
PerfoRT: A Tool for Software Performance Regression
Paulo Roberto Farah

prfarah@inf.ufpr.br
Federal University of Paraná (UFPR)

Curitiba, PR, Brazil

Silvia Regina Vergilio
silvia@inf.ufpr.br

Federal University of Paraná (UFPR)
Curitiba, PR, Brazil

ABSTRACT

In this paper, we present PerfoRT, a tool to ease software perfor-
mance regression measurement of Java systems. Its main character-
istics include: minimal configuration to ease automation and hide
complexity to the end user; a broad scope of performance metrics
including system, process, JVM, and tracing; and presentation of
the results from a developer’s perspective. We show some of its
features in a usage example using Apache Commons BCEL project.
ACM Reference Format:

Paulo Roberto Farah and Silvia Regina Vergilio. 2023. PerfoRT: A Tool for
Software Performance Regression. In Companion of the 2023 ACM/SPEC
International Conference on Performance Engineering (ICPE ’23 Companion),
April 15–19, 2023, Coimbra, Portugal. ACM, New York, NY, USA, 2 pages.
https://doi.org/10.1145/3578245.3584928

1 INTRODUCTION

Performance regression testing is an approach to identify perfor-
mance issues like response time degradation or resource utilization.
It compares performance between successive versions of a soft-
ware project using existing tests. Comparing performance between
versions may prevent early-stage degradation and fix bugs in sub-
sequent versions before they reach the users [2].

Some tools [3, 5] measure performance metrics and compare
their values between versions, considering only one type of code
element, such as class or method. Others [1, 4, 5] have as goal
prioritization of performance regression tests to reduce the number
of executed test cases. But overall, existing tools present at least
one of the following limitations: i) the great majority does not
associate performance metrics with executed code elements; ii)
they implement a limited scope of performance metrics, in most
cases only execution time and CPU; and iii) the process are partially
automated. For example, the assessment steps are not supported
and code needs to be added to measure the system under test.

In order to overcome these limitations, we introduce PerfoRT
(Performance Regression Tool), a tool that automates the measure-
ment of performance regression in Java projects and helps devel-
opers to mine performance regressions of software repositories.
PerfoRT allows developers to automatically extract runtime per-
formance information from Java projects, such as the number of
calls and time duration of versions, packages, classes, and methods.
Moreover, it provides information related to testing code coverage
metrics, process, and system utilization behavior, as well as to Java

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).
ICPE ’23 Companion, April 15–19, 2023, Coimbra, Portugal
© 2023 Copyright held by the owner/author(s).
ACM ISBN 979-8-4007-0072-9/23/04.
https://doi.org/10.1145/3578245.3584928

Virtual Machine (JVM) events. This demo paper describes PerfoRT
architecture in Section 2, illustrates a use example in Section 3, and
concludes in Section 4.

Input

Clone Build Run Profile

PerfoRT

Maven JUnit JaCoCoExternal
Tools

PerfoRT-Tracer

Mysql

Software
Performance
Analyzer

Output

JFR

User Configuration
File

System
Repository

Performance
Results

Charts

Figure 1: PerfoRT architecture.

2 PerfoRT ARCHITECTURE

PerfoRT profiles and traces different project versions using ex-
isting tests in the system repository. It encompasses three main
modules depicted in Figure 1: PerfoRT-Core, PerfoRT-Tracer,
and PerfoRT-Analizer1. PerfoRT requires Ubuntu operational
system and Maven to run. The Java projects need to be compiled
using JDK 8 or superior and installed by Maven without errors.

PerfoRT-Core is responsible for cloning and extracting prop-
erties of the target system such as authors, committers, files, and
changes. Next, it identifies the used building tool, compiles, installs,
and collects existing regression tests using Apache Maven. It instru-
ments classes using JaCoCo Java code coverage library2 to collect
coverage metrics and executes tests using JUnit3. In summary, our
tool collects system, process, and tracing metrics and saves the
time of executed methods during runtime. The methods are filtered
from the monitored package as specified in the settings file. Then,
PerfoRT-Core retrieves information on test running processes and
system utilization. It also combines JVM and test coverage metrics
measured by the tools JFR4 and JaCoCo, respectively.

PerfoRT profiles a broad set of performance aspects, including
process, system, and virtual machine performance, execution time,
CPU and memory usage, disk I/O, and network performance. The
profiling and tracing measurement activities are fully automated
processes and do not require developers to add code to the sys-
tems under test manually. The metrics monitored are chosen to
identify performance issues related to finding bottlenecks, garbage
1The source code is available at https://github.com/paulorfarah/perfort
2https://www.eclemma.org/jacoco/
3https://junit.org/junit5/
4https://docs.oracle.com/en/java/java-components/jdk-mission-control/8/user-
guide/using-jdk-flight-recorder.html

119

https://doi.org/10.1145/3578245.3584928
https://doi.org/10.1145/3578245.3584928


ICPE ’23 Companion, April 15–19, 2023, Coimbra, Portugal Paulo Roberto Farah and Silvia Regina Vergilio

fa271c5 bbaf623 bebe70d a9c13ed

commit hash short

0

10000

20000

30000

cu
m

u
la

ti
ve

d
u

ra
ti

on

exec(java.io.File,java.lang.String[])

fa271c5 bbaf623 bebe70d a9c13ed

commit hash short

testClassOnPath(java.lang.String)

fa271c5 bbaf623 bebe70d a9c13ed

commit hash short

testJavapCompare()

fa271c5 bbaf623 bebe70d a9c13ed

commit hash short

testStart()

fa271c5 bbaf623 bebe70d a9c13ed

commit hash short

0

50

100

150

200

A
V

G
(c

p
u

p
er

ce
n

t)

exec(java.io.File,java.lang.String[])

fa271c5 bbaf623 bebe70d a9c13ed

commit hash short

testClassOnPath(java.lang.String)

fa271c5 bbaf623 bebe70d a9c13ed

commit hash short

testJavapCompare()

fa271c5 bbaf623 bebe70d a9c13ed

commit hash short

testStart()

fa271c5 bbaf623 bebe70d a9c13ed

commit hash short

0.00

0.25

0.50

0.75

1.00

1.25

1.50

A
V

G
(m

em
p

er
ce

n
t)

exec(java.io.File,java.lang.String[])

fa271c5 bbaf623 bebe70d a9c13ed

commit hash short

testClassOnPath(java.lang.String)

fa271c5 bbaf623 bebe70d a9c13ed

commit hash short

testJavapCompare()

fa271c5 bbaf623 bebe70d a9c13ed

commit hash short

testStart()

Figure 2: Test cases monitored from PLSETestCase.java.

collection, synchronization, I/O, code execution, memory usage,
and testing coverage. Testing coverage can help in the identification
of code parts that are being tested and of the most relevant test cases
measured. A limitation of the tool is that all metrics are collected
automatically and the users can not select metrics to measure.

Lastly, PerfoRT-Analyzer processes raw data and allows visual-
ization of the results. It outputs performance regression-measured
metrics to CSV files and charts. In this initial version of PerfoRT,
this module is capable of: i) generating a statistical descriptive anal-
ysis of versions, a violin density chart by versions, including all
methods of all collected classes and by a specific method; ii) generat-
ing a multiple area chart to evaluate the performance of all methods
of a class; and iii) generating a waterfall chart of the execution time
of methods called by test cases. As this module uses Python, users
can create other analyses to better attend to their needs.

3 USAGE EXAMPLE

This section illustrates some of the inputs and outputs produced by
PerfoRT through a usage example. To this end, we use the Apache
Commons BCEL5 byte code engineering library.

Figure 2 shows an example of the class scope. It contains the
performance analysis of the test cases of the test file BCELifierTest-
Case.java of four releases identified by the hashes fa271c5, bbaf623,
bebe70d, and a9c13ed. The file contains four methods: exec, test-
ClassOnPath, testJavapCompare, and testStart. Three metrics are
presented: cumulative duration of the execution time, and CPU and
RAM memory percent usage. This output provides the developer
with information about the set of test cases between evaluated
versions. For example, we can observe that testStart() presented
a significant increase in the cumulative duration for the release
a9c13ed. On the other hand, it shows the smallest CPU usage of
the evaluated releases.

At the method level, we can observe in Figure 3 an example of a
waterfall chart of the cumulative duration of all methods called by
test case testStart(), from test file BCELifierTestCase.java of release
a9c13ed. It is created using the tracing metrics. The chart shows
the time in seconds and the methods are in order from the bottom
to the top. The testcase testStart() at the base of the figure calls
BCELifierTestCase.getJavaClass(java.lang.String) and so on. As the
chart is cumulative, bars at the bottom sum the time of all bars
5https://commons.apache.org/proper/commons-bcel/

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36
cumulative duration (seconds)

1-public void org.apache.bcel.util.BCELifierTestCase.testStart()

2-static org.apache.bcel.classfile.JavaClass org.apache.bcel.util.BCELifier.getJavaClass(java.lang.String)

3-public static org.apache.bcel.util.SyntheticRepository org.apache.bcel.util.SyntheticRepository.getInstance()

4-public static org.apache.bcel.util.SyntheticRepository org.apache.bcel.util.SyntheticRepository.getInstance(org.apache.bcel.util.ClassPath)

5-public int org.apache.bcel.util.ClassPath.hashCode()

6-public int org.apache.bcel.util.ClassPath.hashCode()

7-public static org.apache.bcel.classfile.JavaClass org.apache.bcel.Repository.lookupClass(java.lang.String)

8-public org.apache.bcel.classfile.JavaClass org.apache.bcel.util.AbstractClassPathRepository.loadClass(java.lang.String)

9-public org.apache.bcel.classfile.JavaClass org.apache.bcel.util.AbstractClassPathRepository.loadClass(java.lang.String)

35.38

34.87

30.18

29.16

8.77

10.18

3.78

2.37

0.78

util/BCELifierTestCase.java

util/BCELifier.java

util/SyntheticRepository.java

util/ClassPath.java

Repository.java

util/AbstractClassPathRepository.java

Cumulative duration of public void org.apache.bcel.util.BCELifierTestCase.testStart() in a9c13ed

Figure 3: Execution time of methods called by the test case

util.BCELifierTestCase.testStart().

above them. Each color of method call represents a different class.
Thus, the developers can analyze and look for possible causes of a
degradation in performance.

4 CONCLUDING REMARKS

This paper introduces PerfoRT, a tool to measure software perfor-
mance using existing regression tests. The tool measures miscella-
neous metrics of Java programs including method calls, execution
time, testing code coverage, process and system utilization, and
JVM events. In this way, PerfoRT allows developers, testers, and
researchers to mine a robust set of software performance aspects
of real-world projects in an automated fashion. It automates perfor-
mance regression testing tasks since clone the project from GitHub
to measure performance metrics and trace the target system and
save results in a database. The results can help measure and ana-
lyze the performance of systems and create software performance
detailed datasets for varied purposes.

PerfoRT is language-dependent (it works only for Java projects).
The current functionalities PerfoRT-Analizer are also limited,
but this module can be extended by the user according to their
needs. Future work includes an automated generation of test cases
to complement existing tests of the target systems.

ACKNOWLEDGMENTS

This work is supported by CNPq (Grant:305968/2018-1) and UDESC.

REFERENCES

[1] Jinfu Chen, Weiyi Shang, and Emad Shihab. 2022. PerfJIT: Test-Level Just-in-Time
Prediction for Performance Regression Introducing Commits. IEEE Transactions
on Software Engineering 48, 5 (2022), 1529–1544.

[2] Peng Huang, Xiao Ma, Dongcai Shen, and Yuanyuan Zhou. 2014. Performance
Regression Testing Target Prioritization via Performance Risk Analysis. In Inter-
national Conference on Software Engineering (ICSE 2014). 60–71.

[3] Christoph Laaber and Philipp Leitner. 2017. (H|g)Opper: Performance History Min-
ing and Analysis. In Proceedings of the 8th ACM/SPEC on International Conference
on Performance Engineering (ICPE’17). ACM.

[4] Shaikh Mostafa, Xiaoyin Wang, and Tao Xie. 2017. PerfRanker: Prioritization of
Performance Regression Tests for Collection-Intensive Software. In Proceedings of
the 26th ACM SIGSOFT International Symposium on Software Testing and Analysis
(Santa Barbara, CA, USA) (ISSTA 2017). ACM, New York, NY, USA, 23–34.

[5] David Georg Reichelt, Stefan Kühne, and Wilhelm Hasselbring. 2019. PeASS: A
Tool for Identifying Performance Changes at Code Level. In 2019 34th IEEE/ACM
International Conference on Automated Software Engineering (ASE). 1146–1149.

120


	Abstract
	1 Introduction
	2 PerfoRT Architecture
	3 Usage Example
	4 Concluding Remarks
	Acknowledgments
	References



