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ABSTRACT

While many developers put a lot of effort into optimizing large-scale

parallelism, they often neglect the importance of an efficient serial

code. Even worse, slow serial code tends to scale very well, hiding

the fact that resources are wasted because no definite hardware

performance limit (“bottleneck”) is exhausted. This tutorial conveys

the required knowledge to develop a thorough understanding of the

interactions between software and hardware on the level of a single

CPU core and the lowest memory hierarchy level (the L1 cache). We

introduce general out-of-order core architectures and their typical

performance bottlenecks using modern x86-64 (Intel Ice Lake) and

ARM (Fujitsu A64FX) processors as examples.We then go into detail

about x86 and AArch64 assembly code, specifically including vector-

ization (SIMD), pipeline utilization, critical paths, and loop-carried

dependencies. We also demonstrate performance analysis and per-

formance engineering using the Open-Source Architecture Code

Analyzer (OSACA) in combination with a dedicated instance of the

well-known Compiler Explorer. Various hands-on exercises allow

attendees to make their own experiments and measurements and

identify in-core performance bottlenecks. Furthermore, we show

real-life use cases to emphasize how profitable in-core performance

engineering can be.

CCS CONCEPTS

•General and reference→Performance; •Computingmethod-

ologies→Massively parallel and high-performance simula-

tions.
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1 INTRODUCTION

1.1 Model-based performance engineering

Understanding an application and its underlying code is crucial for

performance-aware software development in scientific computing

and high performance computing (HPC). Performance models of

such applications can provide benefits in various aspects, such as

energy efficiency, architectural exploration, and performance opti-

mization. The scientific literature nowadays differentiates between

two different approaches to performance modeling [6]: White-box
(or first-principles) models which require prerequisite knowledge

about the hardware and its interaction with the software (such

as vendor documentation), and black-box models which need no

previous information about the system, e.g., an AI model trained

via machine learning on empirical data. While black-box models

can be automated and are faster to set up, they often lack accu-

racy due to the intricacies of a complex system like a CPU and

its interactions on numerous levels with the code and other hard-

ware. On the other hand, a white-box model requires more work

through reverse engineering or studying vendor documentation,

but it allows deeper insight into hardware-software interaction. By

its nature, the model is explicit about the reasons for its predictions

and thus often provides a beneficial learning experience for the

user. Combined with some empirical data like measurement-based

assumptions, a white-box model can become a gray-box model and

can be refined to achieve higher accuracy. One example for this

is the well-known Roofline model [17]. It is based on the (first-

principle) assumption that the performance is either limited by the

peak floating-point (FP) performance or the memory bandwidth of

a CPU; both can be obtained from the system specifications but can

be refined using empirical data, taking into account the fact that,

in practice, the sustained memory bandwidth is significantly lower

than its theoretical value.

This tutorial covers performance engineering on the CPU core

level based on white-box models of code execution. The core level

should be the starting point of any optimization process since a

good single-core performance is crucial for fully utilizing a sys-

tem’s resources. The in-core prediction of code execution time on

a modern CPU considers the execution of instructions with all

the required data residing in registers and the L1 cache. We can
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Figure 1: Simplified overview of the in-core part of an Intel

Ice Lake server micro-architecture based on vendor data [11].

further divide the execution in two parts: (a) The front end, in-
cluding instruction fetching and decoding as well as micro- and

macro-operation fusion, and (b) the back end taking care of register

allocation, instruction scheduling, the actual execution of instruc-

tions, and their retirement. It is common practice to model the

in-core execution of a modern out-of-order (OoO) CPU with a port
model. This means that each functional unit (such as ALU, LOAD

unit, STORE unit, . . . ) is assigned to a port on which one instruction

per cycle can be dispatched. This is independent of the details of the

insructions, such as the number of pipeline stages or its maximum

throughput. A simplified sketch of the front end and back end of

the Intel Golden Cove micro-architecture as used by the Ice Lake
processor can be found in Figure 1.

For an in-core performance model of a loop kernel, we make the

following assumptions:

• We have a port model for the target micro-architecture

• There are no control flow branches inside of the loop

• The loop runs in a steady state, i.e., there are no wind-up or

wind-down phases

• The CPU is capable of perfect OoO scheduling, i.e., there is

no imbalance introduced by reservation stations

• All data resides in the L1 cache, i.e., there is no data delay

from other memory hierarchy levels

1.2 In-core performance modeling approaches

There are several possible approaches for modeling the in-core

performance of a loop kernel. The simplest way would be to use

the peak floating-point performance as an upper limit as done by

the Roofline modelexplained in Section 1.1. Given the fact that not

every code solely consists of fused multiply-add (FMA) instructions,

this ceiling is in almost all cases far away from the actual perfor-

mance. Another upper-limit approach is to estimate the throughput

of all instructions executed and take the execution time (reciprocal

throughput) of the port with the highest pressure, i.e., the port port

taking the longest time to finish all assigned instructions of the

kernel, as a lower limit for the execution time of the entire kernel.

While being more accurate than the previous approach, no depen-

dencies between any instructions are considered. This assumption

often proves to be valid since in practice multiple iterations of a

loop kernel can overlap and dependencies within a loop (intra-loop
dependencies) become irrelevant. This changes, however, if there are

dependencies between different loop iterations. These loop-carried
dependencies cannot be overlapped and thus represent are more

realistic lower bound of the execution time. Finally, in contrast

to the solutions looked at so far, the longest chain (time-wise) of

dependent instructions can form a pessimistic, i.e., upper bound of

the in-core execution time. If none of the individual loop iterations

can overlap, this chain of instructions (the critical path) always has
to be processed sequentially and, therefore, can give one additional

insight on how many loop iterations must be kept in-flight for the

processor to overlap delays created by intra-loop dependencies.

1.3 Open-Source Architecture Code Analyzer

(OSACA)

The tool used in this tutorial for an in-core runtime prediction of

assembly code is the Open-Source Architecture Code Analyzer (OS-

ACA) [13, 14]. It is open-source
1
and supports various Intel (Sandy

Bridge, Ivy Bridge, Haswell, Broadwell, Skylake-X, Cascade Lake,

Ice Lake client, Ice Lake server), AMD (Zen 1, Zen 2, Zen 3), and

ARM-based (Marvell Thunder X2, ARM Cortex A72/AWS Gravi-

ton, ARM Neoverse N1/AWS Graviton2, HiSilicon TaiShan v110,

Fujitsu A64FX) micro-architectures. It is inspired by Intel’s propri-

etary code analyzer IACA [9], which reached its end of life in 2019.

OSACA parses x86 AT&T or AArch64 assembly code and applies

the port model of the target micro-architecture to the instructions

to calculate the throughput for each port and detect loop-carried

dependencies and the critical path of the kernel. With this infor-

mation, the user can get insight on possible bottlenecks and upper

and lower bound for execution times:

𝑇
lower

= max

(
max(𝑇TPrcp_p0,𝑇TPrcp_p1, ...,𝑇TPrcp_pN),𝑇LCD

)
𝑇upper = 𝑇CP

Here, 𝑇
lower

and 𝑇upper are the estimated lower- and upper-bound

runtime of a loop kernel, respectively, 𝑇TPrcp_p𝑖 is the reciprocal

throughput prediction of port 𝑖 , 𝑇LCD the estimated execution time

of the longest loop-carried dependency, and 𝑇CP the estimated exe-

cution time of the critical path. OSACA’s database is fed with with

empirical data from micro-benchmark tools such as asmbench [8]

and ibench [10], as well as data from uops.info [1]. At the time of

the writing, OSACA does not support any modeling of the front end.

Besides IACA, which only supports Intel micro-architectures, there

are various other tools that are not used in this tutorial but support

a wide range of micro-architectures (LLVM-MCA [4]), provide a

1
https://github.com/RRZE-HPC/OSACA
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1 double *a, *b, *c, s;
2

3 for (int i=0; i<N; ++i) {
4 a[i] = b[i] + s * c[i];
5 }

Listing 1: C loop body of STREAM triad

highly accurate model of both front and back end (uiCA [2], cur-

rently only for Intel architectures), additionally produce an analysis

about the code quality and vectorization (CQA [5]), or are based

on machine learning (Ithemal [16]). None of them is, however, inte-

grated with the Compiler Explorer (see below).

In the following we show a simple example of the usage of OS-

ACA by analyzing the triad kernel of the STREAMbenchmark [15],

shown in Listing 1. Assembly code for the loop body with AVX-512

is shown in Listing 2. After loading eight elements of the b array
into zmm1 in line 2, eight elements of the c array are loaded in line 3,

multiplied with the (register-wide broadcast) scalar value in zmm2,
and added to the previously loaded vector. The result is stored back

into in the a array in line 4. The three remaining lines are loop

control instructions. It is important to notice that one assembly

loop iteration amounts to eight C-language loop iterations due to

vectorization.

The OSACA analysis of the assembly code can be found in List-

ing 3. The first ten columns show the reciprocal throughput of

ports 0 to 9, respectively. The lower bound throughput estimate

would therefore be 1 cy due to ports 2 and 3. Column “CP” reports

the critical path and column “LCD” the longest loop-carried depen-

dency, also being 1 cy and therefore not changing the lower-bound

estimate. Thus, OSACA’s analysis would result in 1 cy per eight

(high-level) iterations.

1.4 Compiler Explorer

The Compiler Explorer [7] is an open-source interactive compiler

exploration website
2
which makes it easy to see how code looks as

compiled with different compilers and flags, compare the generated

assembly, and even allows execution of the code. Since 2020, OSACA

is integrated as an analysis tool in Compiler Explorer, making it

straightforward to apply an in-core analysis in the web browser

without any tool installed locally. For the tutorial, we deploy a local

version of the Compiler Explorer running in a container on our

university cluster. This allows us to fix the clock frequency of the

CPUs and access the hardware counters for accurate measurements

2
Available at https://godbolt.org/

1 ..B2.42:
2 vmovups (%r14 ,%rdx ,8), %zmm1
3 vfmadd213pd (%r15 ,%rdx ,8), %zmm2 , %zmm1
4 vmovupd %zmm1 , (%r12 ,%rdx ,8)
5 addq $8, %rdx
6 cmpq %rsi , %rdx
7 jb ..B2.42

Listing 2: AVX-512 assembly loop body of STREAM triad

and, therefore, minimize the requirement of the tutorial attendees

to a modern web browser and a working internet connection
3
.

2 TUTORIAL OUTLINE

In the following, we breifly describe the outline and the most impor-

tant parts of the tutorial in the order it is taught to the attendees.

2.1 Basic processor and core architecture

We introduce the principal concepts of modern OoO processors

based on the Intel Ice Lake server micro-architecture (Figure 1). The

simplified workflow of an instruction from decoding to retiring is

explained. We focus on the back end and introduce a general port

model for OoO CPUs.

2.2 Terminology and code execution on

out-of-order CPUs

We introduce important terms for the in-core performance analysis

of loop kernels.

Throughput: The throughput describes the amount of work that

can be done in a certain time, usually a cycle. We normally use

the term reciprocal throughput to quantify the minimum number

of cycles per instruction in steady-state, assuming the pipeline

operates at capacity.

Latency: The latency of an individual instruction is defined by the
time needed for the execution of it, i.e., the time between dispatch

and being ready for retirement.

Critical Path: The critical path describes the time between the

dispatch of the first instruction and the readiness to retire of the last

instruction within the longest (time-wise) dependency chain within

one kernel iteration, i.e., the sum of the latencies of the instruction

in the longest dependency chain.

Loop-carried Dependency: Loop-carried dependencies are depen-

dency chains that limit the overlap between different loop iterations.

We usually refer to the loop-carried dependency as the longest of

all existing dependency chains of a loop. This might be but is not

necessarily the critical path or part of it.

Iteration: We highlight the difference between a high-level iter-

ation of a loop kernel and an assembly loop iteration, which can

consist of multiple high-level iterations due to unrolling and SIMD

vectorization.

2.3 x86 ISA introduction

We give an introduction to the x86 instruction set architecture (ISA)

and cover the differences between AT&T and Intel assembly syntax

and their peculiarities, memory addressing modes, modern vec-

tor (SIMD) extensions (AVX), and masking.

2.4 Performance analysis of simple kernels

We deepen the knowledge of in-core performance analysis with x86

assembly by exercising it on several code examples. This includes

the STREAM triad (Listing 1), the dot product (Listing 4), and

the computation of pi by integration (Listing 5).

3
A simplified example without cycle count of the STREAM triad is available at:

https://godbolt.org/z/aW6qfno87
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Port pressure in cycles
| 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 || CP |LCD|

---------------------------------------------------------------------------
2 | | | | | | | | | | || | | ..B2.42:
3 | | | 0.50| 0.50| | | | | | || 5.0 | | vmovups (%r14 ,%rdx ,8), %zmm1
4 | 0.50| | 0.50| 0.50| | 0.50| | | | || 4.0 | | vfmadd213pd (%r15 ,%rdx ,8), %zmm2 , %zmm1
5 | | | | | 0.50| | | 0.50| 0.50| 0.50|| 0.0 | | vmovupd %zmm1 , (%r12 ,%rdx ,8)
6 | 0.25| 0.25| | | | 0.25| 0.25| | | || | 1 | addq $8, %rdx
7 | 0.00| 0.50| | | | 0.00| 0.50| | | || | | cmpq %rsi , %rdx
8 | | | | | | | | | | || | | * jb ..B2.42

0.75 0.75 1.00 1.00 0.50 0.75 0.75 0.50 0.50 0.50 9 1

Listing 3: STREAM triad analyzed by OSACA with –arch=icx.

1 double *a, *b, s;
2

3 for (int i=0; i<N; ++i) {
4 s = s + a[i] * b[i];
5 }

Listing 4: C loop body of the dot product kernel

1 double delta_x = 1./n;
2 double sum = 0.0;
3

4 for (int i=0; i<n; i++) {
5 x = (i + 0.5) * delta_x;
6 sum += (4.0 / (1.0 + x * x));
7 }

Listing 5: C loop body of the pi kernel

2.5 OSACA introduction

We introduce the OSACA tool and show how to use it both as stand-

alone tool and integrated in the Compiler Explorer. We explain the

usage of the Compiler Explorer and how we can use OSACA to

pinpoint in-core bottlenecks of loop kernels. The attendees can val-

idate their analysis by using a server configured for cycle-accurate

measurements.

2.6 In-core analysis for Arm CPUs

We introduce the Fujitsu A64FX core architecture together with

the basic principles of the AArch64 ISA. The attendees will under-

stand the differences to the x86 ISA, enhanced memory addressing,

vectorized ARM assembly (NEON and SVE), and masking.

2.7 Case studies and hands-on

After doing performance analysis on simple kernels, we show the

importance and potential of performance engineering on real-life

code with several more complex case studies:

• SparseMatrix-Vector (SpMV)Multiplication on FujitsuA64FX

• Lattice Quantum Chromodynamics (QCD) on Fujitsu A64FX

• 2D Gauss-Seidel on Intel Ice Lake

We cover the SpMV on A64FX as example of the three case studies

in detail in the next section.
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Figure 2: Scaling runs on Fujitsu FX700. Data taken from [3].

3 SPARSE MATRIX-VECTOR

MULTIPLICATION (SPMV) ON A64FX

Figure 2a shows a scaling run for the STREAM triad (Listing 1)

benchmark and a SpMV (𝑏 [:] = 𝐴[:, :] ∗ 𝑥 [𝑖 [:]]) using the HPCG

matrix in compressed row storage (CSR) format.

Compared to the STREAM triad, which can saturate the mem-

ory bandwidth already with four cores, SpMV shows a factor of 3

lower single-core bandwidth and can thus not achieve bandwidth

saturation. An in-depth analysis identifies the short inner loops dur-

ing SpMV as potential bottleneck; a runtime estimate with OSACA

reveals that the high latency of the fused multiply-add instruc-

tion (fmla, 9 cy) and the horizontal 512-bit ADD (faddv, 49 cy) are
the culplrits. Changing the matrix format from CSR to the SIMD-

friendly SELL-C-𝜎 [12] makes the horizontal ADD obsolete and

allows efficient vectorization. With sufficient unrolling, this results

in a reduction of the fmla latency impact, which is shown in Fig-

ure 2b. With 𝐶 = 32, the FX700 can saturate the bandwidth at ten

cores.

4 CONCLUSIONS

We provide a tutorial about in-depth core-level performance engi-

neering on different hardware platforms. After the exercises, the

attendees will be experienced enough to carry out in-core perfor-

mance engineering themselves and have knowledge about x86 and

ARM assembly and how to pinpoint bottlenecks in assembly code.
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