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ABSTRACT
Modern distributed systems can benefit from the availability of
large-scale and heterogeneous computing infrastructures. However,
the complexity and dynamic nature of these environments also
call for self-adaptation abilities, as guaranteeing efficient resource
usage and acceptable service levels through static configurations is
very difficult.

In this talk, we discuss a hierarchical auto-scaling approach for
distributed applications, where application-level managers steer
the overall process by supervising component-level adaptation
managers. Following a bottom-up approach, we first discuss how
to exploit model-free and model-based reinforcement learning to
compute auto-scaling policies for each component. Then, we show
how Bayesian optimization can be used to automatically configure
the lower-level auto-scalers based on application-level objectives.
As a case study, we consider distributed data stream processing
applications, which process high-volume data flows in near real-
time and cope with varying and unpredictable workloads.
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1 OVERVIEW
Nowadays distributed applications can largely benefit from the
availability of large-scale and heterogeneous computing infras-
tructures, not limited any more to Cloud data centers. Such re-
source richness has enabled the development and adoption of an
ever-growing number of data-intensive applications, which deal
with large data volumes, often arriving at very high and unpre-
dictable rates, and necessarily scale their execution over multiple
processors and computing nodes. At the same time, because of
the scale, dynamic nature and heterogeneity of modern infrastruc-
tures, it is increasingly difficult to identify suitable deployment
and resource configurations for applications so as to guarantee the
desired Quality-of-Service (QoS) while making efficient use of the
computing resources. Furthermore, given the variability that often
characterizes application workloads, configurations identified at
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development- or deployment-time are hardily effective in the long
term and must be adjusted.

For these reasons, self-adaptation abilities are increasingly impor-
tant for distributed applications, in order to autonomously respond
to changes in their working conditions with minimal or no service
degradation. For this purpose, both run-time adaptation mecha-
nisms (i.e., the “knobs” available to alter one or more aspects of the
controlled system) and control policies, which define when and how
adaptation actions are triggered, must be identified.

In this talk, we focus on the problem of defining suitable auto-
scaling policies. While this problem has been widely investigated
for years in the field of Cloud computing [1], there are still some
issues that make it challenging. In particular, we will consider the
following key issues:

• Model uncertainty. Defining adaptation policies that rely on
application performance models is increasingly challenging,
because of the difficulty of obtaining accurate models of the
highly variable workloads and the performance uncertainty
introduced by heterogeneous and distributed infrastructures.
For this reason, it is not surprising that the adoption of
machine learning methods to drive system adaptation has
been growing for years [5].

• Adaptation overheads. Adaptation has often a “cost” in terms
of introduced overhead, especially when dealing with state-
ful applications, which require special care to always pre-
serve state integrity. For instance, while adding or removing
a replica of a web server is usually easy, auto-scaling a state-
ful service involves a specific reconfiguration process. As the
introduced overhead may be significant, adaptation policies
should take it into account.

• Scalability issues. Given the growing scale of both comput-
ing infrastructures and applications, centralized controllers
can suffer from scalability issues, especially in highly dis-
tributed environments (e.g., Edge/Fog computing environ-
ments). Therefore, it is desirable to adopt fully (or, at least,
partially) decentralized adaptation control architectures.

In this talk, we discuss an approach to control auto-scaling
for distributed applications based on reinforcement learning (RL),
which is a collection of learning methods for sequential decision-
making [10]. RL allows agents (i.e., adaptation controllers) to cope
with uncertainty about the underlying system by improving their
decision policies based on experience collected at run-time. We
present RL-based policies as part of a two-layered hierarchical
adaptation framework, which overcomes the scalability issues of
fully centralized solutions.

137

https://doi.org/10.1145/3578245.3585427
https://doi.org/10.1145/3578245.3585427


ICPE ’23 Companion, April 15–19, 2023, Coimbra, Portugal Gabriele Russo Russo

Figure 1: Example of DSP application.

Case Study: Data Stream Processing
As a case study for the talk, we consider distributed data stream
processing (DSP) applications, which process high-volume data
flows in near real-time [3] and cope with varying and unpredictable
workloads and, thus, require effective auto-scaling abilities [2, 8].
Data streams are unbounded, ordered sequences of data, emitted
by one or more sources. DSP applications are usually defined as
directed acyclic graphs, whose vertices represent data sources and
operators, and the edges represent streams flowing between them
(see, Figure 1). Operators receive one or more streams as input,
apply their processing logic (e.g., filtering, aggregation) and emit a
new stream as the result, possibly updating an internal state. Data
streams eventually reach sink vertices, which act as consumers of
the produced results (e.g., dashboards, databases).

In practice, parallel replicas of each operator are executed across
multiple – and possibly heterogeneous – processors and computing
nodes to sustain higher data rates. Bymeans of auto-scaling policies,
the parallelism level and the type of computing resource in use
for each operator can be modified at run-time depending on the
workload. Specifically, scaling decisions aim to provision enough
computational capacity to meet users’ requirements (e.g., maximum
processing latency), while avoiding resource wastage.

Auto-scaling is particularly challenging in the context of DSP,
because parallelism reconfigurations come at the cost of significant
overhead. Indeed, to preserve stream and state integrity, specific
reconfiguration protocols must be adopted, slowing down or (more
likely) interrupting normal data processing [6].

2 REINFORCEMENT LEARNING-BASED
AUTO-SCALING

We tackle the problem of minimizing application resource usage
while meetings users’ Quality-of-Service (QoS) requirements con-
cerning application performance and reconfiguration overheads.
We discuss a hierarchical approach for auto-scalingwhere application-
level managers steer the overall process by supervising component-
level adaptation managers.

To cope with uncertainty about application performance, infras-
tructure conditions as well as workload dynamics, we exploit RL to
determine local component-level policies. As such, the agents (i.e.,
the adaptation controllers) must choose suitable scaling decisions
over time so as to minimize the long-term value of a cost function,
which – in our formulation – accounts for performance, resource
usage and scaling overhead. A key challenge with RL methods
is the possibly long time required to learn a good policy. This is
especially important when no historical information is available
to train agents off-line and, instead, the whole training happens

on-line. We tackle this challenge (i) exploiting function approxima-
tion techniques [9] and deep RL [7], which allow agents to learn
over a reduced parameter space; and (ii) integrating partial model
knowledge in the learning algorithm, which reduces the amount of
information to learn at run-time.

To make sure that decentralized auto-scalers contribute to the
satisfaction of application-level QoS requirements, an application
controller must suitably tune the local cost function of each com-
ponent auto-scaler (i.e., specifying a suitable local performance
requirement and properly weighting the multiple objective terms).
For this purpose, we discuss how black-box optimization techniques
and, in particular, Bayesian optimization [4] can be exploited.
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