
OSCAR-P and aMLLibrary: Performance Profiling and Prediction
of Computing Continua Applications

Enrico Galimberti

Politecnico di Milano university

Milan, Italy

Enrico.Galimberti@polimi.it

Bruno Guindani

Politecnico di Milano university

Milan, Italy

Bruno.Guindani@polimi.it

Federica Filippini

Politecnico di Milano university

Milan, Italy

Federica.Filippini@polimi.it

Hamta Sedghani

Politecnico di Milano university

Milan, Italy

Hamta.Sedghani@polimi.it

Danilo Ardagna

Politecnico di Milano university

Milan, Italy

Danilo.Ardagna@polimi.it

Sebastián Risco

Universitat Politècnica de València

Valencia, España

serisgal@i3m.upv.es

Germán Moltó

Universitat Politècnica de València

Valencia, España

Gmolto@dsic.upv.es

Miguel Caballer

Universitat Politècnica de València

Valencia, España

Micafer@i3m.upv.es

ABSTRACT
This paper proposes an auto-profiling tool for OSCAR, an open-

source platform able to support serverless computing in cloud and

edge environments. The tool, named OSCAR-P, is designed to au-

tomatically test a specified application workflow on different hard-

ware and node combinations, obtaining relevant information on

the execution time of the individual components. It then uses the

collected data to build performance models using machine learning,

making it possible to predict the performance of the application

on unseen configurations. The preliminary evaluation of the per-

formance models accuracy is promising, showing a mean absolute

percentage error for extrapolation lower than 10%.

CCS CONCEPTS
• Software and its engineering→ Software creation and man-
agement; • Computing methodologies → Artificial intelli-
gence; Machine learning; Modeling and simulation.

KEYWORDS
Edge Computing, Performance Profiling, Machine Learning

ACM Reference Format:
Enrico Galimberti, Bruno Guindani, Federica Filippini, Hamta Sedghani,

Danilo Ardagna, Sebastián Risco, Germán Moltó, and Miguel Caballer.

2023. OSCAR-P and aMLLibrary: Performance Profiling and Prediction of

Computing Continua Applications. In Companion of the 2023 ACM/SPEC
International Conference on Performance Engineering (ICPE ’23 Companion),
April 15–19, 2023, Coimbra, Portugal. ACM, New York, NY, USA, 8 pages.

https://doi.org/10.1145/3578245.3584941

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. Copyrights for components of this work owned by others than the

author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or

republish, to post on servers or to redistribute to lists, requires prior specific permission

and/or a fee. Request permissions from permissions@acm.org.

ICPE ’23 Companion, April 15–19, 2023, Coimbra, Portugal
© 2023 Copyright held by the owner/author(s). Publication rights licensed to ACM.

ACM ISBN 979-8-4007-0072-9/23/04. . . $15.00

https://doi.org/10.1145/3578245.3584941

1 INTRODUCTION
Cloud computing is widely adopted today and has been used for

years as the standard computing paradigm for industrial-level dis-

tributed systems [17]. This model evolved over time, and recently

edge systems are becoming more and more popular. Their main

advantage is given by the fact that the data produced by devices at

the edge of the network can be processed locally, instead of being

moved to a centralized data-center and returned to the user after

the processing.

As a result, a novel computing paradigm is emerging, creating a

computing continuum that seamlessly integrates edge devices with

remote cloud servers by moving a part of the computation close to

where data are produced [15].

Another novelty in cloud computing is represented by the intro-

duction and quick rise in popularity [4] of the Functions as a Service

(FaaS) model. It breaks down complex applications in workflows of

small, usually short-lived components that run on reusable services

consisting of stateless containers activated by suitable events (e.g.,

a file upload). This greatly benefits data processing systems, as the

execution of resource-intensive applications is triggered on demand.

Using containers instead of full virtual machines reduces both the

development/deployment complexity and the resource usage. FaaS

model in public clouds is characterized by per-millisecond costs

bound to the actual resource usage, instead of charging a fixed rate

at all times as in other cloud models [1].

Achieving low latency and high throughput is one of themain dri-

vers behind edge computing. However, evaluating the performance

of a complex application, whose components may be allocated at

different levels of the computing continuum, is a problem without

an easy solution. There is a need for automated tools that can help

with the profiling of those components, measuring the execution

times with a varying amount of available resources. Furthermore,

predicting the performance of a given application at a target con-

figuration is a key task to support the proper planning and runtime

management of the available resources.

139

https://doi.org/10.1145/3578245.3584941
https://doi.org/10.1145/3578245.3584941


ICPE ’23 Companion, April 15–19, 2023, Coimbra, Portugal Enrico Galimberti et al.

This paper proposes an integrated framework for the execution,

profiling, and performance models training for FaaS-based appli-

cations running in computing continua. This framework has two

main components, each of which represents a novel contribution:

OSCAR-P and aMLLibrary. Application execution is supported by

the OSCAR
1
framework [13], a state-of-the-art runtime environ-

ment for computing continuum applications which aims at creating

a highly-parallel, event-driven, pipelined file-processing serverless

environment to execute general-purpose applications. Application

profiling is based on OSCAR-P, an auto-profiling tool built around

OSCAR, which automatically tests a specified application workflow

on different hardware and node combinations, obtaining relevant

information on the timing of the execution of the individual compo-

nents. The profiling data are then used by aMLLibrary, a machine

learning library we designed to easily build performance models.

A performance model is built for every service/resource pair, and

these single models are composed together to obtain a prediction

on the runtime of the full workflow, making it possible to predict

the performance (average execution time) of an application on

unseen configurations. The preliminary results we achieved on a

testing application are promising, since the performance models

for estimating application response time introduce a mean absolute

percentage error in extrapolation scenarios lower than 10%.

This paper is organized as follows. Section 2 presents relevant

literature works. Section 3 provides a summary of the OSCAR

framework and its architecture. Section 4 illustrates in details the

OSCAR-P goals and its components, while Section 5 illustrates

the capabilities of aMLLibrary and the performance analysis it can

support. Section 6 focuses on the experimental scenarios considered

to validate our tools. Conclusions are finally drawn in Section 7.

2 RELATEDWORK
This section overviews some recent works in technological fields

that are relevant to this paper, such as FaaS and edge computing en-

abling frameworks, benchmarking tools for FaaS and edge systems,

and machine learning (ML)-based performance modelling.

Sewak et al. [16], as a primer on the topics, present FaaS and

more generally serverless computing, explore its advantages and

limitations, and compare the options available in public clouds with

different providers. Recently, frameworks that aim to support edge

computing have also been proposed. For example, ONEedge al-

lows to build and manage a distributed edge-cloud using resources

from public clouds and edge infrastructure providers. The litera-

ture presents frameworks that support edge computing following

the FaaS paradigm. This is the case of faasd, which provides a

lightweight alternative to OpenFaaS, a popular open-source FaaS

framework, that runs on machines with very modest requirements,

allowing the deployment of embedded applications in IoT and edge

use-cases. As the popularity of FaaS and edge computing rose, sev-

eral cloud providers started offering their own FaaS platforms, each

with different underlying technologies. At the same time, many

researches tried to address the challenges of benchmarking appli-

cations deployed partially on the edge and partially on the cloud

and presented their own software solution [3, 11].

1
OSCAR - https://oscar.grycap.net

Many researchers focus on analyzing and predicting the perfor-

mance of applications running on edge/cloud systems, and recently

their majority use ML models. For example, the work by Disabato

et al. [5] proposes linear regression models to predict the execution

time of Convolutional Neural Networks (CNNs) on edge devices,

given constraints on memory and processing load. Instead, authors

of [12] employ several ML models alongside anomaly detection to

properly configure a cloud-based Internet of Things (IoT) device

manager while respecting Quality of Service (QoS) constraints. In

[10], a number of ML techniques are used to perform execution

times prediction of Spark Cloud jobs with different types of work-

loads. Finally, performance modelling through ML is also applied to

FaaS platforms. SuanMing [8] is an integrated framework for learn-

ing regressors using different algorithms for microservice-based

systems, with the goal of identifying potential sources of perfor-

mance loss in complex applications. Different from the previous

works, our performance profiling solution, OSCAR-P, is focused on

benchmarking the OSCAR framework, which can be deployed on

top of any commercial cloud, and hence has the important benefit

of being cloud provider agnostic. Moreover, the aMLLibrary can

provide the average execution time of an application workflow

with acceptable precision even for unseen configurations and with

a limited testing campaign.

3 OSCAR
OSCAR is an open-source framework that easily and efficiently

supports event-driven, file-processing, serverless applications pack-

aged as Docker images in the computing continuum [14]. These are

executed in elastic Kubernetes clusters, dynamically provisioned

and horizontally scaled across multiple Cloud back-ends. OSCAR

is used as runtime framework in European research projects, to

support inference of AI/MLmodels in AI-SPRINT and AI4EOSC and

to provide event-driven data ingestion capabilities in InterTwin.

The framework architecture (see Figure 1) includes: i) MinIO, an

S3-compatible high-performance multi-cloud object storage server,

native to Kubernetes; ii) Knative, an open-source enterprise-level

solution to build serverless and event-driven applications that sup-

ports synchronous invocations, iii) OSCAR Manager, the main ser-

vice that manages the integration of the separate components.

The supported storage providers are: i) MinIO, deployed either

internally or externally to the cluster; ii) Amazon S3, AWS’s object

storage service and industry leader in terms of scalability, data

availability, security, and performance in the public Cloud; iii) One-

data, the global data access solution for science used by the EGI

Federated Cloud.

Applications are created as services on the OSCAR cluster, by

specifying: i) a Docker image to be used, ii) the input and output

buckets of each service, and iii) by providing a shell script to be

executed inside the container. The services can be created manually

one by one, or all at once through a Function Definition Language

(FDL) configuration file. Once the application is configured, the

execution of a service is automatically triggered by uploading a file

into its input bucket. The result is delivered into the output bucket;

this may be the input of another service that, if so, is automatically

triggered and either executed immediately, if there are enough

available resources, or added to the job queue. Uploading multiple

140

https://oscar.grycap.net


OSCAR-P and aMLLibrary: Performance Profiling and Prediction of Computing Continua Applications ICPE ’23 Companion, April 15–19, 2023, Coimbra, Portugal

Figure 1: OSCAR architecture

files triggers the highest possible number of parallel invocations

supported by the specific cluster; all the remaining function calls are

scheduled to be executed as soon as the running services complete.

A component may have multiple versions, and it may be replaced

by two or more equivalent components running sequentially. This

is crucial for AI applications, since we can partition DNNs to run

on (possibly) different devices, exploiting at best the computing

continuum resources.

OSCAR can run on minified Kubernetes distributions (e.g., k3s)

and on arm64 architectures (e.g., Raspberry Pi clusters).

4 OSCAR-P
This section presents OSCAR-P, the OSCAR profiler which provides

the first novel contribution of this paper.

OSCAR-P is built around OSCAR and its components, and it acts

as a director, configuring and coordinating the profiling activities

and collecting the required data once the profiling is completed.

The aim of OSCAR-P is to simplify and fully automate the testing of

specific OSCAR application workflows on different hardware con-

figurations, and collect data to train machine learning performance

models.

Specifically, OSCAR-P receives as input:

(1) a description of resources that needs to be tested, with a de-

tailed overview of their hardware and software architecture

(the number of available nodes, the memory amount and

number of cores of every node);

(2) the components, their Docker images, and their hardware

requirements (the needed memory amount and number of

cores of every single instance);

(3) a set of parameters specifying how to test the application

(which input files to use, the number of batches and their

sizes, the time interval between uploads and their distribu-

tion). Moroever, for every component, the parallelism levels

to be tested (i.e., the maximum number of parallel instances

that a component is allowed to have) is also specified;

(4) the machine learning models to consider in the performance

models training and their hyperparameters.

The tests are performed by varying the used resources, either by

changing the number of active nodes or by changing one resource

with another.

Once all the required resources are in place and correctly config-

ured, the testing campaign is controlled by a single YAML configura-

tion file (see Figure 2) containing the list of services, the description

of the clusters and their worker nodes and information on how the

application needs to be tested; this YAML file is paired with the

results of its associated run, to simplify debugging and allowing

replicability. Every combination of hardware and nodes is tested

more than once to cope with execution time measurement noise

141



ICPE ’23 Companion, April 15–19, 2023, Coimbra, Portugal Enrico Galimberti et al.

and, after testing the full workflow, the individual components are

also tested on their own.

The profiling activities have to follow a precise sequence of steps

(illustrated in Figure 2), each managed by a separate OSCAR-P

sub-component.

1. Input files parser. Starting from the input files, OSCAR-P lists

all the “testing units”, i.e., all the valid component / resource tuples;

if a component is partitioned (OSCAR supports also the execution

of partitioned Deep Neural Networks), all the partitions are con-

sidered as part of the same “testing unit”, thus ensuring that they

are always tested together. As a simple example (see Figure 3), we

can consider an application including a single component (Com-
ponent 1), which can be split in two partitions (Component 1.1 and
Component 1.2) available for different architectures (ARM64 and

AMD64, respectively). The available resources include a cluster of

Raspberry Pi (ARM64) and a cluster of Virtual Machines (AMD64).

In this scenario, the testing units would be: 1) Comp. 1 on the RasPi

cluster; 2) Comp. 1 on the VM cluster; 3) Comp. 1.1 on RasPi and

Comp. 1.2 on VM cluster.

OSCAR-P then creates a list of all the possible deployments, that

is all the possible combinations of the testing units (see Figure 4).

Finally, each deployment contains a list of “runs” to be tested: every

run includes the same list of components, but each component

“parallelism” (i.e., its maximum number of parallel instances) varies

from one run to the other according to what has been specified. An

example is shown for Deployment 3 in Figure 5.

2. Cluster configurator. Before testing a deployment, the involved

clusters need to be setup and correctly configured for the first

run. As an example, for configuring physical clusters, OSCAR-P

connects via SSH to the front node of the Kubernetes (K8s for short)

cluster, and then cordon or uncordon the worker nodes to reach

the required number. Once the clusters are configured correctly,

the profiling of a specific run can take place. In order to modify the

configuration of the clusters to adapt it to the next runs, the cluster

configurator can change the number of worker nodes.

3. Description generator. After configuring the clusters to suit the
requirements of a particular run, OSCAR-P creates a descriptive

YAML file detailing all the information needed to run the test in a

single location. This file contains the list of all the services, reporting

for each one their requirements in terms of memory and cores,

their input and output buckets and the associated Docker image. It

also contains a description of the clusters in use, their endpoints,

credentials and configuration, as well as information on the input

files to be used to start the run, their number and the timing of their

uploads. This descriptive file is updated with all the subsequent

runs of a deployment, and in the end it serves as a detailed summary

of the whole testing campaign.

4. Run manager. The run description YAML file is parsed to

extract all its relevant information before the run can start. OSCAR-

P then generates an FDL file containing the information needed to

build the new workflow, meaning the required services and buckets,

and uploads it to OSCAR so that it can be applied. The run is started

by moving the required files in the input bucket of the first service,

which triggers its execution.

For the full application workflow tests, once the files are moved

into the input bucket of the first component the workflow proceeds

by itself, since every component output bucket is the input of an-

other component (the input parser checks this assumption in the

first steps), and OSCAR-P simply monitors the execution until its

completion.

When testing single services instead, a component cannot write

its output files in its assigned bucket or else it would trigger the

execution of the next function. The solution we adopted is connect-

ing the tested components to a temporary empty input bucket, and

to a temporary output bucket which does not trigger the execution

of other components. The contents of the “real” input bucket are

then copied to the dummy input bucket, just like at the start of the

run with the storage bucket, triggering its execution.

5. Log retriever. After finalising each run, OSCAR-P proceeds

to collect and process the logs. The logs are retrieved both from

OSCAR and kubectl, and together they provide information on

when a job (that is a single component execution) was scheduled,

when its pod was created, and when it was actually started and

finished; all this information is useful for checking delays, waits and

overheads. The relevant logs information, also across multiple runs

are collected in a single CSV file which is used by the aMLLibrary

to train a performance model for every service/resource pair.

5 AMLLIBRARY
aMLLibrary

2
is an open-source, high-level Python package that

allows training of multiple performance models for the individual

components and the full workflow, supporting feature selection and

hyperparameters tuning. It is based on the scikit-learn toolkit, and

uses supervised machine learning techniques to generate regres-

sion models which can be used to predict applications performance.

Overall, aMLLibrary implements an autoML solution, i.e., it per-

forms training of multiple regression models and automatically

selects the most accurate one based on the validation metric chosen.

The execution of the library is controlled by a simple configuration

text file (or equivalently, a Python dictionary), where the user can

specify the dataset to be used, the training settings, the regression

models to be tested and their ranges of hyperparameters, and the

validation method.

aMLLibrary has several useful perks for building performance

models. Individual analyses can compare in a single run multiple al-

ternative ML methods, and parallel processing of the training phase

of the models is supported. The user can specify the number of par-

allel cores to be used, and the library automatically distributes the

training experiments evenly among the parallel workers, even if the

underlying scikit-learn model is limited to single-thread execution.

Furthermore, the library implements a fault tolerance mechanism

by saving incremental progress checkpoints. If the experimental

campaign is interrupted, e.g., because of the failure of the server

the library is running on, it can recover the previous results and

resume from there.

The main strengths of aMLLibrary are its ease of use, customiz-

ability, and extensibility. A simple configuration text file is required

to launch a full experimental campaign for all implemented models

2
https://github.com/aMLLibrary/aMLLibrary

142

https://github.com/aMLLibrary/aMLLibrary


OSCAR-P and aMLLibrary: Performance Profiling and Prediction of Computing Continua Applications ICPE ’23 Companion, April 15–19, 2023, Coimbra, Portugal

Figure 2: Profiling activity steps and OSCAR-P sub-components.

Figure 3: Simple application example

Figure 4: Testing units example

without writing a single line of Python code. Default probability

distributions for hyperparameters are provided, and they are gen-

eral enough to allow the automatic tuning mechanism to find the

appropriate parameter values without further input. At the same

time, the user has full control over the experimental campaign

thanks to the many options and flags available in the configuration

file. Extensibility is another major advantage for advanced users

who wish to implement new techniques. One can simply write a

plugin or a model wrapper and add it to the library, building on the

existing features already available.

The library currently supports Decision Tree (DT), Non-Negative

Least Squares (NNLS), Random Forest (RF), Ridge Linear Regression,

Stepwise (a linear regression model integrating the Draper-Smith

feature selection technique [6]), Support Vector Regression (SVR),

and XGBoost. Hyperparameter tuning of these models can be per-

formed either via grid search, by specifying the lists of values to be

Figure 5: Deployment example

tested, or automatically via Bayesian Optimization (BO), using the

HyperOpt library
3
, with which aMLLibrary is integrated.

aMLLibrary includes plugins for several data pre-processing

techniques (e.g., data normalization and one-hot encoding for dis-

crete features), as well as other convenient tools such as row se-

lection and data validity checks. It also supports automatic feature

engineering, computing logarithms, inverse values, and feature

products/polynomial expansion up to a given degree. These tools

can be useful to unearth potentially relevant information hidden

in the input features, such as quadratic dependencies and inter-

action terms. Feature selection techniques are also supported, in-

cluding forward Sequential Feature Selection (SFS) [7] and impor-

tance weight selection by using the XGBoost regression model. The

user can choose among several validation methods to compute the

Mean Absolute Percentage Error (MAPE) of a model, computed as

𝑀𝐴𝑃𝐸 (𝑦,𝑦) = 1

𝑁

∑𝑁
𝑖=1

��� 𝑦𝑖−𝑦𝑖𝑦𝑖

���, where 𝑦 is the vector of true values

and 𝑦 is the vector of predicted values by the ML model. Finally,

the library has a prediction module that can be used to make in-

terpolation and extrapolation with a trained regression model. A

summary of the structure of aMLLibrary is presented in Figure 6.

3
https://github.com/hyperopt/hyperopt

143

https://github.com/hyperopt/hyperopt


ICPE ’23 Companion, April 15–19, 2023, Coimbra, Portugal Enrico Galimberti et al.

aMLLibrary

Feature EngineeringData Management Data Validation

Cross-Validation Extrapolation

Feature Selection

Sequential
Feature

Selection
XGBoost

Hyperparameter Tuning

Grid Search Hyperopt

Regression Module

Decision Tree Non-Negative
Least Squares Random ForestLR Ridge Stepwise Support Vector

Regression XGBoost

Inverse Logarithm

Validity Check Polynomial
Products 

Runtime Support

Fault Tolerance Parallel
Training 

Normalization

Column
Selection 

One-Hot
Encoding 

Row Selection Hold-Out Interpolation

Prediction
Module 

Figure 6: Block diagram of the aMLLibrary components

6 EXPERIMENTAL ANALYSIS
This section provides an overview of the preliminary experiments

we performed to test and validate our framework.

Section 6.1 introduces the considered application and briefly

overviews the tests that were performed. Section 6.2 describes

the machine learning techniques that were exploited, and their

hyperparameters. The results obtained in the testing campaigns are

presented in Section 6.3.

6.1 Experimental setup
For our experiments we considered a mask-detection application

initially proposed in [14], whose workflow includes two compo-

nents, “blur-faces” and “mask-detector”.

The “blur-faces” component receives a video as input, extracts a

frame every 5 seconds using the FFmpeg tool, and then “anonymises”

each frame by detecting the faces with a neural network and then

modifying the corresponding pixels. The “mask-detector” compo-

nent receives an image as input and uses a neural network to detect

the faces appearing in it and decide whether or not they are wearing

a mask, drawing a green or red box on them accordingly. The result

confidence is also reported in the box border, while a summary of

the mask count is written on top of the image.

YOLO (You Only Look Once) networks, powered by the Tensor-

Flow object detection API and trained on the WIDER FACE dataset,

are used for both tasks. As the name implies, these networks only

examine the image once to detect multiple objects present in it,

yielding significantly faster performance while maintaining high

accuracy, which is crucial in a context where time is an important

criterion.

The goal of this application is to monitor various areas of a city

with cameras and determine which one has the highest percentage

of people not wearing a mask. Ideally, the cameras are attached to

an OSCAR cluster running at the edge on a cluster of Raspberry Pi.

Videos are uploaded to the input bucket of the edge cluster, which

performs the split and frames anonymization. The frames are then

uploaded to the input buckets of the main OSCAR cluster, running

in the cloud, where are processed by the mask-detector.

By processing the videos at the edge of the network, we ensure

the privacy of the people appearing in them, as all the data preced-

ing the anonymization never reach the cloud servers. At the same

time, we improve performance by lowering the load on the cloud

datacenter, and by eliminating the additional latency caused by the

round-trip-time delays required to access it. In the experiments, we

used a private cloud with 9 VMs (each with an Intel Xeon quad-core

processor and 8GB of memory) to represent the cloud side, and

a cluster of four Raspberry Pi 4 Model B (each with a quad-core

processor and 4GB of memory) to represent the edge cluster.

The first component, “blur-faces”, had an image for both x86 and

ARM64 architectures and was tested and profiled on both clusters,

while the second component, “mask-detector”, was only profiled

on the VM cluster.

6.2 ML models and hyperparameters settings
In the performance evaluation literature, the models accuracy is

usually measured through the Mean Absolute Percentage Error

(MAPE) (see also Section 5). An error lower than 30% is usually

considered enough to support performance evaluation and capacity

planning decisions [9].

The data collected during the tests were used to generate and

evaluate different machine learning models (exploiting XGBoost,

Ridge Regression, Decision Tree and Random Forest). The hyper-

parameters used for each model are reported in Table 1, and were

tuned through the HyperOpt framework (see Section 5), setting to

10 the maximum number of evaluated hyperparameter sets.

144



OSCAR-P and aMLLibrary: Performance Profiling and Prediction of Computing Continua Applications ICPE ’23 Companion, April 15–19, 2023, Coimbra, Portugal

Algorithm Hyperparameter Name Values
Ridge Regression alpha loguniform(0.01,1)

XGBoost

min_child_weight 1

gamma loguniform(0.1,10)

n_estimators 1000

learning_rate loguniform(0.01,1)

max_depth 100

Decision Tree

criterion mse

max_depth 3

max_features auto

min_samples_split loguniform(0.01,1)

min_samples_leaf loguniform(0.01,0.5)

Random Forest

n_estimators 5

criterion mse

max_depth quniform(3,6,1)

max_features auto

min_samples_split loguniform(0.1,1)

min_samples_leaf 1

Table 1: Hyperparameters used for each ML algorithm

For every experiment, we trained models with all the four ML

algorithms, with and without Sequential Feature Selection (SFS).

The main feature is the parallelism level, which denotes the max-

imum number of available cores for all the services. Since all the

components are single-core, this is directly translated to the max-

imum number of components that are running concurrently. For

example, a parallelism level of four means that at any given time

we will have, at most, four containers running in parallel; for the

sake of simplicity, this feature is just reported as cores.
Aside from cores, we also used 1/cores and log(cores) as features,

as they are relevant for parallel systems [10]. We also exploited the

polynomial expansion capability offered by the library, considering

products up to the second degree.

The models were tested to assess their ability to perform inter-

polation (i.e., to predict values in areas of the features space that

have been sufficiently observed during the training phase), and

extrapolation (i.e., to predict values in regions of the parameters

space not sufficiently explored) [2, 10]. Our goal when testing the

models interpolation capabilities was to understand how dense our

profiling campaign must be to achieve good results, and if we can

obtain accurate models with smaller datasets. At the same time,

extrapolation tests aim at understanding the behaviour of the mod-

els on unseen configurations, determining, e.g., if it is possible to

predict the performance we will achieve on larger inputs, from

experiments ran on a limited number of files.

The models were generated on a server with 2 Xeon E5-2620

v2 processors, six cores each, and 32 GB of RAM. More details on

the training set and the prediction results are reported in the next

section. The source code of aMLlibrary and OSCAR-P, the input

files, the log data and the model results are available in Zenodo
4
.

6.3 Testing scenario and results
In our tests, we considered different numbers of 10-seconds videos,

running the application three times on VMs configured with 4 cores

and 8 GB of memory. We tested both the full workflow and the

single components one by one, exploiting the cores/node combina-

tions reported in Table 2. Note that, when testing the full workflow,

the parallelism level is comprehensive of both services, meaning

that the sum of the number of cores of both services cannot ex-

ceed the parallelism level. As mentioned in Section 6.2, the services

4
https://doi.org/10.5281/zenodo.7561987

implement a sequential code, thus assigning more cores to a con-

tainer does not yield any performance improvement. However, it

regulates the number of containers that can be scheduled on one

node at a given time. For instance, assigning 4 cores to a single

container guarantees that only that container will run on a node

with 4 cores; moreover, if only one node is active, this means that

we will experience a sequential execution, with a parallelism level

equal to 1.

Parallelism level 1 2 4 8 12 16 20 24 28 32

Cores reservation per container 3.9 1.9 0.9 0.9 0.9 0.9 0.9 0.9 0.9 0.9

Active nodes 1 1 1 2 3 4 5 6 7 8

Table 2: Cores-nodes combination used for the tests

Note that the number of reserved cores is not rounded to leave

some room for the underlying OS. If we assigned, e.g., one core

per container on a node, we would see at most three containers

running concurrently. Indeed, the fourth one would consume all

remaining resources leaving nothing for the OS, and therefore it

will never be scheduled.

Finally, even though the cluster has 9 nodes, one of them is a

master node where no jobs can be executed. Therefore, at most 8

active nodes are considered in the listed combinations.

We run experiments considering 5, 10, 15, and 20 videos. The

data from the first 3 tests (5, 10, 15) were fed to aMLLibrary to train

two performance models, one for every service, using Sequential

Feature Selection (SFS) and the feature engineering options offered

by the library. The MAPE obtained after training the models with

and without SFS is reported in Table 3 (best results in bold).

MAPE

Algorithm SFS blur-faces mask-detector

Ridge Regression

Yes 9.6 17.19

No 43.01 73.63

Decision Tree

Yes 22.01 24.73

No 27.8 34.04

XGBoost

Yes 17.6 10.09
No 21.3 24.37

Random Forest

Yes 19.12 13.24

No 60.54 32.53

Table 3: MAPE [%] on extrapolation

We combined the two best models for the individual services and

performed extrapolation on the data from the last test (20 videos).

The original data and prediction results are shown in Figure 7. Note

that the runtime measures the interval between the start of the

first job and the completion of the last, including wait times and

overhead. The MAPE of the combined models is 9.75%, proving the

good extrapolation capabilities of the models, which allow us to

make reliable predictions on larger and unseen inputs.

7 CONCLUSIONS AND FUTUREWORK
In this work, we developed an auto-profiling and performance

prediction framework for OSCAR that can generate machine learn-

ing performance models from the collected data. The framework

proved its efficiency, greatly reducing the time needed to set up

OSCAR, collect the logs and process them manually. The results

obtained from the experimental campaigns are promising, with the

performance models having a MAPE around 10% on extrapolation.

145

https://doi.org/10.5281/zenodo.7561987


ICPE ’23 Companion, April 15–19, 2023, Coimbra, Portugal Enrico Galimberti et al.

(a) Training set

(b) Test set and prediction

Figure 7: Extrapolation results

Future works include expanding OSCAR-P capabilities to en-

able the profiling of heterogeneous clusters, and testing the whole

framework on industrial case studies.

ACKNOWLEDGMENT
The European Commission has funded this work under the H2020 grant n. 101016577

AI-SPRINT: AI in Secure Privacy pReserving computINg conTinuum. OSCAR has also

been developed under the project PDC2021-120844-I00, funded byMCIN/AEI/10.13039/

501100011033 and by the European Union NextGenerationEU/PRTR, and under grant

PID2020-113126RB-I00, funded by MCIN/AEI/10.13039/ 501100011033. Finally, aMLLi-

brary has been funded under the H2020 grant n. 956137 LIGATE: LIgand Generator

and portable drug discovery platform AT Exascale.

REFERENCES
[1] Albuqerqe Jr, L. F., Ferraz, F. S., Oliveira, R., and Galdino, S. Function-as-

a-service x platform-as-a-service: Towards a comparative study on faas and paas.

In ICSEA (2017), pp. 206–212.

[2] Ataie, E., Evangelinou, A., Gianniti, E., and Ardagna, D. A hybrid machine

learning approach for performance modeling of cloud-based big data applications.

The Computer Journal (2021).
[3] Copik, M., Kwasniewski, G., et al. Sebs: A serverless benchmark suite for

function-as-a-service computing. In ICM (2021), pp. 64–78.

[4] Das, A., Patterson, S., and Wittie, M. Edgebench: Benchmarking edge com-

puting platforms. In UCC (2018), IEEE, pp. 175–180.

[5] Disabato, S., Roveri, M., and Alippi, C. Distributed deep convolutional neural

networks for the internet-of-things. IEEE Transactions on Computers 70, 8 (2021),
1239–1252.

[6] Draper, N. R., and Smith, H. Applied regression analysis, vol. 326. John Wiley &

Sons, 1998.

[7] Ferri, F. J., Pudil, P., Hatef, M., and Kittler, J. Comparative study of techniques

for large-scale feature selection. In Machine Intelligence and Pattern Recognition,
vol. 16. Elsevier, 1994, pp. 403–413.

[8] Grohmann, J., Straesser, M., Chalbani, A., et al. Suanming: Explainable

prediction of performance degradations in microservice applications. In ICPE
(2021), pp. 165–176.

[9] Lazowska, E. D., Zahorjan, J., Graham, G. S., and Sevcik., K. C. Quantitative
system performance: computer system analysis using queueing network models.
Prentice-Hall, 1984.

[10] Maros, A., Murai, F., et al. Machine learning for performance prediction of

spark cloud applications. In CLOUD (2019), IEEE, pp. 99–106.

[11] McChesney, J., Wang, N., Tanwer, A., de Lara, E., and Varghese, B. Defog:

fog computing benchmarks. In ACM/IEEE SEC (2019), pp. 47–58.

[12] Nawrocki, P., and Osypanka, P. Cloud resource demand prediction using

machine learning in the context of qos parameters. Journal of Grid Computing
19, 2 (2021), 1–20.

[13] Perez, A., Risco, S., Naranjo, D. M., Caballer, M., and Molto, G. On-Premises

Serverless Computing for Event-Driven Data Processing Applications. In CLOUD
(jul 2019), IEEE, pp. 414–421.

[14] Risco, S., Moltó, G., Naranjo, D. M., and Blanqer, I. Serverless workflows

for containerised applications in the cloud continuum. Journal of Grid Computing
19, 3 (2021), 1–18.

[15] Satyanarayanan, M. The emergence of edge computing. Computer 50, 1 (2017),
30–39.

[16] Sewak, M., and Singh, S. Winning in the era of serverless computing and

function as a service. In I2CT (2018), IEEE, pp. 1–5.

[17] Vu, K., Hartley, K., and Kankanhalli, A. Predictors of cloud computing

adoption: A cross-country study. Telematics and Informatics 52 (sep 2020), 101–

426.

146


	Abstract
	1 Introduction
	2 Related work
	3 OSCAR
	4 OSCAR-P
	5 aMLLibrary
	6 Experimental analysis
	6.1 Experimental setup
	6.2 ML models and hyperparameters settings
	6.3 Testing scenario and results

	7 Conclusions and future work
	References



