
Studying the Performance Risks of Upgrading Docker Hub
Images: A Case Study of WordPress

Mikael Sabuhi, Petr Musilek, Cor-Paul Bezemer
Department of Electrical and Computer Engineering, University of Alberta, Edmonton, Canada

{sabuhi,pmusilek,bezemer}@ualberta.ca

ABSTRACT
The Docker Hub repository contains Docker images of applica-
tions, which allow users to do in-place upgrades to benefit from
the latest released features and security patches. However, prior
work showed that upgrading a Docker image not only changes
the main application, but can also change many dependencies. In
this paper, we present a methodology to study the performance im-
pact of upgrading the Docker Hub image of an application, thereby
focusing on changes to dependencies. We demonstrate our method-
ology through a case study of 90 official images of the WordPress
application. Our study shows that Docker image users should be
cautious and conduct a performance test before upgrading to a
newer Docker image in most cases. Our methodology can assist
them to better understand the performance risks of such upgrades,
and helps them to decide how thorough such a performance test
should be.

CCS CONCEPTS
• Software and its engineering → Software performance.

KEYWORDS
Empirical Performance Analysis, Containerized Applications, De-
pendency Updates, Docker Hub.
ACM Reference Format:
Mikael Sabuhi, Petr Musilek, Cor-Paul Bezemer. 2022. Studying the Perfor-
mance Risks of Upgrading Docker Hub Images: A Case Study of WordPress.
In Proceedings of the 2022 ACM/SPEC International Conference on Perfor-
mance Engineering (ICPE ’22), April 9–13, 2022, Bejing, China. ACM, New
York, NY, USA, 8 pages. https://doi.org/10.1145/3489525.3511683

1 INTRODUCTION
The last decade has seen enormous advances in cloud computing,
such as faster development cycles, better security and a lower cost
of utilizing cloud-based resources. One core-enabling technology
for cloud computing is the containerization of applications. Most
modern cloud-based applications are dependent on many services
and applications. This dependency gives rise to several issues, e.g.,
a conflict between the dependencies, missing dependencies, and
platform differences [17]. A containerization technology, such as

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
ICPE ’22, April 9–13, 2022, Bejing, China
© 2022 Association for Computing Machinery.
ACM ISBN 978-1-4503-9143-6/22/04. . . $15.00
https://doi.org/10.1145/3489525.3511683

Docker, addresses these problems by packaging software code along
with its dependencies to run on any computing environment or in-
frastructure [10]. A containerized application runs in fully isolated
environments called containers.

The growth in the use of containerized applications has capti-
vated researchers’ attention to several aspects of this technology.
Most research in this field studies Docker containers and reposito-
ries from the security [3, 5, 24, 31] and storage management [25, 32]
perspective. For instance, Shu et al. [24] show that both official and
community images on Docker Hub have security issues, and that
the vulnerabilities propagate from parent images to the child im-
ages. Such security issues can often be addressed by upgrading the
Docker image. However, upgrading a Docker image may change
many dependencies at once. Gholami et al. [8] showed that a me-
dian of 8.6 dependencies change in one image upgrade. As prior
work showed that changes to dependencies can cause quality issues
for the software that depends on them [11, 18, 20], there is always
the challenge of deciding how a Docker image upgrade will affect
the quality of the containerized application.

One quality aspect that is increasingly important for modern
software is performance – Harman and Hearn even state that it
should now be considered “the new correctness” [9]. However,
performance testing is not a widely implemented practice in in-
dustry [1], or by developers [12] in general. Our hypothesis is that
the same applies to Docker images. While in cases, the individual
performance of the software components inside the image may
have been tested, their performance most likely has never been
tested when they operate in tandem.

In this paper, we propose a methodology for better understand-
ing the performance risks of upgrading a Docker image, thereby
focusing on its dependencies. We demonstrate our methodology
through a case study of a performance-critical application, Word-
Press. First, we conduct load tests on 90 images from the official
WordPress Docker Hub repository. These 90 images span a total of
27 WordPress versions with different combinations of dependen-
cies (i.e., ranging from PHP 5.6.x to PHP 7.x.x and from Apache
2.4.10 to 2.4.38). Second, we demonstrate how our methodology
can be used to investigate the changes in the performance of the
WordPress application between these images. We demonstrate our
methodology through the following research questions (RQs):

• RQ1: What is the impact of upgrading the Docker image of
WordPress on its performance?

• RQ2:What is the relation between the performance of the
WordPress application and updates of its dependencies?

Our case study shows how our methodology can be employed to
study the performance risks of a Docker image upgrade. For exam-
ple, our case study shows that WordPress users who are planning

Session 3: Empirical Studies of Performance ICPE ’22, April 9–13, 2022, Bejing, China

97

https://doi.org/10.1145/3489525.3511683
https://doi.org/10.1145/3489525.3511683

to upgrade their WordPress image with PHP version 5.x.x to 7.0,
can do so safely from a performance point of view.

2 BACKGROUND AND RELATEDWORK
Docker. As an open-source container system, Docker provides a
lightweight, low overhead, fast and efficient solution to implement
containerized applications [17]. Before Docker, installing, and de-
ploying software on different environments was a painstaking task.
Leveraging Docker, one can pull the application images from a
repository such as Docker Hub, or one can build their own image
and deploy it. Docker images consist of several layers. The first
layer is the base image, which is the foundation of the application.
Additional layers can be added on top of the base image. The in-
structions to create the image are specified in the Dockerfile, in
which each instruction corresponds to a layer in the image. This
Dockerfile can be used by others to recreate that Docker image
from a base image. A Docker container is a runnable instance of a
Docker image [2], which consists of all the required dependencies
required for an application to perform correctly.

With the increased use of Docker containers in the cloud, per-
formance evaluation of these containers is getting more attention.
While there are several studies on the performance of Docker [4,
7, 13, 22, 30], we are the first to study the performance impact of
upgrading Docker images.

Docker Hub. Docker Hub [6] is a repository for sharing Docker
images. In May 2021, Docker Hub hosted more than seven mil-
lion Docker images. These images are distributed using private or
public repositories, which provide a convenient way for software
versioning. Public repositories are divided into groups, namely,
official and community. Official repositories provide authentic re-
leases of the Docker image of an application since they are re-
viewed and published by a team that is sponsored by Docker Inc.
A Docker image can be retrieved from a repository by its tag. E.g.,
wordpress:5.2.2-php7.1-apache is a Docker image for Word-
Press version 5.2.2 with PHP version 7.1 and the latest supported
version of Apache. Many applications on Docker Hub provide con-
venience tags for their images, such as wordpress:latest, which
always points to the latest WordPress image.

Our Case Study Subject: WordPress. WordPress is an open-source
content management system (CMS) that is used by more than 35%
of all sites across the web [27]. As of May 2020, WordPress’ offi-
cial images were pulled more than 500 million times from Docker
Hub [6], which underlines the popularity of this CMS.

The results of a performance evaluation of dynamic and static
webpages by Tomisa et al. [26] indicate that WordPress-based web-
sites are performance-sensitive. Hence, an increasing number of
users of a website can lead to an unsatisfactory user experience
as the response time increases. The most critical factor for users
of a website from a performance perspective is the response time.
However, none of the WordPress images on Docker Hub mention
anything about their performance.

WordPress Docker images come in three variants on Docker
Hub: official images, images based on the Alpine Linux project, and
command-line interface (CLI) images. In this study, we focus on the
official images ofWordPress, e.g., wordpress:5.2.2-php7.1-apache.

Collecting Image Information For WordPress

Docker Hub
Repository

Collect WordPress
Docker image tags

Create the YAML
file

Deploy the
WordPress images

Identify the
application and

dependency versions

Deploying WordPress and Identifying Dependency Versions

Collecting And Analyzing Performance Data

Run the load test and
measure the response
time of the application

4,153 WordPress
Docker images

Filter the
WordPress Docker

images

165 filtered
WordPress

Docker images

Legend:
Process Output of

a Process
Process Flow

Collected performance
measurements Performance risk

analysis

Identified 90
application and

dependency versions

Figure 1: Overview of the empirical study design.

WhileWordPress indirectly depends on many applications and li-
braries, the Docker image varies only the Apache and PHP versions,
which are considered the main dependencies of WordPress [29].
Hence, in our study, we focus on these two dependencies. To run
WordPress, either MySQL or MariaDB is necessary as well. There-
fore, we need two containers for runningWordPress. One container
contains the Apache webserver and PHP with WordPress, and the
other container runs the MySQL database.

3 METHODOLOGY
In this section, we present our methodology for analyzing the
performance risks of upgrading Docker images. The steps of our
methodology are depicted by Fig. 1. We detail each step below.

3.1 Collecting Image Information for
WordPress

Collect WordPress Docker Image Tags: As the first step, a web crawler
was developed to automatically collect theWordPress Docker image
tags from the official WordPress Docker Hub repository1. Since
Docker images with a WordPress version before 4.7.2 did not have
information regarding the operating system and architecture or
were not working after deploying, we did not include them in our
data set.The crawler collected 4,153 WordPress Docker image tags,
including all different WordPress Docker images with different
operating systems and architectures.

Filter the WordPress Docker Images: Since not all collected Word-
Press Docker images are deployable on our available infrastructure,
we only included official Docker images that target the amd64 ar-
chitecture and depend on the Apache web server. After applying
these filtering criteria, we selected 165 WordPress Docker images to
conduct the performance test and identify the dependency versions.

1https://hub.docker.com/_/wordpress

Session 3: Empirical Studies of Performance ICPE ’22, April 9–13, 2022, Bejing, China

98

https://hub.docker.com/_/wordpress

WordPress.yaml Kube-API
Server

WordPress
Application +

Apache + PHP
MySQL

ContainerContainer

Kubernetes Node 1Cluster Master

Locust
Storing the

Measurement
Data

Container

Kubernetes Node 2

Figure 2: The deployment setup of the WordPress images.

3.2 Deploying WordPress and Identifying
Dependency Versions

In this section, we elaborate on the developed two-tier containerized
WordPress application and procedure to identify the application
and dependency versions at runtime.

We employed three Virtual Machines (VMs), namely Cluster Mas-
ter and Kubernetes Node 1 and 2. The VMs all had 2 vCPUs, 3.75GB
RAM, a 40 GB HDD and were running Ubuntu 1.16.3. All these
VMs are deployed on the Cybera cloud2 with the same resources
and configuration. Fig. 2 presents the overview of the Kubernetes
cluster. The cluster master manages the deployment of application
and services in a cloud environment. The first Kubernetes node
contains the WordPress application with the Apache webserver in
one container, and MySQL in another container. The second Kuber-
netes node, contains the Locust [14] application for load testing and
monitoring. The rationale behind using separate VMs for Locust
and the main application is that generating users adds overhead on
the running VM, which may affect the performance of the applica-
tion under study. The MySQL (version 5.6) and Locust versions are
kept constant throughout the experiment. We used MySQL version
5.6 because it is still one of the most used versions of MySQL3. The
WordPress images are changed through a configuration setting in
the YAML file, which is generated automatically. We allocated a 200
milli-core vCPU and 256MB of RAM for each WordPress container.

Deploy The WordPress Images: The created YAML file is sent to
the cluster master to control the Kubernetes orchestration platform
to first pull the Docker image from Docker Hub and then deploy
and run the WordPress application.

Identify the Application and Dependency Versions: To identify the
version used by the WordPress images, we used the “Wappalyzer”
library [28]. From all 165 images, 6 images could not be analyzed by
Wappalyzer and were removed from the data set. After identifying
the application and dependency versions of the WordPress Docker
images, we realized that some of the Docker images used conve-
nience tags for names and were using the identical dependency
versions. E.g., we identified 8 WordPress Docker images with Word-
Press version 5.3, Apache version 2.4.38 and PHP version 7.3.12, all
with different image names. Therefore, we removed 69 duplicate
images from our analysis. The complete list of included unique
WordPress Docker images with their corresponding dependency
versions is available online [23].

2https://www.cybera.ca/rapid-access-cloud/
3https://www.eversql.com/mysql-8-adoption-usage-rate/

3.3 Collecting and Analyzing Performance Data
Run the Load Test And Measure the Response Time of the Applica-
tion: To acquire the performance data, an extended version4 of
Locust [14] is used for load testing purposes. This extended version
can collect the data with a fixed sample rate and is able to calculate
the average response time of the application for these fixed time
windows. Furthermore, to send requests to the application and mea-
sure the performance metrics, we used the REST API of the load
testing tool. Our tool is publicly available online [23].

To measure the performance of each image, we introduced 20
users to the WordPress application through the Locust user genera-
tor, and then measured the response time of the application every
two seconds and for 5 minutes. We repeated this test 3 times for
every image to reduce the impact of variability in the cloud on our
measurements (see Section 6 for more details). After studying the
measurements, we observed that the measurements across the 3
executions were relatively stable. Therefore, we used only the mea-
surements from the first execution in our analysis. We refer to these
values as the average response times (RT) hereafter. The type of
the workload is a simple HTTP GET request to the main page of the
WordPress website. The motivation behind selecting such a simple
workload is to show that the performance can vary considerably
even with the simplest workload. The WordPress website is using
“Twenty Seventeen” as the default theme.

Performance Risk Analysis: Generally, the version number of soft-
ware follows the “MAJOR:MINOR:PATCH” semantic versioning
principle [19] (e.g. for version “7.2.15” 7, 2, and 15 are the major,
minor, and patch version of the application, respectively). Accord-
ing to the semantic versioning definition, major updates will make
incompatible API changes, minor updates will add functionality in
a backward-compatible manner, and patch updates make backward-
compatible bug fixes. Semantic versioning does not officially impose
restrictions on how the performance of an application can be af-
fected. However, our expectation is that because of themagnitude of
the changes in each type of version, we can use changes in version
numbers as a (rough) proxy for changes in performance. Based on
the semantic versioning principle, we group the images as follows:

• Patch groups: Images with the same major, minor and patch
version of an application. E.g., we group all the Docker im-
ages of WordPress with major version 4, minor version 8,
and patch version 1 into the same patch group (WordPress
4.8.1). This group contains 3 images with PHP versions 5.6.31,
7.0.23, and 7.1.9 and all with Apache version 2.4.10.

• Minor groups: Images with the samemajor andminor version
of an application. E.g., the WordPress 4.8.x minor group con-
tains all 12 images with major version 4 and minor version
8 of WordPress.

• Major groups: Images with the same major version of an
application.

We create patch, minor and major groups for WordPress itself,
and the two main dependencies of WordPress on which we focus
in this study (PHP and Apache). Note that we only have one minor
(2.4.x) and major (2.x.x) group for Apache.

4https://github.com/pacslab/pacs_locust

Session 3: Empirical Studies of Performance ICPE ’22, April 9–13, 2022, Bejing, China

99

https://www.cybera.ca/rapid-access-cloud/
https://www.eversql.com/mysql-8-adoption-usage-rate/
https://github.com/pacslab/pacs_locust

After conducting the load test on each WordPress Docker image,
we calculate the average response time for that WordPress Docker
image as explained above. To investigate the performance risks of
upgrading to that Docker image, we calculate the relative response
time by comparing the average response time of that Docker image
(RTver𝑛) to that of all images in the previous (RTver𝑛−1) patch, minor,
or major group, as shown in Equation 1.

RTRelativeImprovement (%) :
RTver𝑛−1 − RTver𝑛

RTver𝑛−1
(1)

If the relative improvement is negative, it means that the perfor-
mance has degraded; and if it is positive, there was an improvement
in the performance. E.g., upgrading a WordPress Docker image
from 4.9.1 to another image with WordPress 4.9.2 resulted in 75.5%
relative improvement, which means that this patch to patch up-
grade improved the average response time of the former WordPress
Docker image by 75.5%.

4 CASE STUDY RESULTS
In this section, we present the results of our case study in which
we apply our methodology for analyzing the performance risks of
upgrading Docker Hub images to the WordPress web application.
For each research question, we discuss the motivation, approach,
and results accordingly.

4.1 RQ1: What Is the Impact of Upgrading the
Docker Image of WordPress on its
Performance?

Motivation: Using Docker images allows users to upgrade an appli-
cation easily. However, instead of a careful, managed upgrade, one
may be dealing with an upgrade that changes many dependencies
as well. Prior work [8] showed that a median of 8.6 dependencies
change when a Docker image is upgraded. These changes may have
an impact on the main application’s performance. In this RQ, we
study how the performance of WordPress is affected by upgrading
its official image from Docker Hub.

Approach: We grouped the WordPress images in patch, minor
and major groups as explained in Section 3. We then conducted the
following analyses:

• Patch Version Analysis: In the patch version analysis, we
analyzed the distribution of the relative response time im-
provements as a consequence of upgrading from one patch
group to the next available patch group. We compute this by
taking the Cartesian product of the images in both groups
and computing the relative performance improvement ac-
cording to Equation 1 for each upgrade in that product. In
this analysis, we included upgrades from the last patch ver-
sion in a minor version to the first available version in the
next minor version (e.g., from WordPress 4.7.5 to 4.8), as this
would be the next ‘natural’ upgrade for that version.

• Minor Version Analysis: For the minor version analysis, we
analyzed the performance change after upgrading from all
images in a specific minor group (e.g., 4.8.x) to all images in
the next minor group (e.g., 4.9.x). Similar to the patch version
analysis, in this analysis, we included upgrades from the last

−300 −200 −100 0 100
Relative Response Time Improvement (%)

4.7.5
4.8

4.8.1
4.8.2
4.8.3

4.9
4.9.1
4.9.2
4.9.3
4.9.4
4.9.5
4.9.6
4.9.7
4.9.8

5
5.0.1
5.0.2
5.0.3

5.1
5.1.1

5.2
5.2.1
5.2.2
5.2.3
5.2.4

5.3
All

W
or

dP
re

ss
 P

at
ch

 to
 P

at
ch

 U
pg

ra
de

Figure 3: The distribution of relative response time improve-
ments for patch to patch upgrades of the WordPress applica-
tion images. The last box plot shows the distribution of rela-
tive response time improvements for all consecutive patch
to patch upgrades of WordPress Docker images.

minor version in a major version to the next major version
(e.g., from WordPress 4.9.x to 5.0.x).

• Major Version Analysis: In the major version analysis, we
study the effect of upgrading from all images in a specific
major version group (e.g. 4.x.x) to all images in the next
major version group (e.g. 5.x.x).

To compare the distributions of the patch to patch, minor to
minor and major to major upgrades, we employ the Mann-Whitney
U test [16] with an 𝛼-value of 0.05. The null hypothesis of this
statistical test is that the two input distributions are equal. If the
p-value of the test is smaller than 0.05, the null hypothesis is re-
jected andwe conclude that the difference between the distributions
is statistically significant. In addition, we quantify the difference
using Cliff’s Delta effect size [15]. We use the following thresh-
olds for Cliff’s Delta 𝑑 [21]: negligible(N) if |𝑑 | ≤ 0.147, small(S)
if 0.147 < |𝑑 | ≤ 0.33, medium(M) if 0.33 < |𝑑 | ≤ 0.474 and large(L)
if 0.474 < |𝑑 | ≤ 1. Due to space limitations, we published the aver-
age response times of the studied images online [23].

4.1.1 Patch Version Analysis of WordPress. In 158 out of 302
(52%) patch to patch upgrades, WordPress’ performance is
degraded. The last box plot in Fig. 3 shows all 302 possible consec-
utive patch to patch upgrades for the WordPress application. Fig. 3
shows that more than half of the possible patch to patch upgrades of
the WordPress Docker images resulted in performance degradation.
This finding shows that we cannot make accurate predictions about

Session 3: Empirical Studies of Performance ICPE ’22, April 9–13, 2022, Bejing, China

100

−400 −300 −200 −100 0 100
Relative Response Time Improvement (%)

4.8.x
4.9.x
5.0.x
5.1.x
5.2.x
5.3.x

All

W
or

dP
re

ss
 M

in
or

 to
 M

in
or

 U
pg

ra
de

Figure 4: The distribution of relative response time improve-
ments for minor to minor upgrades of the WordPress appli-
cation images.

the effect of doing an image upgrade on the performance of the
application based on the WordPress version of the image alone.

Atworst, a patch to patch upgrade of aWordPress image re-
sulted in 9% to 340% degradation in WordPress’ performance.
This degradation can be small such as when upgrading from Word-
Press 5.2.1 with PHP version 7.3.6 and Apache 2.4.25 to WordPress
5.2.2 with PHP version 7.1.32 and Apache version 2.4.38 (with a
performance degradation of 9%). The worst-case occurred when
upgrading WordPress 4.9.8 with PHP 7.2.12 and Apache 2.4.25 to
WordPress 5.0.0 with PHP version 5.6.39 and Apache 2.4.25 (with a
performance degradation of 340%). Clearly, not all of these upgrades
are intuitive ones (e.g., downgrading from PHP 7 to 5), but they do
demonstrate the problems that can occur when deciding to upgrade
solely based on the WordPress version in the image.

At best, a patch to patch upgrade resulted in a 5% to 77%
improvement in the performance of the WordPress applica-
tion. This improvement can be small (5%), such as upgrading from
WordPress 4.7.5 with PHP version 7.1.5 and Apache 2.4.10 to Word-
Press 4.8 with PHP version 7.0.21 and Apache version 2.4.10. The
improvement could also be large (77%), such as when upgrading
from WordPress 5.0.2 with PHP version 5.6.39 and Apache 2.4.25 to
WordPress 5.0.3 with PHP version 7.3.2 and Apache version 2.4.25.

4.1.2 Minor Version Analysis of WordPress. In 786 out of 1,218
(65%) minor to minor upgrades of WordPress, the average
response time is degraded. The last box plot in Fig. 4 shows
the relative average response time improvements for all possible
consecutive upgrades of the WordPress Docker image from a minor
version to the next minor version. E.g., we consider upgrading all
WordPress Docker images with minor version 4.7.x to 4.8.x and 4.8.x
to 4.9.x and so on, resulting in 1,218 possible upgrades. Fig. 4 shows
that 65% of these upgrades resulted in a lower performance than
the previous version. Comparing this finding with its patch to patch
counterpart, we observe that the risk of performance degradation is
13 percent points higher than a patch to patch upgrade, which was
52%. The Mann-Whitney U test shows that the performance risk
of a minor to minor upgrade without conducting a performance
test is significantly higher than for a patch to patch upgrade (albeit
with a negligible effect size).

In the worst case, a minor to minor upgrade of the Word-
Press image resulted in 32% to 354% degradation of Word-
Press’ performance. Fig. 4 presents the distribution of the relative

response time improvements when upgrading the WordPress ap-
plication from a minor version group to the next one. Fig. 4 shows
that doing minor to minor upgrades may result in large variations
in performance, for instance, upgrading to 4.8.x, 4.9.x, and 5.0.x
from their previous minor version groups. This degradation may
be small such as when upgrading from minor version 5.0.x to 5.1.x
(with a performance degradation of 32%). The worst-case occurred
when upgrading from minor version group 4.8.x to 4.9.x (which
resulted in a 354% degradation of the performance).

In the best case, minor to minor upgrades improved Word-
Press’ performance by 25% to 79%. Fig. 4 shows that there are
some minor to minor upgrades that considerably improve the per-
formance of the WordPress application. E.g., there was a minor
upgrade for the slowest WordPress Docker image in version 5.1.x
to 5.2.x that improved the WordPress application’s performance by
25%. Also, for a WordPress Docker image in version 5.0.x there was
an upgrade to version 5.1.x, which resulted in a 79% boost in the
performance.

4.1.3 Major Version Analysis of WordPress. Conducting a perfor-
mance test is essential for WordPress Docker images even in
amajor upgrade.Amajor upgrade can result in 400% performance
degradation or 78% performance improvement. Moreover, there is
a 58% chance of performance degradation. The boxplot of these
results can be found online [23].

The wide variation in relative response time improve-
ments for the studied upgrades indicate that it is hard to
predict how performance will be affected based on the
WordPress version in the image alone. This implies that
the performance of WordPress is mostly driven by other
components in the image.

Summary of RQ1

4.2 RQ2: What is the Relation Between the
Performance of the WordPress Application
and Updates of its Dependencies?

Motivation: The two major dependencies of WordPress are the
Apache web server and PHP. As we observed in RQ1, upgrading
the Docker image of WordPress may change these dependencies
as well, which could in turn affect the performance. In this RQ, we
analyze the impact of changes in the Apache and PHP versions on
the response time of WordPress.

Approach:We grouped the performance measurements of images
that use the same patch, minor or major versions of PHP or Apache,
as specified in Section 4.1. E.g., we grouped the average response
time of each Docker image of WordPress with PHP major version
5, minor version 6, and patch version 33 (5.6.33) in the PHP 5.6.33
patch group. We analyze these groups for both dependencies in a
similar fashion as to what was done for WordPress in Section 4.1.
Note that in our case study, we have no minor and major version
analysis for Apache due to the used Apache versions.

Session 3: Empirical Studies of Performance ICPE ’22, April 9–13, 2022, Bejing, China

101

−20 0 20 40 60 80
Relative Response Time Improvement (%)

5.6.31
5.6.32
5.6.33
5.6.35
5.6.36
5.6.37
5.6.38
5.6.39
7.0.16
7.0.19
7.0.21
7.0.23
7.0.25
7.0.26
7.0.27
7.0.29
7.0.30
7.0.31
7.0.32
7.0.33
7.1.05
7.1.07
7.1.09
7.1.11
7.1.12
7.1.13
7.1.14
7.1.16
7.1.17
7.1.19
7.1.20
7.1.24
7.1.25
7.1.26
7.1.27
7.1.29
7.1.30
7.1.32
7.1.33
7.2.01
7.2.02
7.2.04
7.2.05
7.2.07
7.2.08
7.2.12
7.2.13
7.2.15
7.2.16
7.2.18
7.2.19
7.2.22
7.2.23
7.2.24
7.2.25
7.3.02
7.3.03
7.3.05
7.3.06
7.3.09
7.3.10
7.3.11
7.3.12

All

PH
P

Pa
tc

h
to

 P
at

ch
 U

pg
ra

de

Figure 5: Distribution of relative response time improve-
ments for upgrading PHP to the next available patch version.

4.2.1 Patch Version Analysis of PHP. Upgrading to the next avail-
able PHP patch version degraded WordPress’ performance
in 71 (58%) out of 123 cases. The last box plot in Fig. 5 shows the
distribution of the relative average response time improvements
for all consecutive patch to patch upgrades of PHP. As the box plot
shows, 58% of the time, upgrading to the next patch version of PHP
degraded WordPress’ performance. The most severe degradation
after an upgrade was 25%, while the best upgrade resulted in 80%
improvement on the average response time.

4.2.2 Minor Version Analysis of PHP. Upgrading the minor ver-
sion of PHP in WordPress Docker images resulted in an im-
proved performance in 970 out of 1,474 (66%) cases. The last
box plot in Fig. 6 depicts the distribution of relative average re-
sponse time improvements when upgrading all WordPress Docker
images with the same PHP minor version to the next minor version
(1,474 possible upgrades). We observe that doing a minor to minor
upgrade is 58% more likely to result in performance improvement
than a patch to patch one. The Mann-Whitney U test confirms that
this difference is statistically significant, with a small effect size.

−80 −60 −40 −20 0 20 40 60 80
Relative Response Time Improvement (%)

7.0.x

7.1.x

7.2.x

7.3.x

AllPH
P

M
in

or
 to

 M
in

or
 U

pg
ra

de

Figure 6: Distribution of relative response time improve-
ments for a minor to minor upgrade for different minor
versions of PHP.

55 60 65 70 75 80
Relative Response Time Improvement (%)

7.x.x

PH
P

M
aj

or
 to

 M
aj

or
 U

pg
ra

de

Figure 7: The distribution of the relative response time im-
provements for all consecutive major to major upgrades of
PHP in WordPress Docker images.

In all studied WordPress Docker images, upgrading an
image with PHP minor version 5.6 to one with PHP 7.0 im-
proved the performance. Fig. 6 shows that for all 306 possible
upgrades from PHP version 5.6.x to 7.0.x, an improvement from 63%
to 80% was observed for the average response time. This finding
indicates that older minor versions of PHP suffered from a relatively
bad performance. Taken into account our other observations, we
can conclude that the main contributing factor to the performance
of WordPress images that use PHP 5.6.x was the PHP dependency.

4.2.3 Major Version Analysis of PHP. Performing a major to ma-
jor upgrade of PHP improved the performance of the Word-
Press application in all 1,241 cases. Fig. 7 shows the distribution
of the relative average response time improvements for all consecu-
tive major to major upgrades of PHP in WordPress Docker images.
Based on the studied WordPress Docker images, in all cases, this
upgrade had a positive impact on the performance. In other words,
selecting a randomWordPress Docker image that uses PHP version
5.x.x and upgrading that to another WordPress Docker image with
PHP major version 7.x.x resulted in performance improvements
ranging from 54% to 80%.

4.2.4 Patch Version Analysis of the Apache Web Server. Upgrading
to the next available Apache patch version improved Word-
Press’ performance in 1,183 (58%) out of 2,024 cases. Fig. 8
shows the distribution of relative average response time improve-
ments for all patch to patch upgrades of WordPress Docker images
with the same Apache patch version to the next patch version. Fig. 8

Session 3: Empirical Studies of Performance ICPE ’22, April 9–13, 2022, Bejing, China

102

−300 −200 −100 0 100
Relative Response Time Improvement (%)

2.4.25

2.4.38

All

Ap
ac

he
 P

at
ch

 to
 P

at
ch

 U
pg

ra
de

Figure 8: Distribution of relative response time improve-
ments for upgrading an Apache patch version to the next
available patch version.

shows that the chance of performance degradation is 42%, indicating
that it is more likely that a patch to patch upgrade of Apache version
improves the performance. However, these upgrades can result in
342% performance degradation or 79% performance improvement,
such as upgrading from Apache 2.4.10 to 2.4.25. Together with our
findings in the PHP analysis, we can conclude that it is hard to pre-
dict how upgrading an image will affect WordPress performance,
based on its Apache version.

It is hard to predict how upgrading a WordPress image
will change the performance, based on its WordPress or
Apache version. A major version upgrade of PHP con-
siderably improved WordPress’ performance in all cases,
implying that WordPress’ performance is highly depen-
dent on the PHP version.

Summary of RQ2

5 DISCUSSION
Below, we discuss the caveats of our methodology and we make
recommendations.

Caveat 1: The recommendations apply to the studied appli-
cation only.While we were able to extract several recommenda-
tions for the WordPress application (e.g., upgrades of images with
PHP 5.x.x to PHP 7.x.x always resulted in improved performance),
these recommendations apply to the WordPress application only.
Until there is a large body of performance measurements available
for Docker Hub images of many applications, the recommendations
of our approach can be applied to the studied application only. Our
vision is that through community effort (e.g., as described in Recom-
mendation 1 below), or a future large-scale study, broader-ranging
recommendations can be given.

Caveat 2: Collecting the performance measurements of
an application takes a considerable amount of time. While
the analysis step of our methodology is lightweight in terms of
computation, collecting the performance measurements takes a
relatively long time. The (short) performance tests that were con-
ducted during our case study took a total of approximately 3 days
to complete. For longer performance tests, or a larger number of

Docker images, this can be problematic. One could argue whether
doing such analysis is beneficial as compared to simply testing
the performance of the target image. However, as said above, it is
important to keep in mind that many developers and practitioners
prefer to avoid performance tests.

Recommendation 1: Docker Hub should allow users to
provide performance measurements of an image. During our
case study, we observed that none of the official WordPress images
mentioned anything about performance or response time. As a
result, users of such images have to either resort to other sources of
information, conduct their own performance tests, or simply take
a gamble in terms of performance when doing an image upgrade.
We recommend that Docker Hub provides a mechanism for sub-
mitting the results of performance tests of the offered images. In
addition, sensitive Docker images could include an easy way to
test the performance of the image. The analysis done through our
methodology can then offer insights for users who wonder about
the performance changes of upgrading to an image that does not
have performance measurements yet.

Recommendation 2: Semantic versioning should be ex-
tended to cover performance changes. At the time of writing,
the types of changes that are allowed by the semantic versioning
principle do not cover performance. However, as mentioned before,
performance is increasingly important for software and is consid-
ered ‘the new correct’ [9]. Hence, it is a missed opportunity that
changes to performance are not covered by semantic versioning.
During our case study, we observed that some recommendations
can be made for the WordPress application based on the versioning
of its dependencies (in particular, PHP). However, we expect that
such recommendations would be much stronger when supported
by the official semantic versioning specification.

6 THREATS TO VALIDITY
Internal Validity.One threat to internal validity is the short period
of load testing for each image. We emphasize that the goal of our
paper is not to provide a deep analysis of the performance of Word-
Press. Instead, we use WordPress to show how our methodology
can be used to study the performance risks of upgrading Docker
images of applications with several dependencies.

Another threat is the variability of measurements that are done
within a cloud environment. We tested the performance of the
images that had convenience tags and studied the variation between
the repeated measurements. E.g., if an image had its original tag
and three convenience tags, this allowed us to collect four times
three repetitions of the performance test of the same image. We
found that 95% of the duplicate images have less than ∼ 40 ms
standard deviation, which is small given that the average response
times are roughly between 400 and 1,000 ms. This shows that the
variations in the average response times of the duplicate images are
negligible and that the selected cloud environment did not impact
the performance test measurements.

Another threat to the internal validity of our findings is that
some of the studied upgrades are unlikely to be conducted in the
real world. For example, it may be unlikely that users of an image
with WordPress 4.x.x and PHP 7.x.x upgrade to an image with
WordPress 5.x.x and PHP 5.x.x. However, it is important to study

Session 3: Empirical Studies of Performance ICPE ’22, April 9–13, 2022, Bejing, China

103

such upgrades as well for two reasons: (1) users may have a very
specific reason for doing this upgrade (e.g., avoiding a vulnerability
in PHP 7.x.x), and (2) users may not be aware that they are also
changing the Apache version. While this change is described quite
clearly for WordPress, dependency changes for other applications
are much less obvious yet plentiful [8].

External Validity. In this study, we proposed a methodology to
study the performance risks of upgrading the Docker Hub image
of an application. The findings for the specific dependency ver-
sions apply to WordPress and its two main dependencies, PHP and
Apache only. Also, we relied solely on the average response time of
the application to draw conclusions about its performance. Many
other metrics exist that can be relevant to capture the performance
of an application. While our methodology is agnostic to the studied
performance metric and applications, future studies should further
our methodology in other settings.

7 CONCLUSION
In this paper, we propose a methodology to study the performance
risks of upgrading Docker Hub images. In our case study on 90
official Docker Hub images of theWordPress application, we demon-
strated how our methodology can help to analyze the performance
risks of Docker image upgrades. Ideally, the performance of an
image is thoroughly tested before it is being upgraded to. How-
ever, performance tests are not popular among developers [1, 12],
and they are hard to execute correctly. Hence, our expectation is
that many users of images from Docker Hub will conduct an im-
age upgrade without doing such performance tests. The goal of
our methodology is to give such users insights about the perfor-
mance change of doing an image upgrade without conducting a
performance test.

Our methodology can be beneficial for practitioners who wish to
be informed about the change in performance they can expect when
upgrading a Docker Hub image, without conducting a performance
test of that image themselves. In particular, we call upon the com-
munity to start collecting performance measurements for Docker
Hub images of a wide range of applications. These measurements
can then be collected into a performance repository, which in turn
can be leveraged by our methodology to provide recommendations
about the expected performance of Docker images for which no
performance measurements exist yet.

REFERENCES
[1] Cor-Paul Bezemer, Simon Eismann, Vincenzo Ferme, Johannes Grohmann, Robert

Heinrich, Pooyan Jamshidi, Weiyi Shang, André van Hoorn, Monica Villavicencio,
Jürgen Walter, and Felix Willnecker. 2019. How is Performance Addressed in
DevOps?. In ACM/SPEC International Conference on Performance Engineering
(ICPE). 45–50.

[2] Gaurav Bhatia, Arjun Choudhary, and Vipin Gupta. 2017. The road to Docker:
a survey. International Journal of Advanced Research in Computer Science 8, 8
(2017).

[3] Thanh Bui. 2015. Analysis of Docker security. arXiv preprint arXiv:1501.02967
(2015).

[4] Emiliano Casalicchio and Vanessa Perciballi. 2017. Measuring Docker perfor-
mance: What a mess!!!. In Proceedings of the 8th ACM/SPEC on International
Conference on Performance Engineering Companion. 11–16.

[5] Theo Combe, Antony Martin, and Roberto Di Pietro. 2016. To Docker or not to
Docker: A security perspective. IEEE Cloud Computing 3, 5 (2016), 54–62.

[6] Docker. 2021. The world’s leading service for finding and sharing container
images with your team and the Docker community. https://www.docker.com
Last accessed 2021-10-12.

[7] Wes Felter, Alexandre Ferreira, Ram Rajamony, and Juan Rubio. 2015. An updated
performance comparison of virtual machines and Linux containers. In IEEE
international symposium on performance analysis of systems and software (ISPASS).
IEEE, 171–172.

[8] Sara Gholami, Hamzeh Khazaei, and Cor-Paul Bezemer. 2021. Should you Upgrade
Official Docker Hub Images in Production Environments?. In ICSE New Ideas and
Emerging Results (NIER). 1–5.

[9] Mark Harman and Peter O’Hearn. 2018. From start-ups to scale-ups: Oppor-
tunities and open problems for static and dynamic program analysis. In 18th
International Working Conference on Source Code Analysis and Manipulation
(SCAM). IEEE, 1–23.

[10] IBM Cloud Education. 2020. Containerization. https://www.ibm.com/cloud/
learn/containerization Last accessed 2021-10-12.

[11] Noureddine Kerzazi and Bram Adams. 2016. Botched releases: Do we need to roll
back? empirical study on a commercial web app. In 23rd International Conference
on Software Analysis, Evolution, and Reengineering (SANER), Vol. 1. IEEE, 574–583.

[12] Philipp Leitner and Cor-Paul Bezemer. 2017. An exploratory study of the state of
practice of performance testing in Java-based open source projects. In ACM/SPEC
International Conference on Performance Engineering. 373–384.

[13] Ashish Lingayat, Ranjana R Badre, and Anil Kumar Gupta. 2018. Performance
evaluation for deploying Docker containers on baremetal and virtual machine. In
3rd International Conference on Communication and Electronics Systems (ICCES).
IEEE, 1019–1023.

[14] Locust. 2021. Locust - A modern load testing framework. http://locust.io/ Last
accessed 2021-10-12.

[15] Jeffrey D Long, Du Feng, and Norman Cliff. 2003. Ordinal analysis of behavioral
data. Handbook of psychology (2003), 635–661.

[16] H. B. Mann and D. R. Whitney. 1947. On a Test of Whether one of Two Random
Variables is Stochastically Larger than the Other. The Annals of Mathematical
Statistics 18, 1 (1947), 50 – 60. https://doi.org/10.1214/aoms/1177730491

[17] Dirk Merkel. 2014. Docker: lightweight Linux containers for consistent develop-
ment and deployment. Linux Journal 2014 (03 2014).

[18] Gianluca Mezzetti, Anders Møller, and Martin Toldam Torp. 2018. Type regres-
sion testing to detect breaking changes in Node.js libraries. In 32nd European
Conference on Object-Oriented Programming (ECOOP 2018). Schloss Dagstuhl-
Leibniz-Zentrum fuer Informatik.

[19] Preston-Werner, Tom. 2021. Semantic Versioning 2.0.0. https://semver.org/ Last
accessed 2021-02-18.

[20] Steven Raemaekers, Arie vanDeursen, and Joost Visser. 2017. Semantic versioning
and impact of breaking changes in the Maven repository. Journal of Systems and
Software 129 (2017), 140–158.

[21] Jeanine Romano, Jeffrey D Kromrey, Jesse Coraggio, Jeff Skowronek, and Linda
Devine. 2006. Exploring methods for evaluating group differences on the NSSE
and other surveys: Are the t-test and Cohen’s d indices the most appropriate
choices. In Annual Meeting of the Southern Association for Institutional Research.

[22] Bowen Ruan, Hang Huang, Song Wu, and Hai Jin. 2016. A performance study of
containers in cloud environment. In Asia-Pacific Services Computing Conference.
Springer, 343–356.

[23] Mikael Sabuhi, Petr Musilek, and Cor-Paul Bezemer. 2021. Docker Image
Performance Risk Analysis. https://github.com/asgaardlab/wip-21-Mikael-
DHPanalysis-code. Online; accessed 28 July 2021.

[24] Rui Shu, Xiaohui Gu, and William Enck. 2017. A study of security vulnerabilities
on Docker Hub. CODASPY - Proceedings of the 7th ACM Conference on Data and
Application Security and Privacy (2017), 269–280.

[25] Vasily Tarasov, Lukas Rupprecht, Dimitris Skourtis, Wenji Li, Raju Rangaswami,
and Ming Zhao. 2019. Evaluating Docker storage performance: from workloads
to graph drivers. Cluster Computing 22, 4 (2019), 1159–1172.

[26] Mario Tomisa, Marin Milkovic, and Marko Cacic. 2019. Performance Evaluation
of Dynamic and Static WordPress-based Websites. ICSEC 2019 - 23rd International
Computer Science and Engineering Conference (2019), 321–324.

[27] W3Techs. 2021. Usage statistics and market share of WordPress. https://w3techs.
com/technologies/details/cm-wordpress/all/all Last accessed 2021-10-12.

[28] Wappalyzer. 2021. Identify technology on websites. https://www.wappalyzer.
com/ Last accessed 2021-10-12.

[29] WordPress. [n. d.]. Hosting Requirements for WordPress. https://wordpress.org/
about/requirements/ Last accessed 2021-10-12.

[30] Pengfei Xu, Shaohuai Shi, and Xiaowen Chu. 2017. Performance evaluation of
deep learning tools in Docker containers. In 2017 3rd International Conference on
Big Data Computing and Communications (BIGCOM). IEEE, 395–403.

[31] Ahmed Zerouali, Tom Mens, Gregorio Robles, and Jesus M Gonzalez-Barahona.
2019. On the relation between outdated Docker containers, severity vulnerabili-
ties, and bugs. In 2019 IEEE 26th International Conference on Software Analysis,
Evolution and Reengineering (SANER). IEEE, 491–501.

[32] Nannan Zhao, Vasily Tarasov, Hadeel Albahar, Ali Anwar, Lukas Rupprecht,
Dimitrios Skourtis, Arnab K Paul, Keren Chen, and Ali R Butt. 2020. Large-
Scale Analysis of Docker Images and Performance Implications for Container
Storage Systems. IEEE Transactions on Parallel and Distributed Systems 32, 4
(2020), 918–930.

Session 3: Empirical Studies of Performance ICPE ’22, April 9–13, 2022, Bejing, China

104

https://www.docker.com
https://www.ibm.com/cloud/learn/containerization
https://www.ibm.com/cloud/learn/containerization
http://locust.io/
https://doi.org/10.1214/aoms/1177730491
https://semver.org/
https://github.com/asgaardlab/wip-21-Mikael-DHPanalysis-code
https://github.com/asgaardlab/wip-21-Mikael-DHPanalysis-code
https://w3techs.com/technologies/details/cm-wordpress/all/all
https://w3techs.com/technologies/details/cm-wordpress/all/all
https://www.wappalyzer.com/
https://www.wappalyzer.com/
https://wordpress.org/about/requirements/
https://wordpress.org/about/requirements/

	Abstract
	1 Introduction
	2 Background and Related Work
	3 Methodology
	3.1 Collecting Image Information for WordPress
	3.2 Deploying WordPress and Identifying Dependency Versions
	3.3 Collecting and Analyzing Performance Data

	4 Case Study Results
	4.1 RQ1: What Is the Impact of Upgrading the Docker Image of WordPress on its Performance?
	4.2 RQ2: What is the Relation Between the Performance of the WordPress Application and Updates of its Dependencies?

	5 Discussion
	6 Threats to Validity
	7 Conclusion
	References

