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ABSTRACT
Microbenchmarking is a widely used method for evaluating the

performance of a piece of code. However, the results of microbench-

marks for applications that utilize the Java Virtual Machine (JVM)

are often unstable during the initial phase of execution, known

as the warmup phase. This is due to the JVM’s use of just-in-time

compiler optimization, which is to identify and compile a "hot set"

of important code regions. In this study we examine the static fea-

tures of 586 microbenchmarks from 30 Java applications. To do

so, we first extract static source code features of the benchmarks

and then employ manual and descriptive data mining methods to

identify meaningful correlations between these static features and

the benchmarks’ ability to reach a steady state. Our findings in-

dicate that the number of function calls and lines of code have a

considerable influence on whether or not the microbenchmarks

reach a steady state.
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1 INTRODUCTION
Microbenchmarking is a lightweight performance testing technique

for Java applications that involves measuring the time it takes for a

specific piece of code to execute. It is less demanding compared to

other testing techniques and is primarily used to test code perfor-

mance. [11]
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Microbenchmarking in Java software is challenging due to the

JVM’s dynamic recompilationmethod using the just-in-time JIT com-

piler to locate important code regions. This can cause performance

fluctuations and unstable results. To address this, practitioners use

two phases for microbenchmarking: the warmup phase and Steady
State. The former is when the JIT compiler decides which code to

compile dynamically, causing fluctuations. The latter is when the

benchmark reaches a stable performance state, although not all

microbenchmarks reach this phase. [1, 4, 11]

To obtain reliable microbenchmarking results, it is important to

estimate the steady state start time accurately and understand fac-

tors that affect reaching steady state. Previous research has shown

that developer estimations of warmup phase and corresponding

benchmark configurations are often inaccurate and inefficient [11].

To address this issue, prior studies have proposed solutions such

as Laaber et al.’s dynamic reconfiguration approach as an alter-

native to static configurations [6]. Additionally, Costa et al. [2]

examined common pitfalls in utilizing the Java Microbenchmark

Harness (JMH) [7], a widely used microbenchmarking framework

in the Java community. Significantly, Laaber et al. [5] proposed a

machine learning model that uses source code features to predict

unstable benchmarks, suggesting a potential correlation between

these features and the steady state of benchmarks.

Our study utilizes a dataset consisting of 586 microbenchmark

results from 30 well-known Java open-source projects, including

RxJava, Log4J2, and Apache Hive, which cover a range of project

areas like application servers, libraries, and databases [11]. Our

goal is to examine the correlation between the benchmarks’ static

source code features and their steady state attainment using the

dataset, building on previous research [5]. To achieve this, we first

enhance the dataset by including the static source code features of

the benchmarks. Subsequently, we apply manual and descriptive

data mining methods to identify potential correlations.

The remainder of this paper is organized as follows. Section 2 pro-

vides a succinct background on the descriptive data mining method

utilized in this study. Section 3 details the dataset, methodology,

and findings of our investigation. Finally, in Section 4, we conclude

our findings and discuss potential avenues for future research.

2 BACKGROUND
2.1 Java Microbenchmark Harness (JMH)
JMH is a popular tool for measuring Java code performance, offering

features such as automatic warmup, precise timing, andmultithread-

ing support. It allows for customization of benchmark configuration

and running benchmarks multiple times with different parameters

to provide comprehensive results. While primarily geared towards

microbenchmarking, JMH is a powerful tool widely adopted by
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developers and researchers. However, using JMH requires a deep

understanding of Java and the JVM. [2, 7, 11]

2.2 Apriori Framework
Apriori is a data mining method used for discovering association

rules [3, 8, 10]. It involves two steps: identifying itemsets with

sufficient support and generating association rules by combining

frequent itemsets. The resulting output is a list of discovered as-

sociations and their corresponding confidence levels, computed as

the ratio of occurrence of the association to the occurrence of the

antecedent.

𝐶𝑜𝑛𝑓 𝑖𝑑𝑒𝑛𝑐𝑒 (𝑖𝑡𝑒𝑚𝐴 → 𝑖𝑡𝑒𝑚𝐵) = 𝑅𝑒𝑐𝑜𝑟𝑑𝑠 𝑡ℎ𝑎𝑡 𝐵𝑜𝑡ℎ 𝐴 𝑎𝑛𝑑 𝐵 𝑜𝑐𝑐𝑢𝑟𝑟𝑒𝑑
𝑅𝑒𝑐𝑜𝑟𝑑𝑠 𝑡ℎ𝑎𝑡 𝑗𝑢𝑠𝑡 𝐴 𝑂𝑐𝑐𝑢𝑟𝑟𝑒𝑑

(1)

3 METHODOLOGY
In this section, we present a detailed explanation of our methodol-

ogy which is broken down into three steps to address the research

question:

Research Question: Is there a correlation between the ability

of benchmarks to reach steady state and their static features from

source code? If so, what are these features?

To investigate the potential correlation between the ability of

benchmarks to reach steady state and their static features from

source code, we first extract the static source code features of the

microbenchmarks under examination. Next, we use manual min-

ing techniques to identify any potential correlations or patterns

between the extracted static features and the benchmarks’ steady

state. To further validate our findings, we apply a descriptive data

mining method.

The following subsections will detail these three steps:

• Step 1: We extract the static source code features of the

microbenchmarks under examination.

• Step 2:We use manual mining techniques to identify any po-

tential correlations or patterns between the extracted static

features and the benchmarks’ steady state.

• Step 3:We confirm our findings from step 2 by utilizing a

descriptive data mining method.

3.1 Feature Extraction (Step 1)
The primary dataset1 we are utilizing comprises 586 microbench-

marking results from 30 Java open-source projects such as RxJava,

Log4J2, and Apache Hive, representing various project domains

like application servers, libraries, and databases [11]. Each project

in the dataset has at least one Java benchFile that contains methods

whose performance is being tested. After submitting these bench-

Files to the Java Microbenchmark Harness (JMH), a commonly

used microbenchmarking framework in the Java community [7, 11],

it produces timeseries data for 10 different forks related to each

method under test (Fig. 1). However, the existing dataset only com-

prises the benchmarks’ results, including information pertaining to

their time series and steady state status. It does not contain informa-

tion regarding the benchmarks’ static source code features, which

are the focal point of our investigation. To rectify this, we employ

1
https://github.com/SEALABQualityGroup/icpe-data-challenge-jmh

Project BenchFile 1

BenchFile N

methodUnderTest_1 ( ) { 
....... 
.............. 
.. 
}

methodUnderTest_N ( ) { 
....... 
.............. 
.. 
}

JMH
Time Series 1   (Fork 1)

Time Series 10 (Fork 10)

Results for first method of a benchFile

Time Series 1   (Fork 1)

Time Series 10 (Fork 10)

Results for last method of a benchFile

Figure 1: Illustration of the dataset structure

source code exploration tools such as srcML [9] and Lizard
2
to

extract 11 static source code features (Table 1). These additional fea-

tures are integrated into the primary dataset to form a new dataset

that we will analyze, referred to as the extended dataset. There are
27 records not included in the extended dataset, representing a 3%

reduction. This exclusion was a result of errors encountered dur-

ing the extraction of features utilizing our tools. The new dataset,

source codes, and other results are accessible from our GitHub

repository
3
.

As shown in Table 1, in the new dataset we have categorized

the features into two main groups: static and dynamic. The static
features are derived from the source code of the benchmarks, while

the dynamic features provide information on the steady state situa-

tion of the benchmarks. Furthermore, the static category is divided

into two subcategories: benchMethod and benchFile features. The

benchMethod features pertain to the source code characteristics

of the benchmark’s method under test (benchMethod), while the

benchFile features pertain to the source code characteristics of the

benchmark’s file (benchFile). It is essential to note that the static

features provide insight into the structure and complexity of the

code being tested, while the dynamic features provide information

about the benchmarks’ behavior during execution and are critical

in understanding the performance characteristics of the code.

The dynamic features are extracted directly from the bench-

marks’ time series in the primary dataset. Among the three dynamic

features presented in Table 1, DNNSF is particularly significant as it

determines if a benchmark has reached steady state. A benchmark is

considered steady when the number of its non-steady forks (forks

that did not reach steady state in the last 500 iterations) is zero

[11]. The remaining two features, DANCP and DANITS, provide

information on the fluctuation of the benchmark’s time series and

the average number of iterations taken for the benchmark to reach

steady state.

2
https://pypi.org/project/lizard/

3
https://github.com/amirmahdiKhosravi/ACM-SPEC-ICPE-2023-DataTrack
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Static benchMethod Features

• BMLOC: Number of Lines of Code
• BMCCN: Cyclomatic Complexity Number
• BMNTC: Number of tryCatch
• BMNSC: Number of switchCase
• BMNFL: Number of forLoops
• BMNWL: Number of whileLoops
• BMNFC: Number of functionCalls

benchFile Features

• BFLOC: Number of Lines of Code
• BFCCN: Cyclomatic Complexity Number
• BFNP: Number of Packages
• BFLN: benchFile’s Name-Length

Dynamic
• DNNSF: Number of no_steady Forks
• DANCP: Average Number of Changing Points of Forks
• DANITS: Average Number of Iterations to Steady State among Forks

Table 1: An overview of features

3.2 Manual Mining (Step 2)
Having prepared the extended dataset, it is now feasible to inves-

tigate the potential associations between the features, specifically

between the static and dynamic features. We conduct our inves-

tigation at two different levels: 1) the benchMethod level, where

we compare the static benchMethod features with the dynamic

features, and 2) the benchFile level, where we compare the bench-

File features with the dynamic ones. This approach allows us to

gain a comprehensive understanding of the relationship between

the source code characteristics and the performance characteris-

tics of the benchmarks. Additionally, examining the associations at

both the benchMethod and benchFile levels enables us to identify

patterns and correlations that may not be apparent at one level

alone.

benchMethod Level We classify benchMethods into three cat-

egories for comparison to gain insight into potential associations.

These categories are: 1) Steady benchMethod: All forks are steady (in
steady state for the last 500 iterations). 2) Inconsistent benchMethod:
At least one fork is non-steady (did not reach steady state in the

last 500 iterations). 3) Non-steady benchMethod: Benchmarks with

the highest number of non-steady forks, which is 9.

Table 2 illustrates the three benchMethod categories, which we

introduced earlier. Since each category might include more than

one record, we have computed the average of the features of each

category (look at first three rows of the Table 2). The last two rows

of the table display the comparison results of two chosen categories

from the first three rows.

To determinewhich two categories to compare, we selected those

that would yield meaningful results for our goal. The first two cate-

gories we examined were non-steady and steady benchMethods,

which are opposite to each other. The comparison of their differ-

ences (fourth row of Table 2) illustrates that BMLOC and BMNFC

have the lowest values among the static features, with -2.46 and

-1.65 respectively, indicating that on average, steady benchMethods

have more lines of code and function calls compared to non-steady

benchMethods. These two features also show a lower increase in

value when moving from diff(non-steady, steady) to diff(non-steady,
inconsistent). Additionally, the dynamic feature results in the last

two rows of the table show that non-steady benchMethods have a

higher number of changing points in their time series, indicating

that they are more unstable than the other two categories.

benchFile Level Similar to benchMethod Level, we introduce

three categories for benchFiles to aid in understanding potential

associations. These categories are: 1) Steady benchFile: All bench-

Methods within it are steady (no non-steady forks). 2) Non-steady

benchFile: More than half of the benchMethods within it are non-

steady (at least one non-steady fork). 3) Inconsistent benchFile:

Neither steady nor non-steady.

Table 3 illustrates the three benchFile categories and the av-

erage of their features, as each category might include multiple

records. The last two rows of this table depict the comparison of

the established categories.

To decide which categories to compare for differences (last two

rows of Table 3), we selected non-steady, steady and inconsistent,

similar to our decision for benchMethod categories. The comparison

shows that BFLOC and BFCCN do not show a consistent pattern,

fluctuating between negative and positive values. BFNL does not

show a significant difference, with values close to 0.00 in both com-

parisons. BFNP is the only feature with a considerable difference

in diff(non-steady, steady) and diff(non-steady, inconsistent), with a

negative value indicating that on average, non-steady benchFiles

have more packages than steady and inconsistent benchFiles. The

dynamic features in the last two rows of the table also show that

non-steady benchFiles have greater DANITS than the other two

categories, indicating that it takes more iterations for benchmarks

inside them to reach a steady state.

Our manual mining results suggest potential associations be-

tween three static features (BMLOC, BMNFC and BFNP) and the

most significant dynamic feature (DNNSF). Here are our three as-

sumptions about these associations:

(1) BMNFC and DNNSF: BenchMethods with more function calls

are more likely to reach steady state.

(2) BMLOC and DNNSF: BenchMethods with more lines of code

are more likely to reach steady state

(3) BFNP and DNNSF: BenchMethods in benchFiles with more

packages are more likely to reach steady state.

3.3 Descriptive Mining (Step 3)
In this section, we employ the Apriori algorithm [3, 8, 10] to vali-

date our assumptions. The Apriori algorithm is a framework that

allows for investigating potential associations between various

combinations of items by providing metrics such as confidence.

To utilize the Apriori framework, we defined a set of items based

on our assumptions about potential associations. For two of our

nominated static features (BMLOC and BFNP), we have defined two

related items, HIGH and LOW, representing if the number related

to the feature is higher or lower than the average, respectively.

For BMNFC, another nominated static feature, we have defined

three items: HIGH, AVERAGE, and ZERO, indicating if the number

related to BMNFC is higher or equal to average and if it is equal

to zero. We also considered a set of three related items for our

dynamic feature under study (DNNSF): ZERO (𝐷𝑁𝑁𝑆𝐹 = 0), LOW
(0 < 𝐷𝑁𝑁𝑆𝐹 < 6), and HIGH (𝐷𝑁𝑁𝑆𝐹 ≥ 6) for the Apriori

algorithm to investigate their associations.

Table 4 presents the associations identified by the Apriori algo-

rithm. As observed in the Table, there is no association related to

BFNP and DNNSF items, indicating that there is no meaningful
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Number of Records Static benchMethod Features Dynamic Features
BMLOC BMCCN BMNTC BMNSC BMNFL BMNWL BMNFC DANCP DANITS

non-steady benchMethod 2 5.00 1.00 0.00 0.00 0.00 0.00 3.00 23.30 72.50

Inconsistence benchMethod 236 6.70 1.59 0.09 0.00 0.25 0.16 3.91 9.29 484.72

Steady benchMethod 321 7.46 1.68 0.11 0.00 0.21 0.14 4.65 7.37 221.21

diff (non-steady, Steady) -2.46 -0.68 -0.11 0.00 -0.21 -0.14 -1.65 15.92 -148.71

diff (non-steady, Inconsistence) -1.70 -0.59 -0.09 0.00 -0.25 -0.16 -0.91 14.00 -412.22

Table 2: The average of static benchMethod features and dynamic features for each of three benchMethod category, and their
comparison.

Number of Records Static benchFile Features Dynamic Features
BFLOC BFCCN BFNP BFLN DANCP DANITS

Steady benchFile 96 119.50 1.79 18.65 27.40 7.51 221.24

Inconsistence benchFile 17 132.95 1.36 21.08 27.83 8.29 236.93

no_steady benchFile 94 127.45 1.61 16.12 27.89 8.69 448.60

diff (non-steady, Steady) 7.94 -0.17 -2.52 0.48 1.18 227.36

diff (non-steady, Inconsistence) -5.50 0.25 -4.95 0.05 0.40 211.67

Table 3: The average of static benchFile features and dynamic features for each of three benchFile category, and their comparison.

Confidence
(BMNFC_HIGH -> DNNSF_ZERO) 0.63

(BMNFC_AVERAGE -> DNNSF_LOW) 0.39

(BMLOC_HIGH -> DNNSF_ZERO) 0.61

(BMLOC_LOW -> DNNSF_LOW) 0.40

Table 4: List of associations and their confidence, found by
Apriori.

association between these two features, thus negating our third

assumption outlined in Section 3.2. However, the Table reveals as-

sociations among the remaining items. Two of these associations

exhibit a confidence level greater than 0.50, which will be discussed

in further detail in the following paragraphs.

Based on the first row of the Table, we can infer that there is an

association between benchMethods with a high number of function

calls and having zero number of non-steady forks. This correlation

has a confidence level of 0.63. The confidence level indicates that

there is a likelihood of 63% for a benchmark to be steady (with zero

number of non-steady forks) when the number of function calls for

its benchMethod is high. This supports our first assumption in 3.2.

As per the third row of Table 4, there is an association between

high number of lines of code in benchMethods and zero number of

non-steady forks. The confidence level of this association indicates

that a benchmark with a high number of lines of code is likely to

be steady (zero non-steady forks) with a likelihood of 61%. This

supports our second assumption of Section 3.2.

Although the associations in the second and last rows of Table 4

have a confidence level lower than 0.5, they provide supplementary

evidence to our findings by highlighting a correlation between

BMNFC, BMLOC with DNNSF.

FindingsOur study reveals a significant correlation between cer-
tain static features of the benchmark’s source code and the bench-

mark’s ability to reach steady state. These features are BMNFC

(number of function calls in the benchMethod) and BMLOC (num-

ber of lines of code in the benchMethod). The results indicate that

the higher the number of function calls and LOC a benchMethod

has, the more likely it is to reach steady state.

4 CONCLUSION AND FUTUREWORKS
The aim of this study was to investigate the potential correlation

between static features of a microbenchmark’s source code and

the microbenchmark’s ability to reach steady state. To achieve this,

we first expanded our primary dataset by extracting static features

and incorporating them into that. We then utilized manual and

descriptive data mining methods to identify and establish poten-

tial correlations. Our findings indicate that there is an association

between the microbenchmark’s ability to reach steady state and

two static features extracted from its source code (out of the 11

extracted), namely the number of function calls (BMNFC) and lines

of code (BMLOC). The greater values of these features, the greater

likelihood of reaching steady state. In future work, it may be bene-

ficial to investigate additional features representing different types

of function calls (e.g., system calls, threading, locks, etc.) to further

evaluate their impact on steady state.
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