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ABSTRACT 
While systemic failure/overload in recoverable networks with load 
redistribution is a common phenomenon, current ability to evaluate 
and moreover mitigate the corresponding systemic risk is vastly 
insufficient due to complexity of the problem and relying on 
oversimplified models. The proposed framework in this paper for 
systemic risk evaluation relies on approximate dimension reduction 
at the onset of systemic failure. Assuming a general failure/recovery 
microscopic model, the macro-level system dynamics is 
approximated by a 2-state Markov process alternating between 
systemically operational and failed states. 
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1 INTRODUCTION 
While explosive growth in scale and interconnectivity of resource 
sharing systems of various nature is driven by economics, these 
benefits are inherently associated with risk of a systemic failure [1]-
[2]. Prohibitively high complexity of accounting for 
interdependencies of component failures due to load redistribution 
from failed to operational components creates inherent tradeoff 
between model accuracy and tractability [2]-[3]. This tradeoff 
explains currently existing focus on modelling effects of specific 
aspects of the problem, e.g., topology, failure/recovery mechanisms, 
etc. However, complicated interactions between these aspects make 
current understanding of the corresponding performance/risk 
tradeoffs severely insufficient. This paper suggests an approximate, 
yet accurate, “macroscopic” description of the onset of systemic 
failure, which incorporates “microscopic” details of the failure 
propagation process. We hope that the proposed macroscopic 
model will reveal “universal” features of systemic failures in large-
scale networked systems of various nature with different 
failure/recovery mechanisms. This hope is based on analogy 
between systemic failures and phase transitions in physics, where 
such universality exists [4]. 
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We assume a very general microscopic failure/recovery model 
described by a Markov process with locally interacting components 
and driven by Network Utility Maximization (NUM) [5] for 
reallocation of elastic load. This microscopic model covers a broad 
range of applications, including communication and transportation 
networks, IoT, etc. The macro-level failure dynamics is 
approximated by a two-state Markov process which alternates 
between systemically operational and failed states. Transition rates 
of this macro-process are derived from micro-level dynamics under 
approximation of Landau theory of phase transitions [6]. Sections 2 
describes failure propagation at micro-level. Section 3 derives 
macro-level failure/recovery dynamics and evaluates the systemic 
risk. 

2 MICRO-LEVEL DYNAMICS 
Consider network with 𝑁  nodes and 𝐿 bi-directional links 𝑙 =

1, . . , 𝐿 with variable capacities 𝑐𝑙(𝑡) = 𝑐̂𝑙𝛿𝑙(𝑡), where 𝛿𝑙(𝑡) = 1 if 
link 𝑙 is operational at moment 𝑡 and 𝛿𝑙(𝑡) = 0 otherwise. Link 𝑙 
fails at link congestion-dependent rate 𝜆𝑙  and recovers at fixed rate 
𝜇𝑙 , where congestion levels are defined below. We assume that each 
node 𝑛 = 1, . . , 𝑁  has utility 𝑢𝑛𝑘(𝑥)  of obtaining point-to-point 
bandwidth to node 𝑘 ∈ {1, . . , 𝑁}\𝑛 , where functions 𝑢𝑛𝑘(𝑥) are 
increasing, strictly concave and differentiable in 𝑥 ≥ 0.  Given 𝛿 =

(𝛿𝑙), bandwidth allocation maximizes the aggregate utility [5]: 
              𝑊(𝛿) = 𝑚𝑎𝑥𝑥𝑟≥0

∑ 𝑢𝑛𝑘(∑ 𝑥𝑟𝑟∈𝑅𝑛𝑘
)(𝑛,𝑘)                           (1) 

subject to the aggregate load on link 𝑙:  
                          ∑ 𝑥𝑟𝑟:𝑙∈𝑟 ≤ (1 − 𝛿𝑙)𝑐̂𝑙,                                               (2) 

where 𝑅𝑛𝑘  is the set of feasible routes between nodes 𝑛  and 𝑘 . 
Maximization (1)-(2) occurs much faster than link 
failures/recoveries. Dual to optimization problem (1)-(2) is  
                            𝑚𝑖𝑛𝛾≥0𝑚𝑎𝑥𝑥≥0ℒ(𝑥, 𝛾|𝛿),                                            (3) 
where Lagrangian is 
   ℒ = ∑ 𝑢𝑛𝑘(∑ 𝑥𝑟𝑟∈𝑅𝑛𝑘

)(𝑛,𝑘) − ∑ 𝛾𝑙[∑ 𝑥𝑟𝑟:𝑙∈𝑟 − (1 − 𝛿𝑙)𝑐̂𝑙]𝑙        (4) 

and 𝛾 = (𝛾𝑙) is a vector of Lagrange multipliers [5]. Since Largange 
multipliers 𝛾𝑙  characterize congestion on links 𝑙 , we assume that 
link 𝑙 failure rate is an increasing and concave function of 𝛾𝑙: 𝜆𝑙 =

𝜆𝑙(𝛾𝑙). We also assume that different link failures/recoveries are 
jointly statistically independent. 

Due to assumed time scale separation, evolving vector 
𝛿(𝑡) = (𝛿𝑙(𝑡)) ∈ {0,1}|𝐿|  can be approximated by a Markov 
process with a large number |𝐿| of locally interacting components, 
where |𝐿| is the number of links in the system. Given system state 
at moment 𝑡 ≥ 0 , 𝛿(𝑡) = 𝛿 ∈ {0,1}|𝐿| , component 𝛿𝑙  rate of 
transition 0 → 1  is 𝜆𝑙[𝛾𝑙(𝛿−𝑙)] , where 𝛿−𝑙 = (𝛿𝑗(𝑡), 𝑗 ≠ 𝑙) . This 
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rate 𝜆𝑙[𝛾𝑙(𝛿−𝑙)] depends only on the “neighboring” components 𝛿𝑗  

where ∀𝑗 ∈ 𝑟 ⊆ 𝑅𝑛𝑘 and all pair of nodes (𝑛, 𝑘) such that feasible 
routes 𝑅𝑛𝑘  include link 𝑙 . Apparently, rate 𝜆𝑙[𝛾𝑙(𝛿−𝑙)]  is an 
increasing function of vector 𝛿−𝑙 . Component 𝛿𝑙  transition 1 → 0 
rate 𝜇𝑙  is independent of vector 𝛿−𝑙 . Probability distribution of 
Markov process 𝛿(𝑡) , 𝑃(𝑡, 𝛿)  is determined by differential 
Kolmogorov equations. Under some natural assumptions, process 
𝛿(𝑡) has unique steady-state distribution 𝑃(𝛿) = 𝑙𝑖𝑚𝑡→∞ 𝑃 (𝑡, 𝛿) 
which is determined by the corresponding steady-state Kolmogorov 
equations. The fundamental problem is prohibitively high 
dimension 2|𝐿|  of this system. Even more restrictive is that 
evaluation of process 𝛿(𝑡)  transition rates 𝜆𝑙[𝛾𝑙(𝛿−𝑙)]  requires 
solving 2|𝐿| problems (3)-(4) for each 𝛿 ∈ {0,1}|𝐿|.  

3 RISK OF SYSTEMIC FAILURE 
Consider mean-field approximation which is based on 

simplifying assumption that operational statuses of different links 
are jointly statistically independent: 

                 𝑃(𝛿) ≈ ∏ [𝛿𝑙
𝛿𝑙(1 − 𝛿𝑙)1−𝛿𝑙]

|𝐿|
𝑙=1 .                                        (5) 

Under this approximation, probability of link 𝑙 failure is  
                        𝛿𝑙 = 𝜆𝑙(𝛾̃𝑙) [𝜇𝑙 + 𝜆𝑙(𝛾̃𝑙)]⁄ ,                                                (6) 
where 𝜆𝑙(𝛾̃𝑙)  is “effective” failure rate, Lagrange multipliers 𝛾̃ =

(𝛾̃𝑙) is determined by solution to the corresponding dual (4): 
                   (𝑥̃, 𝛾̃) = 𝑎𝑟𝑔𝑚𝑖𝑛𝛾𝑚𝑎𝑥𝑥ℒ(𝑥, 𝛾|𝛿).                                     (7) 

Mean-field equations (6)-(7) form a closed system of 2|𝐿| + |𝑅| 
non-linear fixed-point equations, where |𝑅| is the total number of 
feasible routes in the system. Assuming that system (6)-(7) has an 
“operational” asymptotically stable equilibrium 𝛿∗ = (𝛿𝑙

∗) 

characterized by “low” link failure probabilities 𝛿𝑙
∗ ≪ 1, 𝑙 = 1, . . , 𝐿, 

systemic failure may be associated with existence of another 
asymptotic equilibrium 𝛿∗∗ = (𝛿𝑙

∗∗) characterized by “much higher 

“ failure probabilities for some links 𝛿𝑙
∗∗  and “much lower” 

aggregate utility (1): 𝑊(𝛿∗∗) ≪ 𝑊(𝛿∗). Due to prohibitively high 
dimension of system (6)-(7) we follow [6] for further dimension 
reduction close to the point where equilibrium 𝛿∗  loses stability. 
Consider expansion of link failure rates: 
         𝜆𝑙[𝛾𝑙(𝛿−𝑙)] = 𝜆𝑙[𝛾𝑙(0)] + ∑ 𝜆𝑙[𝛾𝑙(𝛿(𝑖))]𝛿𝑖𝑖≠𝑙 + ⋯,               (8) 

where 𝜆𝑙[𝛾𝑙(0)] ≪ 1 , binary vectors 𝛿(0) = 0 ,  𝛿(𝑖) = (𝜒𝑖𝑙 , 𝑙 =

1, . . , 𝐿), 𝑖 = 0,1, . . , 𝐿 , and Kronecker symbol 𝜒𝑖𝑙 = 1 if 𝑖 = 𝑙  and 
𝜒𝑖𝑙 = 0 . Substituting (8) into right-hand size of (6) gives us the 
following system of |𝐿| linear fixed-point equations: 
           𝛿𝑙 = 𝜆𝑙[𝛾𝑙(0)] 𝜇𝑙⁄ + ∑ (𝜆𝑙[𝛾𝑖(𝛿(𝑖))] 𝜇𝑖⁄ )𝛿𝑙𝑖≠𝑙 .                        (9) 

Dimension reduction [6], inspired by Landau theory of phase 
transitions, is based on Perron-Frobenius (P-F) theory of non-
negative matrix 𝐴 = (𝐴𝑖𝑗)𝑖,𝑗=1

𝐿  with components 𝐴𝑖𝑗 =

𝜆𝑖[𝛾𝑗(𝛿(𝑗))] 𝜇𝑖⁄ . Contagion-free region is given by condition that 

P-F eigenvalue of matrix 𝐴, Γ is less than one: Γ < 1. Operational 
equilibrium 𝛿∗ looses stability along leading eigenvalue of matrix  
𝐴 = (𝐴𝑖𝑗)𝑖,𝑗=1

𝐿 , 𝜉 = (𝜉𝑙)𝑙=1
𝐿 , which allowed for approximating 

transitions between two equilibria 𝛿∗ and 𝛿∗∗ by a one-dimensional 
birth-death Markov process. Time-scale separation between these 
“rare” transitions and typical time scale of Markov microprocess 

𝛿(𝑡) allows us to approximate these transitions in “slow” time scale 
by a 2-state Markov process: 𝜋̃(𝑡) ∈ {0,1}, where states 𝜋̃(𝑡) = 0 
and 𝜋̃(𝑡) = 1  correspond to systemically operational and failed 
states respectively, and transition rates 𝜆̃: 0 → 1 and 𝜇: 1 → 0 are 
determined by the failure/recovery rates of individual links. The 
utility loss averaged over given time horizon of interest [0, 𝑇] is           

𝐿𝑜𝑠𝑠[0,𝑇] = 𝑇−1[𝑊(𝛿∗) − 𝑊(𝛿∗∗) ] ∫ 𝜋(𝑡)𝑑𝑡
𝑇

0
.                    (10) 

Since 𝐿𝑜𝑠𝑠[0,𝑇] is a random variable, we identify the risk of systemic 
failure with some established risk measure associated with random 
loss (10). In particular, the corresponding Value at Risk is 

             𝑉𝑎𝑅1−𝛼
[0,𝑇]

= 𝑖𝑛𝑓{𝑥: 𝑃(𝐿𝑜𝑠𝑠[0,𝑇] > 𝑥) ≤ 𝛼},                        (11) 
where 0 < 𝛼 < 1 characterizes systemic risk tolerance.  

Figure 1 plots VaR (11) vs. normalized, i.e., adjusted for the 
time horizon of interest, risk averseness 𝜃 ≔ − 𝜆̃𝑇 ln (1 − 𝛼) ⁄  in 
natural asymptotic regime 𝜆̃ ↓ 0 , 𝑇 ↑ ∞ , 𝜆̃𝑇 = 𝑂(1) . Cases 𝛼 ↑

1 ⇒ 𝜃 ↓ 0  and 𝛼 ↓ 0 ⇒ 𝜃 ↑ ∞  correspond to extremely low and 
respectively high normalized risk averseness. 
 
 
 
 
 
 
 
 
 
       
Figure 1. Value at Risk vs. normalized risk averseness 
 

Curves 0𝐵1 , 0𝐵2 , and 𝐴3𝐵3  correspond to different scenarios of 
system resource allocation in robustness, i.e., contagion prevention, 
on the one hand, and recoverability on the other hand, given the 

total amount of these resources. In all scenarios, 𝑉𝑎𝑅1−𝛼
[0,𝑇] increases 

with 𝜃  and upper bounded by ΔW = 𝑊(𝛿∗) − 𝑊(𝛿∗∗) . Curves 
0𝐵1 , 0𝐵2 , ( 𝐴3𝐵3 ) correspond to discontinuous (continuous) 
emergence of systemically failed equilibrium [4]. System resource 

allocation, which minimizes 𝑉𝑎𝑅1−𝛼
[0,𝑇] , depends on 𝜃: for 0 ≤ 𝜃 <

𝜃1 . 𝜃1 < 𝜃 ≤ 𝜃2  or 𝜃2 < 𝜃  the optimal allocation corresponds to 
curves  0𝐵1, 0𝐵2 or 𝐴3𝐵3 respectively.  
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