
Parallel Performance Engineering using Score-P and Vampir
William Williams

william.williams@mailbox.tu-dresden.de
GWT-TUD GmbH
Dresden, Germany

Holger Brunst
holger.brunst@tu-dresden.de

Zentrum für Informationsdienste und
Hochleistungsrechnen, Technische Universität Dresden

Dresden, Germany

ABSTRACT
This tutorial will introduce participants to the Score-Pmeasurement
system and the Vampir trace visualization tool for performance
analysis. We will provide examples and hands-on exercises covering
the full performance engineering workflow cycle on applications
that include MPI, OpenMP, and GPU parallelism. Users will learn
the following concepts:

(1) How to collect an initial profile of their code with Score-P
(2) Evaluation of that profile and its associated measurement

overhead
(3) The concepts of scoring and filtering a profile and measure-

ment respectively
(4) How to control the Score-P measurement system via envi-

ronment variables
(5) How to collect useful traces with acceptable overhead
(6) How to understand trace visualization in Vampir

CCS CONCEPTS
• General and reference → Measurement; Performance; •
Software and its engineering → Software performance.

KEYWORDS
measurement, performance engineering, high performance com-
puting, visualization

ACM Reference Format:
William Williams and Holger Brunst. 2023. Parallel Performance Engineer-
ing using Score-P and Vampir. In Companion of the 2023 ACM/SPEC In-
ternational Conference on Performance Engineering (ICPE ’23 Companion),
April 15–19, 2023, Coimbra, Portugal. ACM, New York, NY, USA, 5 pages.
https://doi.org/10.1145/3578245.3583715

1 INTRODUCTION
High performance computing presents its own unique challenges
to performance engineering. An application’s performance char-
acteristics may change substantially as it is scaled up, or as new
hardware is introduced. Since 2012, the Score-P[5] measurement
system has focused on the data collection part of this problem;

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
ICPE ’23 Companion, April 15–19, 2023, Coimbra, Portugal.
© 2023 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 979-8-4007-0072-9/23/04. . . $15.00
https://doi.org/10.1145/3578245.3583715

namely, how can users collect performance data that captures in-
formation from multiple forms of parallelism in a single tool and
tune what data is collected based on the needs of their current
performance experiment? Furthermore, how can users effectively
predict whether their measurement overhead will remain within
acceptable boundaries, and how can they adjust their experiments
accordingly?

The Vampir[9] visualization tool has even older origins; it was
among the earliest MPI-oriented performance tools, dating back to
1996. Vampir has been extended over the years to visualize trace
data representing current parallel paradigms. In particular, visual-
ization of GPU utilization and I/O behavior have been areas under
active development in recent years.

2 METHODOLOGY
The performance engineering workflow for parallel applications is
presented as a cyclic flow, with preparation, measurement, analy-
sis, and optimization phases. The tutorial focuses on preparation,
measurement, and analysis, especially in its half-day format. We
introduce users to the concept of parallel performance engineering
as a part of a larger performance engineering process: it is, gen-
erally speaking, wasteful to optimize the multi-node scalability of
code that has not yet received any serial or node-level optimiza-
tions. Users are provided with an HPC or HPC-like environment to
perform the various hands-on tasks in the tutorial. We have had
great success with JupyterHub as a platform for remote access to
HPC systems that allows for performant X11-in-browser use of vi-
sualization tools. The E4S[4] virtual appliance/container initiative
is also helpful in situations where there is no specific target system
associated with the tutorial. This allows participants to perform the
hands-on steps directly on their personal laptops. Of course, there
are tradeoffs in each case: JupyterHub is still somewhat bandwidth-
dependent, running E4S in the cloud without JupyterHub all but
requires measurement data to be transferred to a user’s local sys-
tem for visualization, and running E4S locally requires participants
to prepare in advance by downloading and installing the VM or
container.

2.1 Preparation
Preparation has two important aspects when using Score-P as a
measurement system: building the application with the correct
instrumentation hooks, and designing a reasonable performance
experiment. We provide a pre-modified version of a standard bench-
mark to users (generally either BT-MZ[2] or TeaLeaf[8]), with the
build system pre-configured to allow easy addition and removal of
Score-P instrumentation and to generate instrumented binaries in a
separate binary directory. This provides a useful demonstration of

121

https://doi.org/10.1145/3578245.3583715
https://doi.org/10.1145/3578245.3583715

ICPE ’23 Companion, April 15–19, 2023, Coimbra, Portugal. William Williams and Holger Brunst

good practice in data management, as well as an easy introduction
to the concept of instrumenting an application with Score-P.

We introduce the concept of performance models from the be-
ginning of the tutorial. Users should have at least a rough idea of
what behavior they expect from their application, and what data
they need to collect in order to verify whether those expectations
are met. We introduce the concept of dividing performance factors
into serial and parallel factors: serial factors can be expected to
be present at any scale, whereas parallel factors are consequences
of increasing scale. We provide a brief overview of strong[1] and
weak[10] scaling, the roofline[11] model, load balancing analysis,
and critical path analysis as models and analyses that would dictate
different types and granularities of data collection.

2.2 Measurement
We begin discussion of measurement with an overview of the types
of measurement systems that are typically available for HPC appli-
cations. We divide these along two major axes: instrumentation vs.
sampling as the data collection method, and profiles (in particular,
call-path profiles) vs. execution traces as the output produced. We
discuss some of the tradeoffs present in each of these: for instance,
sampling may be applied to applications with no special prepara-
tion, and may for some purposes be more broadly applicable than
instrumentation, it also can require a monitoring process and will
be generally less precise than instrumentation. Traces, likewise,
provide greater precision at greater cost. As we introduce these
topics, we are already looking ahead to preparing participants to
learn how to mitigate the drawbacks of using instrumentation to
generate execution traces for HPC applications.

A measurement with Score-P can involve configuration in multi-
ple dimensions: a user may add instrumentation markers manually
to their source code, there is considerable latitude for compile- and
link-time configuration of the possible measurement subsystems,
and finally at run-time, the measurement may also be tuned. The
run-time tuning allows, in principle, the same executable to be
used for the most coarse- and fine-grained measurements a user
might desire. We introduce participants to the scorep-info tool,
which allows them to check which environment variables are active
in their build of Score-P, and explain how to use these variables
to select what is measured, what resources are available to the
measurement system, and what output is subsequently produced.

For the initial hands-on with a benchmark, as for most use cases
involving modern Score-P, users need no special configuration–
the tool’s automatic detection of MPI, OpenMP, and if TeaLeaf is
used as the benchmark of the day, CUDA are typically sufficient on
most HPC systems and within the E4S virtual environments. CUDA
in particular is a useful teaching tool here, as it requires sensible
run-time configuration via environment variables. In practical envi-
ronments, configuration of which MPI function groups are enabled
can also be critical to managing overhead, and this is important
to emphasize to users–it is typically uninteresting, in compari-
son to the overhead involved, to instrument every MPI_Test or
MPI_Request_GetStatus performed by an application.

Figure 1: Example output from scorep-score. The BT-MZ
benchmark has been profiled without applying any filters to
the measurement.

Figure 2: Detailed per-region from scorep-score, from the
same run as in Figure 1

2.3 Scoring and Filtering Hands-On
We present two major analysis topics in this tutorial: understanding
an overview trace of a parallel program’s behavior, and analysing
the quality of a measurement itself. In the tutorial we treat the
second of these topics first: in order to produce a useful overview
trace file, it is almost always necessary to analyze the program’s
behavior and determine what regions are, and are not, of interest
for such a trace. This leads us to two fundamental concepts: scoring
and filtering a measurement.

Scoring a measurement we define as the process by which we
take a summary profile measurement and determine the relative
costs of instrumenting (and in particular of tracing) the various code
regions represented in that measurement. To do this, we provide
the scorep-score tool, which summarizes the frequency of visits
to each region, the average duration of a visit, which regions are
associated with particular parallel paradigms, and which regions
are on call paths leading to those (see Figure 1).

Given the scoring summary of a measurement, one can then
build a list of regions that are of interest, and regions that are not
of interest (see Figure 2). For a first overview trace, we typically
advise users to focus on the regions involving parallel behavior
of some sort, and the regions leading to those, with other regions
included to the precise extent that they induce minimal additional
measurement overhead and trace file size. Since version 7.0 of Score-
P, the scorep-score tool has supported automatic generation of
filter files according to user-provided parameters, with defaults that
reflect this best practice. In our experience so far, this has been
a great help to users and makes the scoring and filtering process
simple in many cases.

Once a proper filter has been created, participants are then
guided through a verification process: apply the filter prospectively

122

Parallel Performance Engineering using Score-P and Vampir ICPE ’23 Companion, April 15–19, 2023, Coimbra, Portugal.

Figure 3: A Vampir visualization of COSMO-SPECS with a
growing dynamic load imbalance. At the top right, we can
see that the MPI time share over the course of the simula-
tion is around a third of execution time. In the bottom left,
the growing red wedge shows that the MPI share is in fact
increasing, in aggregate, during this run.

to the existing measurement, analyse the projected new behavior
of the application, and measure with the new filter and an appro-
priate amount of trace buffer. This will lead to the participants’ first
overview trace, and from there we will turn our attention to actual
trace analysis with Vampir.

2.4 Trace Analysis with Vampir: the
COSMO-SPECS Case Study

Vampir presents trace data using two major types of visualization:
timelines, and summary charts. The timeline windows display pro-
gram behavior for some selected time interval, including among
others the active region (top of the call stack) for all locations in
the Master Timeline view, the call stack for a given location in the
Process Timeline view, and the value of a selected metric across
all locations in the Performance Radar view. The summary charts
dynamically aggregate performance data for the selected time in-
terval; in this way, users can see the distribution of execution time,
communication bandwidth, I/O load, and more via these summaries.

One of the primary case studies we present with Vampir is an
example of a dynamically-growing load imbalance in a coupled
COSMO-SPECS[7] weather simulation run. In this example, the
simulation initially proceeded with a fixed grid and no load balanc-
ing.

As clouds formed, some ranks became computationally overbur-
dened, leading to a dramatic increase in MPI waiting time on all
other ranks. In Vampir, we show users multiple steps in identifying
this problem. First, we show that the amount of MPI waiting time is,
in aggregate, quite high, and that this suggests a performance prob-
lem exists. Then, we show that the fraction of time spent waiting
in MPI calls is not static, but growing over time: this provides some
hint that users should investigate the difference between early and
late iterations in this particular measurement. See Figure 3 for an
example of these first visualizations.

From there, users should be able to see that the computation time
for cloud microphysics, while it is balanced early on, is imbalanced

Figure 4: Detail of an imbalanced iteration in COSMO-SPECS.
Again, MPI waiting time is shown in red and is clearly imbal-
anced across ranks in MPI_COMM_WORLD. Cloud microphysics
(MP group), in purple, is responsible for this imbalance.

Figure 5: The Performance Radar view of the load imbalance
in COSMO-SPECS. The ranks with an increased workload, as
measured by total FLOPS, are visible in red.

later. Figure 4 is what users will see upon zooming in to examine an
imbalanced iteration later in the simulation. They can then confirm
that this involves real computational effort via the Performance
Radar’s view (Figure 5 of total FLOPS per rank: the ranks simulating
locations where clouds have formed have noticeably higher FLOPS
than the others.

For comparison, we then present an optimized trace[6] with the
FD4 dynamic load balancing system integrated into COSMO-SPECS.
This shows the same number of iterations of the same simulation
being completed in well under half the wall time, with the load
remaining evenly distributed across processes over time (Figure 6).

Users are encouraged to work out the costs and benefits of
the FD4 algorithm based on the function summary data. The two
COSMO-SPECS traces also highlight for participants the benefits of
combining manually-selected function groups with those that Vam-
pir can automatically generate from a trace file. When functions
are grouped sensibly for the purpose of a particular analysis, these
groups may then be used in various Vampir views to understand

123

ICPE ’23 Companion, April 15–19, 2023, Coimbra, Portugal. William Williams and Holger Brunst

Figure 6: A Vampir visualization of COSMO-SPECS with the
FD4 dynamic load balancing algorithm. On the left, the Mas-
ter Timeline shows three late iterations of the simulation.
At the top right, we can see that the MPI time share during
the iterations being examined has dropped to 12%, while the
FD4 algorithm itself adds negligible overhead (less than 1%).

the application’s behavior at a more abstract level than simply the
level of individual regions.

2.5 Hands-On and Exercises
Our exercises for users fall into two main categories. First, there
will be a chosen benchmark application that they will profile, score,
filter, and trace. This leads them through all the steps necessary to
produce an initial visualization of an application in Vampir, while
working with an application with known, generally stable perfor-
mance characteristics, a short build cycle, and an easy-to-modify
build system. This is, therefore, an ideal-world scenario for users.
Second, when time allows, we present one or more toy applications
with deliberately introduced performance problems (or in some
cases, applications whose performance on the tutorial system is
simply bad out-of-the-box). The participants will then analyse the
application with appropriate tools (coarse wall time measurements
as well as Score-P and Vampir) and attempt to determine what
optimizations are possible.

Our selection of exercises typically focuses on common mistakes
in HPC codes, namely failures of load balancing and failure to con-
trol the overhead associated with parallelization as shown via a
sparse matrix/vector multiplication in OpenMP. In each of these
cases, we ask users to start with a simple analysis based on a rea-
sonable expectation of strong scaling and an application where this
expectation, via wall time, clearly fails to be met. We then invite
them to apply Score-P and Vampir to see a more detailed view of
where the application spends its time, and ask for possibilities for
what may have gone wrong. Finally, we point users to the offending
OpenMP parallel region and ask them to use schedule=dynamic
and appropriate run-time control to tune it for better behavior.

3 VARIATIONS OF THIS TUTORIAL
Versions of this material may be adapted to as short as a half-
hour lecture (omitting all hands-on material and all performance

engineering background material) or as long as a full-week work-
shop with bring-your-own-code sessions for approximately half
the workshop time. One notable variant even stretched the material
over a six-month period, with the week-long workshop material
presented one day a month and project teams working indepen-
dently on their own code between sessions. In the past, we have
found that longer, on-site versions with the opportunity for users
to work with tool developers on their own code lead to longer-term
collaborations and more successful ongoing use of the tools.

4 FUTUREWORK
Several topics have been growing in importance in the HPC com-
munity over the past decade to the point where we will need to
incorporate them into future versions of this tutorial. Performance
engineering of Python code has become a topic of particular in-
terest in connection with ML/Big Data frameworks, but also in
regular scientific computing. Machine learning and big data frame-
works also introduce new analysis problems, both due to their
common implementation as MPMD applications and due to the
multiple layers of abstraction between what the user/developer
controls and what the hardware executes. Use of Score-P’s Python
bindings[3] could easily be worked into a full-day version of this
tutorial. This would entail providing at least one example/hands-on
exercise that uses the Python bindings for a typical HPC-oriented
use case. Using Score-P and Vampir for performance analysis of
these heterogeneous frameworks, in contrast, would likely require
either a separate tutorial or a second day dedicated to the special-
ized topic here. Both the collection of measurement data and its
analysis become much more complex, and even our basic tour of
performance models most likely needs to be revised and expanded
to ensure that participants can translate from the behavior of a
machine learning framework to a specific performance model.

ACKNOWLEDGMENTS
This tutorial draws on the work of many colleagues over a span
of many years. Everyone who has presented any previous ver-
sion of this tutorial has helped refine it into its present form. In
particular, the authors would like to thank Brian Wylie, Bernd
Mohr, Christian Feld, Markus Geimer, Anke Visser, Luis DeRose,
Christina Mühlbach, Bert Wesarg, Frank Winkler, Ronny Tschüter,
Matthias Weber, Johannes Ziegenbalg, Robert Dietrich, Andreas
Knüpfer, Marc Schlütter, Ronny Brendel, Jens Lukaschkowitz, To-
bias Hilbrich, ThomasWilliam, Dirk Schmidl, andMichael Knobloch
for their contributions over the years to past versions of this tutorial.

The authors would also like to thankMatthias Lieber for allowing
the use of his dissertation work as a performance engineering case
study, and Bert Wesarg for his comments and suggestions on this
paper.

The authors are grateful to the Center for Information Services
and High Performance Computing at TU Dresden for providing its
facilities for high throughput calculations.

REFERENCES
[1] Gene M Amdahl. 1967. Validity of the single processor approach to achieving

large scale computing capabilities. In Proceedings of the April 18-20, 1967, spring
joint computer conference. 483–485.

124

Parallel Performance Engineering using Score-P and Vampir ICPE ’23 Companion, April 15–19, 2023, Coimbra, Portugal.

[2] David H Bailey, Eric Barszcz, John T Barton, David S Browning, Robert L Carter,
Leonardo Dagum, Rod A Fatoohi, Paul O Frederickson, Thomas A Lasinski, Rob S
Schreiber, et al. 1991. The NAS parallel benchmarks—summary and preliminary
results. In Proceedings of the 1991 ACM/IEEE Conference on Supercomputing. 158–
165.

[3] Andreas Gocht, Robert Schöne, and Jan Frenzel. 2020. Advanced Python Per-
formance Monitoring with Score-P. Tools for High Performance Computing
2018 / 2019 (Oct. 2020), 261–270. https://doi.org/10.1007/978-3-030-66057-4_14
arXiv:2010.15444 [cs.DC]

[4] M Heroux, J Willenbring, S Shende, C Coti, W Spear, J Peyralans, J Skutnik, and
E Keever. 2020. E4S: Extreme-scale Scientific Software Stack. In 2020 Collegeville
Workshop on Scientific Software Whitepapers.

[5] Andreas Knüpfer, Christian Rössel, Dieter an Mey, Scott Biersdorff, Kai Diethelm,
Dominic Eschweiler, Markus Geimer, Michael Gerndt, Daniel Lorenz, Allen Mal-
ony, et al. 2012. Score-p: A joint performance measurement run-time infras-
tructure for periscope, scalasca, tau, and vampir. In Tools for High Performance
Computing 2011: Proceedings of the 5th International Workshop on Parallel Tools
for High Performance Computing, September 2011, ZIH, Dresden. Springer, 79–91.

[6] Matthias Lieber, Verena Grützun, Ralf Wolke, Matthias S Müller, and Wolfgang E
Nagel. 2012. Highly scalable dynamic load balancing in the atmospheric modeling

system COSMO-SPECS+ FD4. In Applied Parallel and Scientific Computing: 10th
International Conference, PARA 2010, Reykjavík, Iceland, June 6-9, 2010, Revised
Selected Papers, Part I 10. Springer, 131–141.

[7] Matthias Lieber, Ralf Wolke, Verena Grützun, Matthias S Müller, and Wolfgang E
Nagel. 2010. A framework for detailed multiphase cloud modeling on HPC
systems. In Parallel Computing: From Multicores and GPU’s to Petascale. IOS Press,
281–288.

[8] Simon McIntosh-Smith, Matthew Martineau, Tom Deakin, Grzegorz Pawelczak,
Wayne Gaudin, Paul Garrett, Wei Liu, Richard Smedley-Stevenson, and David
Beckingsale. 2017. TeaLeaf: A mini-application to enable design-space explo-
rations for iterative sparse linear solvers. In 2017 IEEE International Conference
on Cluster Computing (CLUSTER). IEEE, 842–849.

[9] Wolfgang E Nagel, Alfred Arnold, Michael Weber, Hans-Christian Hoppe, and
Karl Solchenbach. 1996. VAMPIR: Visualization and analysis of MPI resources.
(1996).

[10] Xian-He Sun and John L Gustafson. 1991. Toward a better parallel performance
metric. Parallel Comput. 17, 10-11 (1991), 1093–1109.

[11] Samuel Williams, Andrew Waterman, and David Patterson. 2009. Roofline: An
Insightful Visual Performance Model for Multicore Architectures. Commun. ACM
52, 4 (apr 2009), 65–76. https://doi.org/10.1145/1498765.1498785

125

https://doi.org/10.1007/978-3-030-66057-4_14
https://arxiv.org/abs/2010.15444
https://doi.org/10.1145/1498765.1498785

	Abstract
	1 Introduction
	2 Methodology
	2.1 Preparation
	2.2 Measurement
	2.3 Scoring and Filtering Hands-On
	2.4 Trace Analysis with Vampir: the COSMO-SPECS Case Study
	2.5 Hands-On and Exercises

	3 Variations of this Tutorial
	4 Future Work
	Acknowledgments
	References

