
Identification and Classification of JMH Microbenchmark States
using Time Series Analysis

Tom Wallace
tw18dw@brocku.ca
Brock University

St. Catharines, Ontario, Canada

Beatrice Ombuki-Berman
bombuki@brocku.ca
Brock University

St. Catharines, Ontario, Canada

Naser Ezzati-Jivan
nezzati@brocku.ca
Brock University

St. Catharines, Ontario, Canada

ABSTRACT
The practice of microbenchmarking is very important for observing
the performance of code. As such, observing the states and anom-
alies experienced by the program during a benchmark is equally
important. This paper attempts to evaluate the effectiveness of the
matrix profile method when applied to analyse JMH benchmarks in
time series format, to determine if it is a viable alternative to proven
methods. We observe that, when using the matrix profile method,
there is a statistically significant difference between the results of
the analysis on steady state and non-steady state benchmarks. By
comparing results of the matrix profile method and the proven
changepoint analysis method, we are able to prove a stronger cor-
relation between the two when the benchmark tested is non-steady
state versus that of steady state.
ACM Reference Format:
Tom Wallace, Beatrice Ombuki-Berman, and Naser Ezzati-Jivan. 2023. Iden-
tification and Classification of JMH Microbenchmark States using Time
Series Analysis . In Companion of the 2023 ACM/SPEC International Confer-
ence on Performance Engineering (ICPE ’23 Companion), April 15–19, 2023,
Coimbra, Portugal. ACM, New York, NY, USA, 5 pages. https://doi.org/10.
1145/3578245.3584694

CCS Concepts
General and reference→Performance • Software and its engi-
neering→Software prototyping; Operational analysis; Software
defect analysis.

Keywords
ICPE Data Challenge, Time Series Analysis, Benchmarking, Steady-
State
1 INTRODUCTION
Microbenchmarking, the practice of testing the performance of one
or many small pieces of code, is a significant part of evaluating soft-
ware performance. When these pieces of code are run frequently
and repeatedly for every execution of a program, minimizing their
impact on the overall runtime is integral. The Java Microbench-
marking Harness (JMH) is one example of a microbenchmarking
framework, where various performance metrics such as throughput

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
ICPE ’23 Companion, April 15–19, 2023, Coimbra, Portugal
© 2023 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 979-8-4007-0072-9/23/04. . . $15.00
https://doi.org/10.1145/3578245.3584694

and average running time can be calculated from repeatedly run-
ning the code in question and measuring how long each iteration
takes to complete. [1]

JMH testing is designed with the idea that the initial runs of the
program are not indicative of its peak performance. The common
belief is that the program will, after a certain amount of runs, reach
what is called a steady state. To this end, JMH benchmarks are run
in two phases: A "warmup phase" for which the results will be
discarded, followed by the actual benchmark. Though the afore-
mentioned belief is true in many cases, research has shown that the
steady state will not always be reached when using default JMH
warmup settings, and manual estimations of the necessary length
of the warmup phase are often incorrect [1]. As a result, a common
point of research is the identification of whether a benchmark is
able to reach steady state.

The raw output of such benchmarks is most often in the form of a
time series: a sequential list of data values measuring the change in
a variable over a series of time or a number of iterations of a process.
In the case of JMH, it measures the runtime for each iteration of
the code execution. It is a very common form of measurement in
various fields of study, and its relative simplicity means that a wide
range of methods for their analysis have been developed. Through
our research questions, we aim to determine whether these methods
of analysis can be useful in observing the state of a JMH benchmark.
By applying the Matrix Profile technique and the pattern (motif)
recognition methods to a selection of both steady and non-steady
state benchmarks, we can compare the results observed in each type
of benchmark. We also observe the practicality and effectiveness
of these methods for performance anomaly detection. Finally, we
compare the results obtained by the Matrix Profile method to those
obtained through the Change Point Detection method, and attempt
to observe whether there is a meaningful correlation between each
method’s results.

Through our experiments, we are able to prove a statistically
significant difference between the matrix profile values observed in
benchmarks which are able to achieve steady state, and the values
observed in benchmarks which do not. Additionally, we provide
examples of matrix profile analysis which demonstrate its strengths
and weaknesses for the purpose of anomaly detection. Finally, we
observe that benchmarks which do not reach a steady state tend
to have a closer correlation between changepoints and the matrix
profile. Code used for this purpose along with a selection of raw
data is available on Github1.

1https://github.com/Tom-Wallace/patternReader

101

https://doi.org/10.1145/3578245.3584694
https://doi.org/10.1145/3578245.3584694
https://doi.org/10.1145/3578245.3584694
https://github.com/Tom-Wallace/patternReader

ICPE ’23 Companion, April 15–19, 2023, Coimbra, Portugal Tom Wallace, Beatrice Ombuki-Berman, and Naser Ezzati-Jivan

2 BACKGROUND & RELATEDWORK
2.1 Performance Anomalies
A performance anomaly within a program execution or benchmark
is an event which causes performance metrics and/or resource uti-
lization to leave the range of expected values. Their causes are
varied, but are most often due to bugs within the program, attempts
to use a large or complex workload, or problems with the hardware
itself. Whenever the cause is within the programmers’ power to fix,
it is highly important that they attempt to do so. As they are most
often characterized by a large spike or gradual increase in perfor-
mance metrics, they tend to be highly visible within performance
charts, and as such should be receptive to methods of time series
analysis [6].

2.2 Time Series Analysis
2.2.1 Motif Discovery via Matrix Profile. The Matrix Profile of a
subseries is a powerful tool for analysis. It consists of two parts;
the first, the distance profile, is a secondary time series calculated
using the time series to be analysed, and the second, the matrix
profile index (or just profile index), is an array of indices. Given
the main time series T and a window length m, the value at index i
in the Matrix Profile is calculated by comparing the subsequence
of T[i, i+1,..., i+m] to all other subsequences of length m using the
Euclidean distance, and taking the smallest distance found via this
process. The value at index i of the matrix profile array is the index
of the first member of the subsequence which had the smallest
distance.

Figure 1: Example of a time series with its matching Matrix Profile

As shown by Fig. 2, the two lowest values in the matrix profile
graph show the starting points of the twomost similar subsequences
within the time series, while the highest points in the graph signify
discords; Subsequences which are unique, potentially indicating an
anomaly. The natural extension of this process is to automatically
identify Motifs (or Patterns), which are similar shapes within the
time series.

2.2.2 Change Point Detection. Change Point Detection is an anal-
ysis method which seeks to separate a time series into distinct
phases, with the moment one phase ends and another begins being
referred to as a change point. The change points are found by find-
ing points in the time series where the data values observed shift
significantly. The presence of a change point generally designates
a point where the mean of the values before the change point is

significantly different from the mean of the values after. The PELT
algorithm is one method proposed to achieve this; Though it will
not always discover every admissable change point, it is reasonably
effective while achieving a linear computation time with respect to
the length of the time series. [2]

Figure 2: Example of change point detection, where each phase is
marked in alternating colours

2.2.3 RelatedWork. Apaper by Traini et al. [1] introduces the topic
of JMH state analysis and outlines current research on the subject.
In addition, they prove a number of discoveries by performing
experiments on a large portion of JMH time series files. These files
are provided freely for additional research, and are used for the
experiments performed for this paper. Barrett et al. [3] discuss how
frequently JMH benchmarks are able to reach steady state. They
conclude that at most, 43.5% of VM/Benchmark pairs are able to
consistently reach steady state. As a part of their research, they
define an automated method by which change point analysis may
be used to classify a benchmark as having reached a steady state.

3 METHODOLOGY
The research questions concern the previously mentioned forms
of time series analysis. In particular, we aim to discover the effec-
tiveness of the Matrix Profile & Change Point Detection methods
when applied to the analysis of JMH Benchmarks.

RQ1 How effective are Motif discovery and the Matrix Profile in
aiding identification of steady state/non-steady state benchmarks?

RQ2 How might Motif discovery and the Matrix Profile be used to
detect performance anomalies?

RQ3 How comparable are the results obtained by Motif discovery
versus Change Point Detection?

3.1 RQ1 - Motif Effectiveness
Comparisons will be made between the matrix profile graphs of
benchmarks which are known to be non-steady state and those
which are either steady state or ambiguous. We hypothesize that
the matrix profile of a program which frequently changes states
will capture these changes within the motif windows. Discords may
similarly be useful when a state is unique.

3.2 RQ2 - Anomaly Motifs
Performance anomalies tend to be easily visible when graphed
alongside the rest of the execution. For automating this process,
the matrix profile may be useful to identify significant differences
from normal execution. Discords will be the most useful when the
anomaly occurs once within the benchmark, while motifs may be
useful if it is repeated.

102

Identification and Classification of JMH Microbenchmark States using Time Series Analysis
ICPE ’23 Companion, April 15–19, 2023, Coimbra, Portugal

3.3 RQ3 - Motifs & Change Points
As a number of non-steady state benchmarks tend to alternate be-
tween similar ranges (as seen in Fig. 2), it will be observed whether
the Matrix Profile approach is able to observe motifs at approxi-
mately the same locations where change points occur.

4 EXPERIMENTAL SETUP
In each analysis of the Matrix Profile, the open-source python
library Stumpy[4] is utilised. Changepoint analysis uses the open-
source python library Ruptures[5]. All analysis is performed on
randomly sampled benchmark data from the dataset provided by
Traini et al [1].

4.1 RQ1
A portion of 497 steady state and 235 non-steady state benchmark
forks will be identified and analysed, using changepoint analysis
alongside a classification algorithm defined by Barrett et al.[3]. As
benchmarks reach steady state in most cases, there will be more
samples for such benchmarks. The minimum, maximum, and mean
of each benchmark’s matrix profile will be recorded and compared.
Each set of measurements will be compared using a Two-sample
T-Test assuming unequal variance to determine whether there is
a statistically significant difference. The null hypothesis of these
tests is that there will be no difference.

4.2 RQ2
This question is more difficult to definitively test, as information on
whether an anomaly occurs in a benchmark is not provided, nor is it
easily definable. Nevertheless, we may still test whether the matrix
profile can be used to identify performance patterns commonly
associated with anomalies; large spikes and large increases. After
obtaining the matrix profile, the mean and standard deviation of the
entire time series will be compared to those of the two identified
motif windows and the discord window. If the mean of one of
these windows differs from the mean of the time series by at least
one time series standard deviation, or by two time series standard
deviations, we can reasonably suspect an anomaly. If the standard
deviation of one of the windows is at least two times larger than
that of the time series, we can suspect a large spike. If any of these
windows occur within the first 30 iterations, we can safely dismiss
any performance difference as warmup time.

4.3 RQ3
It is already proven that change point detection can be applied
to determine whether a benchmark is able to reach steady state
[3]. Using this method, a number of benchmarks will be identified
and sorted based on whether they reach steady state. Then, each
benchmark will be visualized, displaying motifs/discords and the
changepoints on the same graph, with the matrix profile below. The
benchmarks will then be further sorted depending on the correla-
tion between changepoint locations and extremities on the matrix
profile. This is achieved using an automated scoring system.

For every changepoint in a benchmark fork, the system will
check if it is within the window of the two motifs or the discord. If
it is, a point will be counted. If there are more than 8 changepoints,
a point is removed, with an extra half point removed for every

changepoint after. A benchmark with a large number of change-
points may have more changepoints fall within motif windows
simply by coincidence; the removal of points lessens the impact
of such coincidences on the overall results. A score of less than 1
implies no evident connection, with such benchmarks being desig-
nated as having ’No correlation’. A benchmarkwith a score between
1 and 2 can be designated as ’Potentially correlated’. A benchmark
with a score of 2 or higher is classified as having a ’Noticeable
correlation’.

5 RESULTS
5.1 RQ1

Figure 3: Results of T-Tests for comparison between steady state and
non-steady state Matrix Profiles

The results of the described tests are shown in Fig. 3. In all
cases, the P value is less than the alpha (0.05) and the T stats are
larger than the T critical values, so we reject the null hypothesis (0
difference). As such, it can be concluded that there is a meaningful
difference between the average values observed in the benchmarks
which reached steady state, and those which didn’t. Benchmarks
which reach steady state have matrix profiles with lower minimums,
maximums and means than benchmarks which do not.

5.2 RQ2
Thematrix profile is able to recognize isolated anomalies and spikes,
an example of which can be seen in Fig. 4.

However, a major downside is that there is significant potential
for blind spots with this method. If a majority of the benchmark
is in an anomalous state, using the mean to identify anomalies
would result in none being found, as the mean under the anom-
aly dominates the overall mean and standard deviation. Another
potential problem stemss from the matrix profile increasing and
decreasing based on similarity; it may prioritize spikes over sus-
tained increases in performance when both are present. This effect,
as shown in Fig. 6, could be lowered by increasing the sizes of
the comparison windows, or increasing the number of discords to
analyse. In summary, this detection method shows some promise,
but likely requires some tweaking to mitigate its shortcomings and
achieve useful results. Future tests should compare the results of
using different comparison windows for the same benchmark, dif-
ferent classification functions, and/or by increasing the number of
motifs/discords to be analysed.

103

ICPE ’23 Companion, April 15–19, 2023, Coimbra, Portugal Tom Wallace, Beatrice Ombuki-Berman, and Naser Ezzati-Jivan

Figure 4: An example of a detected spike at the discord, marked by
the red line.

Figure 5: An example of a situation where minor spikes are
detected, but other anomalous behaviour is not.

Correlation Steady
State

Steady
State (%)

No Steady
State

No SS
(%)

None 123 40.32% 44 23.78%
Potential 123 40.32% 93 50.27%
Noticeable 59 19.34% 48 25.94%
Total 305 185
Table 1: Comparisons of JMH Benchmark types based on

correlation of matrix profile and changepoints

5.3 RQ3
As depicted in table 1, the matrix profile and changepoints have
a stronger correlation in the benchmarks which do not reach a
steady state. It should be noted that the increase in the percentage
of noticeable correlations is only relatively minor, and most of the
increase is in the potential correlation category. As a result, it would
likely require a more comprehensive study to determine the exact
relationship between the two measurements.

6 THREATS TO VALIDITY
Coding
It is possible that, in translating the steady state detection function
described by Barrett et al. [3] to Python, there were some mistakes
made and/or inconsistencies (different changepoint detection meth-
ods and/or storage of changepoints) that affected the results of
classifications.

Evaluation
We note that some of our evaluation methods are not directly indica-
tive of a method’s quality, and in the case of RQ2, merely qualitative.

7 CONCLUSIONS
The experiments show that, with some changes and improvements,
the matrix profile and changepoint analysis methods show good
potential in assessing the state of JMHMicrobenchmarks. Although
they have a good degree of versatility, it will take further research to
determine whether they will be able to achieve results as desirable
as the current industry standard.

ACKNOWLEDGMENT
The support of the Natural Sciences and Engineering Research
Council of Canada (NSERC) is gratefully acknowledged.

104

Identification and Classification of JMH Microbenchmark States using Time Series Analysis
ICPE ’23 Companion, April 15–19, 2023, Coimbra, Portugal

REFERENCES
[1] L. Traini, V. Cortellessa, D. Di Pompeo, and M. Tucci, “Towards effective assess-

ment of steady state performance in Java software: Are we there yet?,” Empirical
Software Engineering, vol. 28, no. 1, 2022. https://doi.org/10.1007/s10664-022-
10247-x

[2] R. Killick, P. Fearnhead, and I. A. Eckley, “Optimal detection of changepoints with
a linear computational cost,” Journal of the American Statistical Association, vol.
107, no. 500, pp. 1590–1598, 2012. https://doi.org/10.1080/01621459.2012.737745

[3] E. Barrett, C. F. Bolz-Tereick, R. Killick, S. Mount, and L. Tratt, “Virtual ma-
chine warmup blows hot and cold,” Proceedings of the ACM on Programming

Languages, vol. 1, no. OOPSLA, pp. 1–27, 2017. https://doi.org/10.1145/3133876
[4] S. M. Law, ‘STUMPY: A Powerful and Scalable Python Library for Time Series

Data Mining’, The Journal of Open Source Software, vol. 4, no. 39, p. 1504, 2019.
[5] C. Truong, L. Oudre, N. Vayatis, "Selective review of offline change point detection

methods," Signal Processing, 167:107299, 2020.
[6] C.-C. M. Yeh, Y. Zhu, L. Ulanova, N. Begum, Y. Ding, H. A. Dau, D. F. Silva, A.

Mueen, and E. Keogh, “Matrix profile I: All pairs similarity joins for time series:
A unifying view that includes motifs, discords and shapelets,” 2016 IEEE 16th
International Conference on Data Mining (ICDM), 2016.

105

	Abstract
	1 Introduction
	2 Background & Related Work
	2.1 Performance Anomalies
	2.2 Time Series Analysis

	3 Methodology
	3.1 RQ1 - Motif Effectiveness
	3.2 RQ2 - Anomaly Motifs
	3.3 RQ3 - Motifs & Change Points

	4 Experimental Setup
	4.1 RQ1
	4.2 RQ2
	4.3 RQ3

	5 Results
	5.1 RQ1
	5.2 RQ2
	5.3 RQ3

	6 Threats to Validity
	7 Conclusions
	References

