overall 12700 timepoints for

all 8 clusters) as depicted in Figure 1. We use the first part of the

test set as a sufficiently large basis for our procedure and merge

it every time with a piece of the dataset containing one of the

clusters of anomalies. As reported in Section 3, the initial part of

the test set becomes𝑋𝐴 and each of the following 8 parts containing

clusters of anomalies become datasets𝑋𝐵, 𝑋𝐶 , . . . , 𝑋𝐼 . The proposed

methodology is thus applied to the datasets (𝑋𝐴, 𝑋𝐵), (𝑋𝐴, 𝑋𝐶 ),. . . ,
(𝑋𝐴, 𝑋𝐼 ), separately. We set the tuning parameter relative to the

degree of rarity, i.e. 𝑘 , at 10, meaning that the anomalies are those

events with a probability of occurring less or equal 1% according to

the Chebyshev’s inequality (3). Figure 2 reports the results obtained

for the 9 datasets (the dataset 𝑋𝐴 without anomalies and the other

8 datasets with anomalies). We consider 3 different values of the

smoothing parameter, i.e. the size of the ℎ window to which the

median filter is applied. The values of ℎ are 1, 10, 60. We have the

first case, ℎ=1 where the data are not smoothed, shown in the first

row of Figure 2. The intermediate case (ℎ=10) is shown in the second

row, where a smoothing that we could define soft is applied. Finally,

the case with stronger smoothing (ℎ=60) is given in the third row.

Figure 1: Anomalies in the test set of the first machine of
the SMD dataset as specified in its labeling. The x-axis shows
the dates on which the data were collected. Anomalies are
denoted with y value, a zero-value denotes the absence of
anomalies, while -1 indicates the presence of anomalies.
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𝑋𝐴 (𝑋𝐴, 𝑋𝐵) (𝑋𝐴, 𝑋𝐶 ) (𝑋𝐴, 𝑋𝐷 ) (𝑋𝐴, 𝑋𝐸 ) (𝑋𝐴, 𝑋𝐹 ) (𝑋𝐴, 𝑋𝐺 ) (𝑋𝐴, 𝑋𝐻 ) (𝑋𝐴, 𝑋𝐼 )
No smoothing

Smoothing window 10

Smoothing window 60

Figure 2: Our methodology for anomaly detection applied to the first machine of the SMD dataset. Column 𝑋𝐴 considers the
anomalies-free portion of the dataset. Columns (𝑋𝐴, 𝑋−) consider the dataset obtained by adding portions of the dataset with
anomalies to 𝑋𝐴. Each row considers a different smoothing level.

𝑋𝐴 (𝑋𝐴, 𝑋𝐵) (𝑋𝐴, 𝑋𝐶 ) (𝑋𝐴, 𝑋𝐷 ) (𝑋𝐴, 𝑋𝐸 ) (𝑋𝐴, 𝑋𝐹 )
No smoothing

Smoothing window 10

Smoothing window 60

Figure 3: Confusion matrices for the imputed anomalies from data 𝑋𝐴 to (𝑋𝐴, 𝑋𝐸 ). The upper left quadrant reports the number
of true negatives, while the lower right quadrant reports the number of true positives. The upper right and lower left quadrants
report false positives and false negatives, respectively. Each row considers a different smoothing level.

The blue line reports the anomalies detected by our methodology

and the yellow line reports the true ones from the labels of the

dataset. Both lines are 0 when there are no anomalies, whereas

their values diverge in the case of anomalies to better show results,

namely 1 for our methodology and -1 for the true anomalies.

Hypothesis. We expect to observe that as the smoothing window

increases, false positives decrease, reducing however the ability

to identify anomalies of short duration, i.e. the number of false

negatives increases. At the opposite side, low (or absent) smoothing

could allow us to identify all anomalies, at the price of increasing

the number of false positives.

Discussion/results. Observing the yellow lines we can informally

divide the true anomalies into two different types. In fact, from

dataset (𝑋𝐴, 𝑋𝐵) to (𝑋𝐴, 𝑋𝐹 ) the anomalies have a relatively large

duration, while from the dataset (𝑋𝐴, 𝑋𝐺 ) to (𝑋𝐴, 𝑋𝐼 ) they affect

few observations. The results of this validation study can be sum-

marized as follows. When we do not smooth the data (first row of

Figure 2) the proposed methodology always identifies the anom-

alies in correspondence with the true ones. However, we observe

that there are also some false positives among the identified anom-

alies. These are due to the fact that without a smoothing step, the

proposed procedure is sensitive to short irrelevant shocks (noises)

in the data.
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If we insert a slight smoothing of the data (second row), the

problem is solved when the real outliers have a relatively large

duration, i.e. from case (𝑋𝐴, 𝑋𝐵) to case (𝑋𝐴, 𝑋𝐹 ). When this does

not happen because there are no anomalies (case 𝑋𝐴), or because

the anomalies are too short (cases from (𝑋𝐴, 𝑋𝐺 ) to (𝑋𝐴, 𝑋𝐼 )), then
the methodology is strongly conditioned by small variations in the

data which condition the vector 𝜇𝜇𝜇 and the matrix ΣΣΣ, leading to false
positives.

In the most extreme considered case of high smooth (third row),

we observe that, on the one hand, there are no false positives in any

of the 9 datasets. However, on the other hand, we see that the anom-

alies are selected only in the cases from (𝑋𝐴, 𝑋𝐵) to (𝑋𝐴, 𝑋𝐹 ), i.e.
when they have a duration relatively large. In fact, cases (𝑋𝐴, 𝑋𝐺 )
to (𝑋𝐴, 𝑋𝐼 ) have too short a duration and have been removed from

smoothing.

It is important to underline that in our case it is more convenient

to reduce false positives to zero at the cost of increasing false neg-

atives. This is because according to the A.Celli’s domain experts,

their anomalies have a common trend, i.e. they are never shocks

of one or a few observations, but events that last for a prolonged

period. Therefore, it is sufficient to use hard smoothing to remove

sensor noise even if this increases the number of false negatives.

However, this does not pose a problem, since we know that, by

construction, the anomalies are short due to smoothing but refer

to long-duration events. Thus, we are not interested in finding the

entire interval within which the anomaly occurred, rather we are

interested in finding a signal that tells us, quickly and effectively,

when it occurred and which variables it involved.

Figure 3 shows the confusion matrices for the imputed anomalies

from data 𝑋𝐴 to (𝑋𝐴, 𝑋𝐸 ), i.e. data without anomalies and data

where the anomalies continue for a long period in the cases of

𝑤 = 1 (first row of plots),𝑤 = 10 (second row of plots) and𝑤 = 60

(third row of plots). For each plot, the upper left quadrant (in dark

blue) reports the number of true negatives, while the lower right

quadrant reports the number of true positives. The upper right

and lower left quadrants report false positives and false negatives,

respectively. The results clearly show that a higher smoothing

window eliminates false positives in dataset 𝑋𝐴 that contains no

anomalies. However, it is observed that going for𝑤 = 60 there are

some false positives for the datasets (𝑋𝐴, 𝑋𝐶 ) and (𝑋𝐴, 𝑋𝐸 ), but
which are not obtained for𝑤 = 10. This is due to the fact that for

these two cases the imputed anomalies with 𝑤 = 60 are slightly

outside the range of the true anomalies. In our opinion, this does

not pose a problem since the few false positives do not refer to

another cluster of anomalies, but to the same one and may be due

to the observations involved in the smoothing. Therefore, despite

this problem, we consider𝑤 = 60 to be preferable to𝑤 = 10 since

the former allows us to impute zero anomalies in the 𝑋𝐴 dataset.

The last result we present is shown in Figure 4. It concerns the

selection of the variable most correlated with the anomaly identified

in the case of strong smoothing (ℎ = 60). This result is obtained

from step 5 of the procedure presented in Section 3. The first row

contains the same information of Figure 2, while the second shows

the value of the variables that has been identified according to (4).

We can observe that for each anomaly the variable that is most

correlated with it is stationary over the whole sample, with the

exception of the final part where a strong anomaly is observed. In

all 5 cases the variable that has been selected appears to be part

of the set of variables that caused the anomaly according to the

domain experts of the SMD dataset (as reported in [15]). Remember

that, as previously pointed out, the only information relating to the

relevant variables for each anomaly is their position in the dataset.

5 CONCLUSIONS
We have presented a novel preliminary methodology for identifying

anomalies in time series from industrial processes. The procedure

is based on well-known statistical methods such as the Variance

Inflation Factor, the Mahalanobis distance and Chebyshev’s inequal-

ity. We have validated our methodology on a well-studied dataset

from the literature, namely the Server Machine Dataset (SMD) [15]

which contains 5 weeks of data from a large Internet company.

We showed how a smoothing parameter can be used to make

our method less sensitive to short anomalies, which may be un-

interesting in certain domains. Overall, with slight smoothing we

were able to identify all anomalies present in the considered dataset,

while giving some false positives. The latter could be eliminated by

increasing the smoothing, obtaining a few false negatives for real

but short anomalies.

This research is part of the AutoXAI2 research project. The

project is partially funded by Tuscany region and the A.Celli group.

Within the project, the authors collaborate on the development of

the presented methodology and its application to the company’s

data from the paper and nonwovens industrial sector. The aim

of this paper was also to discuss the experience gained in this

collaboration.

Limitations and Future works. We have told the experience de-

veloped in this industrial collaboration, and the methodology origi-

nated from solving the related problems. However, in future works,

we will further develop and complete our methodology by focusing

on discovering the variables that caused the identified anomalies.

We will also consider further datasets, e.g. considering more ma-

chines from the SMD dataset, so to compare data across different

machines. Finally, we will consider further datasets, and if possible

we will present results on the data from our industrial partner.

The following is a detailed list of future works.

• WeightedMahalanobis distance. Evaluate the use of aweighted
version of the Mahalanobis distance [19] in order to give

less weight to variables with short-term noises and greater

weight to variables with short-term anomalies that are cru-

cial for the process. Obviously, this improvement requires

a phase of comparison with the domain expert to select the

irrelevant variables from the potentially relevant ones.

• Detecting critical variables. Instead of identifying the vari-

able that contributes most to the anomaly using maximum

correlation, there are more robust approaches that can de-

termine which variables have the greatest influence on the

Mahalanobis distance [7].

• Explaination phase. Better develop the last step of themethod-

ology to identify which variables caused a discovered anom-

aly. This will be useful to suggest the domain expert how

understand and fix the methodology. In particular, the pro-

posed procedure involves a loss of information mainly due

to the VIF and the use of the Mahalanobis distance. The first
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(𝑋𝐴, 𝑋𝐵) (𝑋𝐴, 𝑋𝐶 ) (𝑋𝐴, 𝑋𝐷 ) (𝑋𝐴, 𝑋𝐸 ) (𝑋𝐴, 𝑋𝐹 )
Smoothing window 60

Variable most correlated

Figure 4: Variable most correlated with the anomalies obtained by smoothing data with a window of size ℎ = 60.

reduces the number of variables used for the identification

of anomalies, the last consists in a real transformation of the

data. Due to this loss of information, not all variables that are

deemed relevant by the domain expert may be present in the

dataset used to identify anomalies. We could go back to all

the original relevant variables by adopting a multivariate ap-

proach that starts from the relevant variables that remained

in the dataset.

• Expand application. Apply the proposed methodology to

other machines related to the SMD dataset to simulate a

comparison between machines. For example, by assessing if

there are machines that perform worse than others getting

more anomalies.
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