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ABSTRACT
We propose an incremental change detectionmethod for data center
(DC) energy efficiency metrics and consider its application to the
power usage efficiency (PUE) metric. In recent years, there is an
increasing focus on the sustainability of DCs and PUE is playing
an important role to evaluate the DC’s energy efficiency. Publicly
reported PUE values are mostly calculated over a whole year as
there are many fluctuations caused by outside influences as outdoor
air temperature (OAT). In this paper, we propose a method to detect
short-term changes in the DC energy efficiency (e.g., PUE) , while
considering outside influences (e.g., OAT) observing related daily
aggregatedDC data.We also conduct a few preliminary experiments
for PUE change detection based on real-world DC data, where
we have manually labeled changes in the PUE using visualization
tools. The experimental results show that the method can detect
important major and minor changes in the PUE with a very low
false positive rate. However, due to the small number of positive
labels, the recall rate is currently between 57% and 70%. Further
investigation is necessary to see how representative the current
recall rates are and what kind of improvements are necessary to
make the change detection method more stable.

CCS CONCEPTS
• Computing methodologies → Learning linear models; •
Information systems → Data analytics; Data centers.
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1 INTRODUCTION
With the globally increasing demand in digital services, the data
center (DC) market has kept growing rapidly over the past decade
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and further demand surge is expected in the future. The growth of
DCs in scale and number causes an impact on the global electricity
usage, where DCs currently consume approximately 1% of the total
global electricity and this proportion likely will rise in the future [9].
Therefore, there is an increasing pressure on DCs to become more
sustainable and many of the leading DC operators invest in on-
going efforts to be more sustainable by investments in renewable
energy and improvements of energy efficiency [11]. The leading
DC operators with full control over their DC hardware were able to
achieve carbon neutrality and good energy efficiency based on their
sustainability efforts. However, other DC operators, e.g., operators
of multi-tenant DCs, struggle more to reach their sustainability
goals due to lack of control over the whole DC hardware or lack of
data availability to do deep analysis of DC operations.

Many energy benchmarking metrics are provided in the litera-
ture that support DC operators in evaluating their DC performance
on the level of the whole DC as well as individual systems [13]. One
of the most industry-preferred metrics is the power usage efficiency
(PUE) [2] that measures the DC infrastructure energy efficiency
and many DC operators report PUE values publicly. PUE is defined
by

𝑃𝑈𝐸 =
𝑇𝑜𝑡𝑎𝑙𝐹𝑎𝑐𝑖𝑙𝑖𝑡𝑦𝐸𝑛𝑒𝑟𝑔𝑦

𝐼𝑇𝐸𝑞𝑢𝑖𝑝𝑚𝑒𝑛𝑡𝐸𝑛𝑒𝑟𝑔𝑦
, (1)

where the total energy involves all DC facilities including cooling
and power provision system infrastructure as well as other support-
ing infrastructure, e.g., lighting. On the other hand, IT equipment
energy is limited to IT-related infrastructure like network devices,
storages, and servers. PUE is widely used as a metric to compare
the infrastructure power efficiency of different DCs. Highly effi-
cient DCs can achieve PUE values around 1.1 [8], but the average
reported DC PUE was 1.58 in 2020, which is only marginally better
than 7 years earlier [10]. The PUE metric is based on the idea that
the supporting infrastructure’s energy usage should be as low as
possible compared to the IT equipment energy, and the theoreti-
cally best achievable PUE value is 1.0 meaning that all energy in
the DC is consumed only by the IT equipment. Therefore PUE is
not accounting for the energy efficiency of the IT equipment but
only for the efficiency of DC’s supporting infrastructure [14].

In this paper, we propose an incremental change detectionmethod
that is designed with PUE in mind, but application to other effi-
ciency metrics is possible in the future. Publicly reported PUE val-
ues are mostly average values aggregated over longer time periods,
like a whole year, or even spatially over several DC locations. One
important reason for the often-practiced long-term aggregation
of PUE values is to account for all observable weather conditions
in different seasons giving. Therefore, long-term PUE calculation
draws an overall picture of the DC’s energy efficiency ignoring
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weather influences. However, we believe that observing PUE values
on a more frequent basis, e.g., daily, can give us new operational
insights. Unfortunately, detailed breakdowns of operational DC
data are not widely available in the literature. For instance, we
want to identify short-term changes in the energy efficiency that
have been caused by operational changes in the DC infrastructure.
Timely feedback about these changes, i.e., increasing or decreas-
ing PUE values, can support operators to continuously improve
their DC’s sustainability. We have observed real-world energy data
from a multi-tenant air-cooled DC, where sudden PUE changes are
likely caused by differences in the operational setup of the cool-
ing infrastructure or IT equipment usage rates. We have observed
some bigger PUE changes in the data that worsen energy efficiency
over longer time periods for up to a year. Early feedback of such
worsening efficiency use cases can help DC operators to investigate
performance inefficiencies sooner.

To detect energy efficiency changes in a timely manner, we de-
sign our detection method to be incremental. The change detection
method uses a predictive model-based approach where first a ma-
chine learning (ML) model is learned and then based on a prediction
error it is decided whether a change has occurred or not. Prelimi-
nary experiments with real-world DC data show that the proposed
method can detect major and some minor changes in the PUE from
the data. However, not all changes are detected, and our current
recall rate is between 57% to 70% for three experiments with a rela-
tively small change sample size. On the other hand, there are only
two false positives detected over all three experiments where the
total time span for each experiment is 33 months.

The paper is divided as follows: in Section 2 we discuss back-
ground and related research, in Section 3 we introduce our proposed
methodology and in Section 4 we discuss preliminary experimental
results. Finally in Section 5 we give our conclusion and mention
future work.

2 BACKGROUND AND RELATED RESEARCH
2.1 Partial PUE
The PUE is generally comparing the total DC facility energy to the
IT equipment energy as defined in Equation 1. Depending on the
use case, it is however not always feasible or of interest to calculate
the PUE of the whole facility. Here, the Green Grid [2] addition-
ally introduced the partial PUE that is defined as the total energy
inside a boundary divided by the IT equipment energy inside the
same boundary. For our purpose, we are interested in detecting
energy efficiency changes within less aggregated boundaries, e.g.,
server rooms, for the same DC facility. Therefore, we will use PUE
with the meaning of partial PUE for the rest of this paper. For our
experiments, we obtain real-world energy data from distribution
panels of a DC that are physically divided for IT equipment and
cooling energy consumption. Data from these panels doesn’t give
us complete information about the DC infrastructure energy con-
sumption, and therefore it is not possible to calculate completely
accurate partial PUE values but it gives us good approximations.
Examples of the PUE time series of our real-world dataset can be
observed in Figure 7 to 9.

Figure 1: Influence of OAT on PUE ([2]).

2.2 PUE and OAT Dependency
PUE is calculated based on the DC energy consumption and recent
estimates state that approximately 43% of the total facility energy is
consumed by cooling and power provision systems and the rest by
the IT equipment [12]. Since cooling energy consumption plays an
important role in calculating the PUE, it is not surprising that PUE
values are affected by outside influences, i.e., weather and especially
outdoor air temperature (OAT). Figure 1 shows the dependency of
PUE on OAT according to [2]. There are several related research
works ([15], [5], [16]), [3] where the influence of weather on energy
consumption is investigated.

In the scope of this paper, we consider the influence of OAT
on PUE as the most important factor. OAT measurements can be
either obtained from (DC-related) building management software
or from publicly available weather data. Since OAT may change
with the seasons, it can take up to 3 quarters of the year to observe
the whole spectrum of temperature values. However, in this paper
we want to propose an incremental change detection method that
can account for OAT influences on PUE using shorter time periods
of daily data. Therefore, our proposed method must work with
limited data that correctly models the dependencies between OAT
and PUE. The influence of OAT on PUE as shown in Figure 1 can be
depicted as approximately linear when IT load is relatively constant
and advanced features as free cooling are not considered. We were
able to confirm this assumption by investigating our real-world DC
energy consumption dataset.

2.3 Related Work
A broad corpus of change (point) detection methods can be found
in the literature employing different supervised and unsupervised
methods [1] or time series analyses including spectral and wavelet
analysis [7]. One reason for this vast amount of literature is that the
most appropriate change detection method is highly dependent on
the actual change detection problem. In our case, we want to detect
changes in a PUE time series with daily frequency, but under the
consideration of OAT influences and the constraint of limited data.
Therefore, we decided to propose a change detection method using
a predictive model-based approach. This type of approach relies
on the estimation of a predictive model from a change-free dataset
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Figure 2: Overview over the main processing steps of the
proposed change detection method.

and then monitors the discrepancies between model prediction
outputs and real observations with a change detection test (CDT)
[4]. We found several examples of ML-based PUE prediction in the
literature, e.g., [6] and [17], which rely on deep neural networks
and large input feature dimensions to predict PUE. However due
to the considerations discussed previously, we decided to keep
this preliminary study simple assuming an approximately linear
relationship between OAT and PUE and using a light weighted
linear regression predictive model for the change detection. We
assume that change is defined as a sufficiently big gap between two
distributions of the OAT to PUE linear relationship. Examples of
this will be discussed later in Section 4.

3 METHODOLOGY
We propose a change detection method for DC power efficiency
metrics with focus on PUE in this preliminary study. As mentioned
in Section 2, PUE is influenced by the weather, e.g. outdoor air
temperature (OAT). Therefore, we propose tomodel the dependency
of PUE on OAT with ML predictive models, here linear regression
as we assume a linear dependency, and then conduct a change
detection test (CDT) based on the prediction error. We design the
method to be incremental for continuous change detection. A simple
overview of the proposed method is shown in Figure 2 and the
details for each step are explained in the following three sections:
data preparation in Section 3.1, dependency modeling in Section
3.2, and change detection in Section 3.3.

3.1 Data Preparation
Here, we discuss considerations for data preparation so that the
data can be used by our incremental change detection method.

3.1.1 Data grouping. First, we prepare the data so that it is grouped
by the spatial granularity of interest (e.g., whole DC, server room,
rack-level, etc.) and aggregated to the time frequency of interest
(e.g., 15 minutes, 1 hour, 6 hours, 1 day, etc.). For this step, detailed
information about the setup of the DC is necessary.

3.1.2 Time Window Handling. Secondly, we split our data into
time windows with the window length 𝑛. Furthermore, we assign
at each processing time step 𝑡 one or more time windows to one of
the following three categories: training-use, validation-use and test-
use. The training-use windows are used for training the machine
learning model (for this paper: a linear regression model). The test-
use windows are used for calculating the prediction error and then

Figure 3: Incremental window-based updates over processing
time steps.

conducting a change detection test. The validation-use windows
have been observed and tested on change at the previous processing
time step and are now used to update the control limits of the change
detection test. Then an input feature vector at processing time step
𝑡 is ®𝑥𝑡 that can be further split into ®𝑥𝑡𝑟𝑎𝑖𝑛 (𝑡 ) , ®𝑥𝑣𝑎𝑙𝑖𝑑 (𝑡 ) and ®𝑥𝑡𝑒𝑠𝑡 (𝑡 )
respectively. Similarly, an output feature vector ®𝑦𝑡 can be defined.
In the scope of this paper, we have decided to assign four windows
for training-use, one window for validation-use and one window
for test-use. An example of the incremental window updates is
shown in Figure 3. Here, we can observe how the differently shaded
windows move over the three processing time steps 𝑡 , 𝑡 + 1 and 𝑡 + 2
every time we observe a new window of length 𝑛.

3.2 Dependency Modeling
We train a ML predictive model to learn the dependencies between
PUE and its influencing factor (OAT). As discussed in Section 2, the
influence of OAT on PUE is approximately linear when ignoring
advanced technologies as free cooling. Therefore, we use linear
regression (LR) modeling in this initial study, but other non-linear
modeling approaches, e.g., deep learning models or support vector
machines, could be tested in the future. Considering that frequent
model updates are necessary after change was detected, a light-
weight approach like LR modeling also seems preferable.

Another challenge is to model OAT to PUE relationship as ac-
curate as possible with small time periods of data, because the full
scale of the temperatures is normally only observed over three
quarters of a whole year. Here, we use our previously proposed
data differencing step before training the LR model that can better
model underlying relationships regardless of an overall trend [3].
Each feature dimensions of the data has sequential measurements
𝑥1, ..., 𝑥𝑠 that can be differenced by

∇𝑚𝑥𝑠 = 𝑥𝑠 − 𝑥𝑠−𝑚 . (2)

The difference between a sequential step 𝑠 and a previous step 𝑠 −𝑚
is calculated, where𝑚 is an arbitrary number. The differencing step
ensures that the LR model learns how much the value change of the
independent input (OAT) between two steps 𝑠 and 𝑠−𝑚 has affected
the value change of the dependent output (PUE) without involving
numerical effects of any baseline trend changes. It therefore also
helps to ensure that the training data is change free.

Subsequently, the LRmodel is trained on the differenced training-
use window data with OAT as input and PUE as output. Therefore,
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all model prediction outputs are differenced values, and it is nec-
essary to return them to raw values. To avoid the inclusion of
any newly observed information into the model predictions, we
use train data averages to return differenced to raw values for the
validation-use and test-use window data. Here, we calculate the
average from the latest training time window as baseline values
𝑥𝑡𝑟𝑎𝑖𝑛 (𝑡 ) , 𝑦𝑡𝑟𝑎𝑖𝑛 (𝑡 ) . The baseline values can then be used to obtain
differenced data for the input vector ®𝑥𝑣𝑎𝑙𝑖𝑑 (𝑡 ),𝑡𝑒𝑠𝑡 (𝑡 ) by calculating

∇®𝑥𝑣𝑎𝑙𝑖𝑑 (𝑡 ),𝑡𝑒𝑠𝑡 (𝑡 ) = ®𝑥𝑣𝑎𝑙𝑖𝑑 (𝑡 ),𝑡𝑒𝑠𝑡 (𝑡 ) − 𝑥𝑡𝑟𝑎𝑖𝑛 (𝑡 ) , (3)

and return the output prediction 𝑦𝑣𝑎𝑙𝑖𝑑 (𝑡 ),𝑡𝑒𝑠𝑡 (𝑡 ) to raw values by

𝑦𝑣𝑎𝑙𝑖𝑑 (𝑡 ),𝑡𝑒𝑠𝑡 (𝑡 ) = ∇𝑦𝑣𝑎𝑙𝑖𝑑 (𝑡 ),𝑡𝑒𝑠𝑡 (𝑡 ) + 𝑦𝑡𝑟𝑎𝑖𝑛 (𝑡 ) . (4)

3.3 Change Detection Test
After obtaining PUE predictions 𝑦𝑣𝑎𝑙𝑖𝑑 (𝑡 ),𝑡𝑒𝑠𝑡 (𝑡 ) for the validation-
use and test-use windows using the LR model described in Section
3.2, we conduct a change detection test (CDT). The CDT is based
on the prediction error that is defined by

𝑒𝑟𝑟𝑣𝑎𝑙𝑖𝑑 (𝑡 ),𝑡𝑒𝑠𝑡 (𝑡 ) = ®𝑦𝑣𝑎𝑙𝑖𝑑 (𝑡 ),𝑡𝑒𝑠𝑡 (𝑡 ) − 𝑦𝑣𝑎𝑙𝑖𝑑 (𝑡 ),𝑡𝑒𝑠𝑡 (𝑡 ) . (5)

The prediction error values are then compared to some upper and
lower control limits (UCL and LCL) of the CDT to detect potential
changes. The UCL and LCL for the current time step 𝑡 are calculated
based on the validation-use window by

𝑈𝐶𝐿𝑡 , 𝐿𝐶𝐿𝑡 = ¯𝑒𝑟𝑟 𝑣𝑎𝑙𝑖𝑑 (𝑡 ) ± 𝑘 ∗ 𝑠𝑡𝑑𝑣𝑎𝑙𝑖𝑑 (𝑡 ) , (6)

where ¯𝑒𝑟𝑟 𝑣𝑎𝑙𝑖𝑑 (𝑡 ) is the sample mean and 𝑠𝑡𝑑𝑣𝑎𝑙𝑖𝑑 (𝑡 ) is the sample
standard deviation of 𝑒𝑟𝑟𝑣𝑎𝑙𝑖𝑑 (𝑡 ) . 𝑘 is a parameter that defines how
many standard deviations from the mean the control limits are set.
Here, we only use the validation-use window data that previously
was observed as test data and where no major changes were de-
tected, therefore making it suitable for control limit updates. This
also avoids using training-use windows to obtain control limits
since training data is often overfitted to the prediction model and
can’t give accurate information about prediction performance for
unseen data.

Furthermore, previous observation of UCL and LCL are incorpo-
rated in the control limit update at time step 𝑡 by calculating the
exponentially weighted moving average (EWMA):

𝐸𝑊𝑀𝐴𝑡 = 𝜆 ∗ 𝑟𝑡 + (1 − 𝜆) ∗ 𝐸𝑊𝑀𝐴𝑡−1 . (7)

Here, the current value 𝑟𝑡 would be either𝑈𝐶𝐿𝑡 or 𝐿𝐶𝐿𝑡 and the pre-
vious EWMA at time step 𝑡 − 1 would be denoted by𝑈𝐶𝐿𝐸𝑊𝑀𝐴𝑡−1
or 𝐿𝐶𝐿𝐸𝑊𝑀𝐴𝑡−1 . We then newly obtain the two control limits
𝑈𝐶𝐿𝐸𝑊𝑀𝐴𝑡

and 𝐿𝐶𝐿𝐸𝑊𝑀𝐴𝑡
. 𝜆 is a parameter that defines the pro-

portion of forgetting old information. With this additional step we
ensure incremental updates of the two control limits.

The previously calculated prediction error vector for the test-use
window 𝑒𝑟𝑟𝑡𝑒𝑠𝑡 (𝑡 ) is then compared to𝑈𝐶𝐿𝐸𝑊𝑀𝐴𝑡

and 𝐿𝐶𝐿𝐸𝑊𝑀𝐴𝑡

by observing the following conditions

𝑒𝑟𝑟𝑡𝑒𝑠𝑡 (𝑡 ) > 𝑈𝐶𝐿𝐸𝑊𝑀𝐴𝑡
, (8)

𝑒𝑟𝑟𝑡𝑒𝑠𝑡 (𝑡 ) < 𝐿𝐶𝐿𝐸𝑊𝑀𝐴𝑡
. (9)

The goal is to detect a change when a certain amount of error values
are above or below the control limits. To avoid a high sensibility to
shorter fluctuations in the data or other outliers, the total amount
of error values exceeding the control limits should exceed a greater
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Figure 4: Observable changes in distribution with big and
small gap.
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Figure 5: Observable changes in distribution with clean tran-
sitional period.

percentage of the whole window length. This could be for example
half the window size, i.e. 50% of the prediction errors are exceeding
the control limits.

4 EXPERIMENTAL RESULTS
We conducted some preliminary experiments for our proposed
method using real-world DC data. The observed data is from a
multi-tenant DC with air-based cooling where energy consumption
can be observed at the distribution panel level. In this DC, the power
distribution panels are mostly shared by several server rooms and
therefore we aggregate DC energy consumption data into “server
room groups” in the spatial context and to a daily sampling fre-
quency in the temporal context. In the scope of this experiment,
we use data from three "server room groups" that will be called
"server room 1", "server room 2" and "server room 3" for simplic-
ity. Since the real-world data has no readily available labels for
observed changes, we manually investigated the data and labeled a
few change points by hand. We then evaluate the proposed method
on whether it can detect the manually labeled changes. The results
are discussed in the following sections.

4.1 Manually labeled changes
First, we explain how we manually detected changes and labeled
them. Here, we observe the data distribution in a two-dimensional
space by plotting the OAT against PUE for smaller time periods
of several weeks to several months with different color schemes
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Figure 6: Observable changes in distribution with unclean
transitional period.

Table 1: Parameter settings for the change detection method.

Parameter Symbol Value

Window size 𝑛 15 days
Control limit deviation 𝑘 3

EWMA updates 𝜆 0.1

and see if there are distinctive changes in the distribution so that
these are separable by time. An example of a large sudden change
in distribution that is cleanly separable by time is shown in Figure
4 between time period 1 and time period 2, 3 . For this plot we can
also observe that there is a second smaller change from time period
2 to time period 3 (both are spanning less than 2 months in time). A
second example of a change in distribution with a clean transitional
period is show in Figure 5, where time period 2 is a transitional
period. A third example in Figure 6 shows that these transitional
periods are not always clean, because during the two weeks long
time period 2, the data distribution is not cleanly separable between
the distributions of time period 1 and 3. It will be interesting to see
in the experiments whether our proposed change detection method
is able to accommodate such use cases or not.

4.2 Change Detection Results
Wehavemanually identified change points for three server rooms as
explained in Section 4.1 and will compare these to the automatically
detected change results obtained with our proposed method. The
parameter settings used for our proposed change detection method
are mentioned in Table 1. For each server room, we visually present
the automatic change detection results in Figures 7-9 with the actual
observed PUE in black, the predicted PUE for the test-use window
in orange and all time periods with detected change in red.

4.2.1 Server Room 1. As shown in Figure 7, server room 1 observes
a major change in PUE twice, first the PUE worsens in October
2020 and then improves again in October 2021. Here, we can as-
sume that the DC operator might have changed some operational
settings causing the major change in energy efficiency, i.e., PUE,
but somehow this went unnoticed. An automatic change detection
system could support DC operators here to be more sustainable.

Jan
2020

Jan
2021

Jan
2022

Jul Jul Jul

Time

1.2

1.3

1.4

1.5

1.6

1.7

P
U
E

Server Room 1

Observed PUE

Predicted PUE

Time Window with Change

Figure 7: Observed PUE and automatically detected changes
in server room 1.

Table 2: Manually detected changes for Server Room 1.

No. Change Date Comments

0 2020-03-05 Minor change
1 2020-05-23 Minor change
2 2020-10-29 Major change
3 2020-12-22
4 2021-02-04
5 2021-06-24 Minor change
6 2021-07-06 Same distribution as before 2021-06-24
7 2021-10-13 Major change
8 2021-12-21
9 2022-02-27
10 2022-08-02

Our proposed method was able to identify these major changes in
the PUE as well as more subtle changes at other time periods.

Table 2 shows the manually detected changes for server room
1. In total, we manually detected ten changes in the distribution,
where change no. 5 is a very minor change to a new distribution
followed by change no. 6 back to the old distribution of no. 4 after
2021-07-06. Also, we added a minor change no. 0 that is excluded
from the detection scope since it falls into the very beginning of
the observations and is not considered in any test window. It might
however influence the initially learned control limits negatively as
it falls into our first validation window causing UCL and LCL to be
set to more loose limits, and failing to detect change no. 1. On the
other hand, the detection method was able to detect changes no. 2,
4, 5, 6, 7, 8 and 10. The recall for this experiment is therefore 70%. In
addition, the method detected a false positive change in September
2021, which we did not identify with a change label manually. After
rechecking the data, we found a minor change in distribution for
a time period of 6 days at the very end of August 2021. It is likely
possible that this change might have triggered the change detection
method belatedly to falsely detect the change in September 2021
but we are still considering it a false positive.

4.2.2 Server Room 2. As shown in Figure 8, the PUE of server room
2 is very stable and shows no signs of drastic increase or decrease
over time. We can observe here that the PUE is increasing and
decreasing in correlation with the OAT, since this DC is placed in
a region where it is hot in summer and cold in winter. Neverthe-
less, there are three time periods where change is detected by our
proposed method. This compares to the three manually observed

5



ICPE ’23 Companion, April 15–19, 2023, Coimbra, Portugal. Jana Backhus & Yasutaka Kono

Jan
2020

Jan
2021

Jan
2022

Jul Jul Jul

Time

1.25

1.30

1.35

1.40

1.45

P
U
E

Server Room 2

Observed PUE

Predicted PUE

Time Window with Change

Figure 8: Observed PUE and automatically detected changes
in server room 2.

Table 3: Manually detected changes for server room 2.

No. Change Date Comments

1 2021-06-22
2 2021-10-01
3 2022-06-24 very minor change
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Figure 9: Observed PUE and automatically detected changes
in server room 3.

changes that are stated in Table 3. When we compare the change
detection results, we observe that our proposed method was able to
detect two out of three changes correctly. Therefore, the recall rate
is 66.7%. Only change no. 2 was not detected but instead another
change was detected earlier in time around August 2021. Even after
revisiting the data, we were not able to confirm any change in
August 2021. Therefore, we assume that the automatic change de-
tection method might have difficulties to recover after the recently
detected change no. 1 but further investigation is necessary. For the
false negative change no. 2, we can observe from Figure 8 that the
prediction error was not large enough to trigger the UCL or LCL.

4.2.3 Server Room 3. As shown in Figure 9, the PUE of server
room 3 is changing very drastically over time. Still our proposed
change method can detect changes of meaning without finding
any false positives. Compared to the manually detected changes
that are stated in Table 4, the proposed method was able to detect
change no. 1, 2, 4 and 6. That is a recall rate of 57%. For the three
changes no. 3, 5 and 7 that were not detected, we can observe a
deterioration of prediction performance in Figure 9, but apparently
it was not enough to trigger the control limits. We believe that
these changes could also be detected after further parameter tuning
and additional method improvements to better handle model and
control limit updates after changes are detected.

Table 4: Manually detected changes for server room 3.

No. Change Date Comments

1 2020-07-12 transition period until 2020-07-26
2 2021-04-16
3 2021-10-17
4 2021-11-20
5 2022-02-18
6 2022-03-26 first 4 days are on different scale
7 2022-07-06 transition period until 2022-07-13

4.3 Discussion
The experimental results for our three server rooms show that the
proposed method can detect many of the changes accurately with
just very few cases of false positives. The proposed method was
able to detect all major and some of the minor PUE changes. In
all experiments, we have observed some false negatives where the
proposed method was not able to detect changes even when deterio-
ration in the prediction performance could be observed. This might
be caused by differing overall prediction quality that affects the
control limits to be more loose or stricter. Therefore, the observed
recall rates are still quite low, but on the other hand the experi-
mental sample size is also quite small and further investigations in
additional experiments is necessary. In addition, the sensibility of
the change detection method should be investigated, and sensibility
guidelines could be provided in the future, especially regarding
parameter tuning. Other areas of improvements are the handling
of the model training and control limit updates after a change is
detected. For the practical use of our method, it is necessary to
establish fast recovery after change detection. We believe that our
current approach that relies on model training of differenced data
and baseline values is a first step in the right direction, but further
improvements are necessary.

5 CONCLUSION AND FUTUREWORK
In this paper, we proposed a change detection method for a DC
energy efficiency metrics, i.e., PUE. With this method, we observe
PUE values over shorter time periods with daily sampling frequency
and then automatically detect important changes in the DC energy
efficiency while considering outdoor air temperature (OAT) influ-
ences. The proposed method was tested in preliminary experiments
with real-world DC energy consumption data at a "server room
group" aggregation level and the results show that our method can
detect most of the important PUE changes in the data but further
improvements regarding recall quality are necessary. We believe
that this method will be helpful to provide feedback to DC operators
especially after operational setups in the DC have been changed,
since not all short-term energy efficiency changes can be obviously
observed from time series data as other influences as for example
OAT affect it.

In the scope of this paper, we concentrated on a simple real-world
DC use case without advanced technologies as e.g., free cooling,
and considerations for extended use cases remains future work.
Furthermore, the following list shows other future topics we want
to work on to improve our method:
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• Extended experiments with more data and improving recall
quality.

• Sensibility study of change detection method and tunable
parameters to provide user guidance.

• Application of method to other efficiency metrics.
• Testing other predictive non-linear ML models.
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