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ABSTRACT

In this paper, we present PerfoRT, a tool to ease software perfor-
mance regression measurement of Java systems. Its main character-
istics include: minimal configuration to ease automation and hide
complexity to the end user; a broad scope of performance metrics
including system, process, JVM, and tracing; and presentation of
the results from a developer’s perspective. We show some of its
features in a usage example using Apache Commons BCEL project.
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1 INTRODUCTION

Performance regression testing is an approach to identify perfor-
mance issues like response time degradation or resource utilization.
It compares performance between successive versions of a soft-
ware project using existing tests. Comparing performance between
versions may prevent early-stage degradation and fix bugs in sub-
sequent versions before they reach the users [2].

Some tools [3, 5] measure performance metrics and compare
their values between versions, considering only one type of code
element, such as class or method. Others [1, 4, 5] have as goal
prioritization of performance regression tests to reduce the number
of executed test cases. But overall, existing tools present at least
one of the following limitations: i) the great majority does not
associate performance metrics with executed code elements; ii)
they implement a limited scope of performance metrics, in most
cases only execution time and CPU; and iii) the process are partially
automated. For example, the assessment steps are not supported
and code needs to be added to measure the system under test.

In order to overcome these limitations, we introduce PerfoRT
(Performance Regression Tool), a tool that automates the measure-
ment of performance regression in Java projects and helps devel-
opers to mine performance regressions of software repositories.
PerfoRT allows developers to automatically extract runtime per-
formance information from Java projects, such as the number of
calls and time duration of versions, packages, classes, and methods.
Moreover, it provides information related to testing code coverage
metrics, process, and system utilization behavior, as well as to Java
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Virtual Machine (JVM) events. This demo paper describes PerfoRT
architecture in Section 2, illustrates a use example in Section 3, and
concludes in Section 4.
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Figure 1: PerfoRT architecture.

2 PerfoRT ARCHITECTURE

PerfoRT profiles and traces different project versions using ex-
isting tests in the system repository. It encompasses three main
modules depicted in Figure 1: PerfoRT-Core, PerfoRT-Tracer,
and PerfoRT-Analizer1. PerfoRT requires Ubuntu operational
system and Maven to run. The Java projects need to be compiled
using JDK 8 or superior and installed by Maven without errors.

PerfoRT-Core is responsible for cloning and extracting prop-
erties of the target system such as authors, committers, files, and
changes. Next, it identifies the used building tool, compiles, installs,
and collects existing regression tests using Apache Maven. It instru-
ments classes using JaCoCo Java code coverage library2 to collect
coverage metrics and executes tests using JUnit3. In summary, our
tool collects system, process, and tracing metrics and saves the
time of executed methods during runtime. The methods are filtered
from the monitored package as specified in the settings file. Then,
PerfoRT-Core retrieves information on test running processes and
system utilization. It also combines JVM and test coverage metrics
measured by the tools JFR4 and JaCoCo, respectively.

PerfoRT profiles a broad set of performance aspects, including
process, system, and virtual machine performance, execution time,
CPU and memory usage, disk I/O, and network performance. The
profiling and tracing measurement activities are fully automated
processes and do not require developers to add code to the sys-
tems under test manually. The metrics monitored are chosen to
identify performance issues related to finding bottlenecks, garbage
1The source code is available at https://github.com/paulorfarah/perfort
2https://www.eclemma.org/jacoco/
3https://junit.org/junit5/
4https://docs.oracle.com/en/java/java-components/jdk-mission-control/8/user-
guide/using-jdk-flight-recorder.html
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Figure 2: Test cases monitored from PLSETestCase.java.

collection, synchronization, I/O, code execution, memory usage,
and testing coverage. Testing coverage can help in the identification
of code parts that are being tested and of the most relevant test cases
measured. A limitation of the tool is that all metrics are collected
automatically and the users can not select metrics to measure.

Lastly, PerfoRT-Analyzer processes raw data and allows visual-
ization of the results. It outputs performance regression-measured
metrics to CSV files and charts. In this initial version of PerfoRT,
this module is capable of: i) generating a statistical descriptive anal-
ysis of versions, a violin density chart by versions, including all
methods of all collected classes and by a specific method; ii) generat-
ing a multiple area chart to evaluate the performance of all methods
of a class; and iii) generating a waterfall chart of the execution time
of methods called by test cases. As this module uses Python, users
can create other analyses to better attend to their needs.

3 USAGE EXAMPLE

This section illustrates some of the inputs and outputs produced by
PerfoRT through a usage example. To this end, we use the Apache
Commons BCEL5 byte code engineering library.

Figure 2 shows an example of the class scope. It contains the
performance analysis of the test cases of the test file BCELifierTest-
Case.java of four releases identified by the hashes fa271c5, bbaf623,
bebe70d, and a9c13ed. The file contains four methods: exec, test-
ClassOnPath, testJavapCompare, and testStart. Three metrics are
presented: cumulative duration of the execution time, and CPU and
RAM memory percent usage. This output provides the developer
with information about the set of test cases between evaluated
versions. For example, we can observe that testStart() presented
a significant increase in the cumulative duration for the release
a9c13ed. On the other hand, it shows the smallest CPU usage of
the evaluated releases.

At the method level, we can observe in Figure 3 an example of a
waterfall chart of the cumulative duration of all methods called by
test case testStart(), from test file BCELifierTestCase.java of release
a9c13ed. It is created using the tracing metrics. The chart shows
the time in seconds and the methods are in order from the bottom
to the top. The testcase testStart() at the base of the figure calls
BCELifierTestCase.getJavaClass(java.lang.String) and so on. As the
chart is cumulative, bars at the bottom sum the time of all bars
5https://commons.apache.org/proper/commons-bcel/
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above them. Each color of method call represents a different class.
Thus, the developers can analyze and look for possible causes of a
degradation in performance.

4 CONCLUDING REMARKS

This paper introduces PerfoRT, a tool to measure software perfor-
mance using existing regression tests. The tool measures miscella-
neous metrics of Java programs including method calls, execution
time, testing code coverage, process and system utilization, and
JVM events. In this way, PerfoRT allows developers, testers, and
researchers to mine a robust set of software performance aspects
of real-world projects in an automated fashion. It automates perfor-
mance regression testing tasks since clone the project from GitHub
to measure performance metrics and trace the target system and
save results in a database. The results can help measure and ana-
lyze the performance of systems and create software performance
detailed datasets for varied purposes.

PerfoRT is language-dependent (it works only for Java projects).
The current functionalities PerfoRT-Analizer are also limited,
but this module can be extended by the user according to their
needs. Future work includes an automated generation of test cases
to complement existing tests of the target systems.
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