
Isolating GPU Architectural Features Using Parallelism-Aware
Microbenchmarks

Rico van Stigt
University of Amsterdam

Amsterdam, The Netherlands
ricovanstigt@ziggo.nl

Stephen Nicholas Swatman∗
University of Amsterdam

Amsterdam, The Netherlands
s.n.swatman@uva.nl

Ana-Lucia Varbanescu
University of Amsterdam

Amsterdam, The Netherlands
a.l.varbanescu@uva.nl

ABSTRACT
GPUs develop at a rapid pace, with new architectures emerging
every 12 to 18 months. Every new GPU architecture introduces new
features, expecting to improve on previous generations. However,
the impact of these changes on the performance of GPGPU applica-
tions may not be directly apparent; it is often unclear to developers
how exactly these features will affect the performance of their code.
In this paper we propose a suite of microbenchmarks to uncover
the performance of novel GPU hardware features in isolation. We
target features in both the memory system and the arithmetic cores.
We further ensure, by design, that our microbenchmarks capture
the massively parallel nature of the GPUs, while providing fine-
grained timing information at the level of individual compute units.
Using this benchmarking suite, we study the differences between
three of the most recent NVIDIA architectures: Pascal, Turing, and
Ampere. We find that the architecture differences can have a mean-
ingful impact on both synthetic andmore realistic applications. This
impact is visible both in terms of outright performance, but also
affects the choice of execution parameters for realistic applications.
We conclude that microbenchmarking, adapted to massive GPU
parallelism, can expose differences between GPU generations, and
discuss how it can be adapted for future architectures.
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• Software and its engineering→ Software performance; • Com-
puting methodologies → Parallel programming languages.
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1 INTRODUCTION
General purpose graphics processing units (GPGPUs) are an ubiqui-
tous part of the modern high performance computing landscape. As
with other processor types, new and improvedGPGPU architectures
are constantly being developed in order to satisfy ever-growing
performance requirements [26]. It is often the case that such im-
provements are implemented as new architectural features in the
current and next generations of GPGPU microarchitectures.

However, as microarchitectures become more complex, the im-
pact of such architectural innovations becomes difficult to quantify.
For real applications, performance is increasingly hard to predict as
run time depends on the non-trivial interplay of a large number of
features across a wide range of subsystems, including the memory,
the schedulers, and the arithmetic processors [1, 11]. Moreover, the
increased complexity and fast development of GPGPU microarchi-
tectures renders existing (micro-)benchmarks incomplete [4], if not
obsolete [28]. Microbenchmarks for specific architectural features
can help alleviate this problem by decomposing the performance
of a microarchitecture as a whole into independent factors.

In this paper, we present the design and implementation of a
benchmarking suite that quantifies the impact of several recent
GPU architectural developments in isolation, such that they can be
compared and evaluated between different microarchitectures. This
feature-specific approach to microbenchmarking adds to the exist-
ing body of GPGPU benchmarking literature, which has primarily
focused, so far, on holistic device-wide measurements.

Specifically, we design benchmarks to isolate features related to
both memory and arithmetic, such as caches and so-called Tensor
Cores, on three recent NVIDIA GPU architectures: Pascal (released
in 2016) [18, 20], Turing (2018) [21], and Ampere (2020) [22, 23]. To
this end, we employ fine-grained timing and a massively parallel
approach to GPU microbenchmarking, thus exposing new details
on operations scheduling, the impact of increasing parallelism, and
the effect of complex caching policies.

Using our benchmarking suite, we have performed extensive
experiments (over twelve hundred runs) to illustrate the specifics of
each architecture. We find, for example, that the over-provisioning
of GPU resources has different performance implications on the
different architectures (section 6), and that cache operators have
limited performance impact on all three GPUs (section 7).

In summary, the main contributions of this work are:

• We propose a set of feature-isolating microbenchmarks for
GPGPUs.

• We extend our microbenchmarks to capture the massively
parallel nature of GPGPU hardware.

• We propose a timing methodology that captures device per-
formance on a per compute-unit level of granularity.
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• We analyse and compare three recent NVIDIA GPU archi-
tectures, empirically demonstrating the performance effects
induced by architectural features.

• We discuss how these features can impact the performance
of real-world applications.

The rest of this paper is structured as follows. Section 2 intro-
duces the basics of general purpose GPU computing, and presents
the GPU architectures that are compared in this paper. Section 3
covers related work. We describe the design of our benchmarks
in section 4, and our experimental setup in 5. We present a selec-
tion of benchmarking results in sections 6, 7, 8, and 9. We further
analyse the implications of our microbenchmarks (and results) on
application development, and reflect on some of the limitations
of our current solution, in section 10. Finally, section 11 presents
concluding remarks and future research directions.

2 NVIDIA GRAPHICS PROCESSING UNITS
General purpose graphic processing unit (GPGPU) programming
encompasses the idea of executing general workloads on hardware
designed for graphics processing. GPGPU programming leverages
the massively parallel nature of graphics hardware to accelerate
data-parallel tasks in a much wider domain of computational prob-
lems. Indeed, GPGPUs have been successfully deployed to fields
such as machine learning, bioinformatics, physics, and many more.

The architecture of GPUs varies significantly not only between
vendors, but also between different generations from the same ven-
dor. In this work, we specifically target NVIDIA GPUs; thus, we
adhere to NVIDIA’s terminology wherever talking about microar-
chitecture features, and to CUDA terminology when presenting
code or programming-related concepts. This section briefly dis-
cusses the NVIDIA features relevant for this work: the compute
architecture and the memory system, the execution model, the
CUDA programming model, and the most recent features added for
compute efficiency.

2.1 Architecture and execution model
An NVIDIA graphics processing unit consist of a number of stream-
ing multiprocessors, often referred to as SMs. Each SM contains a
large number of cores, possibly diversified for different types of
operations (e.g., floating-point cores or tensor cores) and a rela-
tively small amount of control flow hardware. NVIDIA GPUs use an
execution model called Single-Instruction Multiple Threads (SIMT),
where groups of threads - referred to as awarps - are directed by the
same control flow, and thus execute the same operation in lock-step,
albeit on different data.

Most NVIDIA GPUs have four layers of memory: the register
files and L1 caches, which are private resources for each SM, and
the L2 cache and the global memory, which are shared across the
SMs [16]. These different memories vary wildly in throughput and
latency, and selecting the right memory is often critical for high-
performance applications [17].

2.2 CUDA
The most common programming model for NVIDIA GPUs is CUDA.
Within CUDA, computational kernels consist of amulti-dimensional
grid, which is subdivided into blocks, which, in turn, consist of

Table 1: Data types and tensor sizes for tensor operations.

𝐴 (𝑀 ×𝐾 ), 𝐵 (𝐾 × 𝑁 ) 𝐶 (𝑀 × 𝑁 ) Tensor (𝑀 × 𝑁 ×𝐾 )

16-bit float 32-bit float 16 × 16 × 16
16-bit float 32-bit float 32 × 8 × 16
16-bit float 32-bit float 8 × 32 × 16
16-bit float 16-bit float 16 × 16 × 16
16-bit float 16-bit float 32 × 8 × 16
16-bit float 16-bit float 8 × 32 × 16
8-bit integer 32-bit integer 16 × 16 × 16
8-bit integer 32-bit integer 32 × 8 × 16
8-bit integer 32-bit integer 8 × 32 × 16

threads [9]. These CUDA concepts map onto the hardware features
of the GPU: grids roughly map onto entire devices, blocks map onto
SMs, and threads map onto individual cores.

In CUDA, for a block to be executed, it must first be assigned
onto an SM - that is, the block becomes resident on the SM. Con-
sequently, a portion of that SM’s resources, such as registers and
shared memory, are dedicated to that block. Once resident on an
SM, a block remains resident until it has ceased execution. When
resources permit it, multiple blocks can reside on the same SM,
potentially improving performance and/or efficiency. However, the
allocation of blocks to SMs is performed in hardware: programmers
cannot determine the allocation directly. Instead, programmers
must tune their use of threads, registers, shared memory, and other
resources carefully.

CUDA applications consist of host-code and device-code: the for-
mer executes on the CPU, while the latter, encapsulated in kernels,
executes on the GPU. During the compilation of a CUDA program,
the host code is compiled for the CPU, with a traditional compiler,
while device code is compiled (with a CUDA compiler) to Parallel
Thread eXecution, henceforth referred to as PTX [24, 25].

2.3 Reduced-precision computing
To expose the trade-off between computational efficiency and preci-
sion [6], NVIDIA GPUs support several new floating point formats.
Support for IEEE 754 16-bit floating point numbers was adopted in
the Maxwell microarchitecture [10], and support for the machine
learning-optimised 16-bit Brain floating point format (bfloat16)
format was introduced in the Ampere architecture [23]. In addition,
recent architectures provide increased performance for 8-bit and
4-bit integer operations.

2.4 Tensor cores
Starting with the Voltamicroarchitecture (released in 2017), NVIDIA
GPUs feature Tensor Cores: additional computing hardware, specifi-
cally designed to efficiently perform matrix multiply-accumulate
operations at different (mixed) levels of precision. Two of the mi-
croarchitectures featured in this paper, Turing and Ampere, are
equipped with tensor cores, while Pascal is not. Tensor cores are
embedded in each SM, and are shared between the threads execut-
ing on that SM.

While tensor cores are still programmed using CUDA, each ten-
sor operation is performed by an entire warp instead of a single
thread. This is referred to as warp-wide programming. In addition,
tensor operations require a significant amount of pre-processing.
For each warp, matrix fragments for input matrices 𝐴 and 𝐵, and
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the accumulator matrix 𝐶 , must be declared. For each of these frag-
ments, data types and sizes have to be provided, from a limited
set of possible configurations, seen in Table 1. Then the fragments
have to be filled from memory; the provided memory sections also
need to be properly aligned [15].

3 RELATEDWORK
To illustrate the novelty of our microbenchmarking suite, we pro-
vide a brief analysis of relevant related work for GPGPU bench-
marking in general, and microbenchmarking in particular.

There are several benchmarking suites commonly used to com-
pare GPU architectures. For example, Rodinia [5] and SPECAc-
cel [14] combine by construction applicationswith different compute-
and memory-bounds, thus providing a comprehensive analysis of
the performance advantages and limitations of GPUs for a large
spectrum of workloads. Similarly, SHOC [7] also combines multiple
applications, while further grouping them into complexity levels. By
virtue of using multiple, potentially portable, programming models,
SHOC, Rodinia, SPECAccel are further available to non-NVIDIA
GPU. More specialised benchmarks, like Gardenia [29], further as-
sess the ability of GPUs for domain-specific applications. Compared
to these suites, our work addresses GPU features in isolation, thus
bearing some resemblance to the SHOC level 0 codes, although we
expose finer-granularity features.

Zooming in to different features of the GPUs, memory analysis
using suites such as GPU-STREAM v2.0 [8] provides an accurate
account of GPU memory throughput (as accessed through different
programming models), but does not go further into investigating
the hardware features that impact the observed performance.

GPGPU microbenchmarking has also been attempted before.
In [28], authors demonstrate how to reverse engineer machine
features using microbenchmarking data; in our work, we follow a
similar idea, while analysing newer, more complex GPGPUmicroar-
chitectures. In MIPP [4], the authors also propose a microbench-
marking suite, but focus exclusively on detecting operation costs
in terms of cycles and energy. Our microbenchmark targets newer
architectures, and enables more insight into microarchitectural de-
tails such as scheduling or multi-layer caching. Last, but not least,
the latest work on microbenchmarking NVIDIA GPUs [12, 13, 16]
also focuses on microarchitectural details, but limits their analy-
sis to a single SM. Instead, our work captures by construction the
massively parallel nature of the GPGPU, thus uncovering more
scheduling-related issues than all previous work.

Finally, of specific importance to this work are the platform-
specific documents released by NVIDIA: we used the program-
ming guide [24] and the white papers extensively [18, 20–23] to
build our microbenchmarking suite. However, the results of our
microbenchmarking suite provide new insights, interpretations,
and performance data beyond those included in these sources.

4 BENCHMARKING PRINCIPLES
Our microbenchmarking suite is designed to meet three core re-
quirements: feature isolation, massive parallelism and fine-grained
timing. To isolate specific architectural features, each microbench-
mark must capture one specific feature, and be affected to the small-
est degree possible by unrelated features. In addition, as applications

of GPUs to real-world problems are virtually always massively par-
allel [26], a realistic analysis of GPU features must be performed in
a massively parallel environment. Finally, we must provide accu-
rate, fine-grained timing mechanisms, that can isolate performance
at warp-level. In the reminder of this section, we briefly describe
how we approached the design of the microbenchmarks to address
these three requirements.

4.1 Feature isolation
Our benchmark facilitates the analysis of both the memory and
the arithmetic subsystems of GPGPUs. The features we target are:
(1) memory latency, (2) bandwidth, (3) arithmetic performance
(in the context of variable precision), and (4) tensor cores perfor-
mance. For each of these features, we design and/or adapt specific
microbenchmarks. Thus, we adapt a synthetic benchmark for mem-
ory latency by Mei and Chu [16] (see section 6), we design a specific
benchmark for bandwidth analysis (see section 7), based on matrix
transpose and the specifics of caching in new GPGPUs, we use a
basic synthetic benchmark for variable precision arithmetic (see sec-
tion 8), and we refactor a basic matrix multiplication operation to
assess tensor core performance (see section 9). For memory-related
microbenchmarks, we virtually eliminate (expensive) arithmetic
operations, while for arithmetic microbenchmarks we eliminate
any unnecessary memory operations (i.e., we enforce the use of
registers).

4.2 Massively parallel microbenchmarks
To capture the massively parallel nature of GPGPUs, we use a sys-
tematic approach for extending single threaded microbenchmarks
to highly parallel ones. In this process, we take into account the
design of the GPU: the size of hardware blocks and SMs, how many
SMs are available on the entire GPU, and the resources available
on each block and SM. In practice, we follow a two step process:
first we scale single-threaded benchmarks up to use an entire SM
by utilising multiple threads per block, and then we use multiple
blocks to scale up from single SM execution to GPU-wide execu-
tion. Given that we are interested in very specific architectural
features, we ensure that each thread operates a completely sepa-
rate microbenchmark instance, thus preventing communication
overhead from interfering with the results.

We note that, although we focus in this paper primarily on
NVIDIA GPU architectures, our approach could be ported to other
GPUs, too. Because we align our approach with the design of the
hardware, we are able to scale benchmark parallelism based on the
characteristics of the used device. As a result, for GPUs that share
similar architectural principles, this methodology will be portable.
Possible targets include past and future NVIDIA architectures, but
also architectures from other vendors such as Intel and AMD.

4.3 Mechanisms for accurate timing
Naively, we can time GPU code by a simple differential method,
where we capture the time before and after the execution of the
computational kernel, and equate the execution time of the kernel
to the (absolute) difference between the recorded timestamps. This
approach, however, can be too coarse for the microbenchmarks we
describe in this paper, because it amortises the kernel execution time
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Table 2: The GPU systems used for benchmarking.

System GPU CPU Mem. size

ShowCees GTX 1080 Ti 2 × Intel Xeon Gold 6148 (2.4GHz) 376GiB
DAS-5 [3] RTX 2080 Ti 2 × Intel Xeon Silver 4110 (2.1GHz) 96GiB
DAS-6 [3] A100 2 × AMD EPYC 7402 (2.8GHz) 2TiB

over the entire computation and device, and hides any potentially
interesting scheduling behaviour (which is likely to emerge in a
massively-parallel execution model).

Instead of this naive approach, we expose more fine-grained
timing results by instrumenting the kernels at both block- and
warp-level, using PTX special registers: the %clock, %clock_hi, and
%clock64 can be accessed to provide clock cycle-accurate timing.
The value of these registers can be combined with the values of
the %warpid and %ctaid registers, which provide insight into the
logical execution space of the kernel, as well as the %smid register
which provides information about the hardware on which the code
is being executed. Combined, these registers provide the granularity
required to determine when specific blocks and warps begin and
end execution, and further infer how far along in their workload a
block or warp are at a given time.

Using this fine-grained timing information, we investigate the
way blocks are scheduled across multiprocessors, as well as the
way warps are scheduled within the multiprocessor on which they
are resident. Such information provides us valuable insight into
(often proprietary) scheduling mechanisms on GPUs, which are
otherwise esoteric and sparsely understood [1]. We can also expose
the interference between blocks when many of them are running
in parallel; the contention of resources such as the L2 cache and
the main memory bandwidth can be identified using discrepancies
between the run times of jobs at the block level, for example.

We note that our fine-grained timing approach is used in con-
junction with (and not as a replacement for) more traditional kernel-
wide timing; in fact, we use both, in order to provide kernel timing
data at multiple levels of granularity. Where applicable, we use our
fine-grained timing strategy to elucidate the scheduling behaviour
of the GPU; to this end, we track the times at which individual
threads and blocks in our kernel begin and end their execution. By
then comparing these data along a temporal axis, we can determine
precisely when the on-chip scheduling mechanism schedules cer-
tain parts of the execution kernel. In this work, we show results
about scheduling, gathered using this technique, when the devices
are under memory-intensive workloads (section 7.4), arithmetically-
intensive workloads (section 8.3), and when the tensor cores are
heavily utilised (section 9.3).

5 EXPERIMENTAL SETUP
All the experiments presented in this paper are executed on three
distinct machines, presented in Table 2. For all of the experiments
presented in this paper, we ensured that our benchmarks were the
sole occupants of the machines’ resources for the entire duration
of the experiments. The characteristics of the GPUs we study in
this work are further detailed in Table 3.

6 MEMORY LATENCY
In our first set of experiments, we aim to elucidate the impact
of contention on memory access latency at various levels of the

Table 3: The GPU devices analysed in this work.

Device
Feature GTX 1080 Ti RTX 2080 Ti A100

Microarchitecture Pascal Turing Ampere
Chip identifier GP102 TU102 A100
Compute Capability 6.1 7.5 8.0
Clock frequency

Base 1480MHz 1350MHz 765MHz
Boost1 1582MHz 1545MHz 1410MHz

Number of SMs 28 68 108
SM configuration

Number of compute cores
FP32 1282 64 64
FP64 4 2 32
INT32 1282 64 64

Number of warp schedulers 4 4 4
Number of Tensor Cores N/A3 8 4
L1 cache size 48KiB 64KiB4 192KiB4

Memory subsystem
Total size 11GiB 11GiB 40GiB
Bus type GDDR5X GDDR6 HBM2
Bandwidth 484GB/s 616GB/s 1555GB/s
L2 cache size 2816KiB 5632KiB 40 960KiB

1 The frequencies given in this table are derived from the base specifications, frequency
ranges may differ in experiments.
2 Pascal does not distinguish between compute cores for FP32 and INT32.
3 Pascal does not feature Tensor Cores.
4 For Turing and Ampere, the L1 cache and shared memory are unified.

memory hierarchy.To this end, we adapt an existing memory mi-
crobenchmark [16], which relies on a variant of pointer chase in
which timing measurements are performed for individual accesses,
rather than as an aggregate over a larger number of reads. These
measurements are stored in the low-latency shared memory to
reduce overhead.

6.1 Microbenchmark design
We investigate the effects of two different kinds of contention:
within a single block, by varying the number of warps in that block,
and between blocks, by executing a multi-block kernel on the same
SM. In our single-block experiment, all warps share a common
buffer, which is accessed by multiple threads in a sequential pattern,
such that the same data is read by all warps at the same time. In the
multi-block experiment, each block has its own dedicated buffer. In
order to accurately measure the impact of contention, we record
timing data about every individual read access. We record not only
the duration of each access, but also the moment at which the access
takes place. By collecting these data for each warp, we can indirectly
measure the impact of concurrent warp execution.

6.2 Warp-level scheduling
The results of the experiments with a single block are shown in
Figure 1. We note that, for a single warp per block, the access
time per element is very consistent, and the entire buffer is read in
roughly 25 000 cycles for all of three GPUs. However, when using
32 warps, on Pascal, the overall execution time increases to over
50 000 cycles. In addition, we observe a discrepancy between the
throughput of different warps: low-ID warps execute at a constant
throughput, and finish in around 40 000 cycles, while high-ID warps
exhibit throughput changes during execution. This indicates that
the scheduler favours low-ID warps and, once they complete, the
high-ID ones gain precedence, and their throughput increases.

The Turing and Ampere architectures exhibit this contention
pattern to a far lesser extent: while the total execution time still
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(a) Pascal, 1 warp
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(b) Pascal, 32 warps
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(c) Turing, 1 warp
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(d) Turing, 32 warps
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(e) Ampere, 1 warp
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(f) Ampere, 32 warps

Figure 1: Per-warp memory latency for a single block. In-
dividual accesses are represented as horizontal lines with
length proportionate to the access latency.

increases as the number of warps does, the difference in execution
time between the shortest- and longest-running warps is much
smaller than on Pascal. On Pascal, this difference exceeded 10 000
cycles. Meanwhile, the difference is reduced to roughly 3000 cycles
on Turing, and this discrepancy all but disappears on Ampere.

6.3 Block-level scheduling
The results for the experiments with multiple blocks, shown in Fig-
ure 2, indicate another significant difference between the microar-
chitectures: when only a single block is run (i.e., no contention),
the observed latency is around 100 cycles. When we run two blocks
on the same SM, Pascal still shows no contention: the individual
accesses perform similarly to the single-block experiment. When
utilising three (or more) blocks, the effects of contention are vis-
ible: two of the three blocks interfere with each other, and thus
we observe an access time of 250 cycles, while the third block is
unaffected, preserving its access time of 100 cycles. On Turing and
Ampere, the effect of contention is apparent with as few as two
blocks. This indicates that Pascal’s SM cache consists of two halves,
each only accessible by half of the cores; the Turing and Ampere
SMs have a single block of cache, accessible to all cores in the SM.
In essence, this behaviour indicates that the Pascal multiproces-
sor is split in two halves, which is not the case for the two other
architectures.

7 BANDWIDTH
We further present our microbenchmarks for device memory and
cache bandwidth. In particular, we investigate the L1 cache band-
width when retrieving data using different instructions. We further

 0

 50

 100

 150

 200

 250

 300

 350

 0  5  10  15  20  25

Ac
ce

ss
 t

im
e 

(C
yc

le
s)

Access offset (KiB)

(a) Pascal, 2 blocks

 0

 50

 100

 150

 200

 250

 300

 350

 0  5  10  15  20  25

Ac
ce

ss
 t

im
e 

(C
yc

le
s)

Access offset (KiB)

(b) Pascal, 3 blocks

 0

 100

 200

 300

 400

 500

 600

 700

 0  5  10  15  20  25  30  35

Ac
ce

ss
 t

im
e 

(C
yc

le
s)

Access offset (KiB)

(c) Turing, 2 blocks

 0

 100

 200

 300

 400

 500

 600

 700

 0  5  10  15  20  25  30  35

Ac
ce

ss
 t

im
e 

(C
yc

le
s)

Access offset (KiB)
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Figure 2: Access latency with multiple blocks per warp read-
ing separate buffers. Blocks are identified by colour.

explore the effects of cache operators, a feature of the PTX instruc-
tion set which provides fine-grained control over cachemechanisms,
on memory bandwidth.

7.1 Microbenchmark design
In this section, we present the design of our two bandwidth experi-
ments. Since the goals of these microbenchmarks are very different,
they require significantly different design approaches.

7.1.1 L1 cache bandwidth. To measure the achievable bandwidth
from the L1 cache, we base our microbenchmarks on work by Jia
et al., which we extend by utilising multiple blocks with a variable
number of warps per block [13]. In these experiments, each block
accesses a separate buffer, but all warps within a block access the
same buffer. To measure the performance of each warp separately,
we register timestamps at the start and end of each warp (see sub-
section 4.3. Because we observed the non-negligible impact of the
operations and data-types used in [13], we use 32-bit float numbers,
and compare the behaviour of three operations: ADD, NOT, and
MOV.

7.1.2 Caching policies. CUDA, and the underlying PTX byte code,
allow for cache hints to be passed to the memory subsystem, in
order to influence the caching behaviour of a specific memory
operation. Developers can obtain fine-grained control over cache
hints by using specific cache operators to PTX code, and further
inlining this code in C/C++ code [24, 25]. We use this method - i.e.,
inlined PTX code with cache operators - to apply cache modifiers
to data movement operations. It is worth noting that support for
cache operators through high-level interfaces has been expanded
in CUDA 11.5 through so-called annotated pointers [2]. We consider
this a valuable development as it increases the applicability of the
results of our microbenchmarks to real-world applications.
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The PTX instruction set provides five cache operators for mem-
ory load instructions, which are as follows [25]:
ld.ca cache loaded data at all levels (commonly L1 and L2).
ld.cg cache loaded data at the L2 level, but not at the L1 level.
ld.cs cache loaded data at all levels, but with an evict-first policy.
ld.lu indicates the last use of a specific cache line, equivalent to

ld.cs for global memory.
ld.cv do not cache loaded data; any existing cache lines containing

that data are considered stale.
In addition, there are four cache operators for memory store in-
structions, which are the following [25]:
st.wb cache stored data at all coherent levels.
st.cg cache stored data at the L2 level, but not in the L1 level.
st.cs cache stored data at all levels, but with an evict-first policy.
st.wt do not cache stored data: write to system memory, writing

through the L2 cache.
As an example of how cache operators work in PTX, the follow-

ing are two instructions that load a 32-bit floating point value from
global memory to a register. The first instruction is not decorated
with a cache operator, while the second instruction is augmented
with a cache hint through the addition of a period-separated quali-
fier (in this case, ca):

ld.global.f32 r1, [r2];
ld.global.ca.f32 r1, [r2];

In cases where a cache operator is not provided, a default is used.
This default depends on the chip on which the code is executed:
for the Pascal (GP102) chip examined in this work, the default load
operator is ld.cg [19]. For the Turing (TU102) and Ampere (A100)
chips, the default load operator is ld.ca [25]. For all three chips,
the default store operator is st.wb [25].

To better understand the effect of the cache operators, we ap-
ply them to an implementation of matrix transposition. We have
chosen this application as it is purely memory bound, allowing us
to measure the effect of cache operators with as little interference
from outside factors as possible. In addition, this application utilises
both read and write instructions, allowing us to examine the entire
parameter space for load and store operations.

We create three different implementations for matrix transpo-
sition, where both the input and output matrices use the same
row-major data format. From our previous experiments we know
that performance is not necessarily maximised by increasing the
number of threads or blocks; rather, these values must be carefully
chosen to fit the workload. As such, these benchmarks are all pa-
rameterized by the number of blocks, the size of each block, and
the total size of the workload. The first implementation reads in
column-major order and writes in row-major order, whereas the
second implementation does the reverse. Finally, the third imple-
mentation loosely takes into account the cache architecture: each
thread moves an entire cache line (as opposed to a single element),
which should improve cache utilisation.

Since our implementations are configurable, we determine the
optimal execution configuration (that is, the number of threads per
block and the number of blocks) for each of the cache operators.
We empirically found that the optimal block sizes are 64 for Pascal,
128 for Turing, and 512 for Ampere. These values, in turn, are used
to determine the optimal number of blocks as follows: we increase

the number of blocks, in increments of the number of SMs on the
GPU, until no performance improvement is observed.

7.2 L1 cache bandwidth
The results of our L1 cache experiments, presented in Figure 3,
highlight the high impact of instruction selection on bandwidth:
ADD reduces the achieved performance to only 40 bytes per cycle,
while the other instructions show two to three times better per-
formance. We also note that, for Pascal, peak performance is only
achieved when we use two or more blocks per SM; for Turing and
Ampere, the best performance is achieved with only a single block.
We interpret this difference as further evidence that the Pascal SM
is split into two largely independent halves.

7.3 Cache operators
The impact of the chosen cache operator and the number of blocks
started for each of the three implementations is shown in Figure 4.
We show only the impact for the ld.ca and ld.cg load operators
in combination with the st.cg store operator, as these are the only
read operators which noticeably impacted performance on any
device. The different write operators did not impact the achieved
throughput in a meaningful way and are thus entirely excluded
from the results for the sake of brevity.

We notice that the row-major read implementation achieves
much lower throughput compared to the other implementations.
This implementation is also not noticeably impacted by the dif-
ferent cache operators, whereas the other implementations show
an increase in throughput when ld.ca is used. This is especially
visible for the cache-optimised implementation on Ampere, where
the throughput is roughly doubled with ld.ca. In this configura-
tion, we achieved roughly 50GiB/s higher throughput than for
the column-major read implementation; for the other GPUs the
performance is unaffected.

For all tested configurations, the optimal number of blocks for
the cache-optimised implementation is a different multiple of the
number of available SMs (|𝑆𝑀 |). Specifically, Pascal reaches optimal
performance for 4 × |𝑆𝑀 |𝑃 = 112 blocks, Turing shows optimal
performance for 3 × |𝑆𝑀 |𝑇 = 204 blocks, and Ampere requires
|𝑆𝑀 |𝐴 = 108 blocks. The performance penalty when using other
values differs based on both the transposition implementation and
the GPU. Using more or fewer blocks does not have a significant
impact on the row-major read implementation on the Pascal and
Turing GPUs; however, on Ampere, the effect of sub-optimal kernel
configuration is far more pronounced, with a peak at 108 blocks
started. Finally, for all of the used GPUs, we observe a drop in
achieved bandwidth when a large number of blocks are started,
even if that number is a multiple of the number of SMs. A more
in-depth analysis including all combinations of cache operators is
given by van Stigt [27].

7.4 Scheduling
Finally, Figure 5 shows the impact of scheduling on the execution
of an SM. For the Pascal architecture, we observe that two blocks
execute simultaneously (i.e., they start and end at roughly the same
time). For Turing, only a single block is executed at a time. Ampere
shows yet another kind of behaviour: the first two blocks start
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Figure 3: L1 Bandwidth with varying numbers of blocks per SM and different operations.
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Figure 4: Throughput using the ld.ca and ld.cg load opera-
tors, and the st.wb store operator on a 5000 × 5000 matrix.

executing simultaneously, but the second block takes much longer
to terminate. Once the second block has terminated, blocks three
and four run sequentially, taking roughly the same amount of time
to complete. We speculate that Ampere performs more optimistic
scheduling, starting execution of additional blocks even if there are
insufficient resources available. In addition, we observe significant
scheduling delays between blocks on both Pascal and Turing. We do
not currently have an adequate explanation for why this behaviour
occurs, and why Ampere does not exhibit it.

8 ARITHMETIC PERFORMANCE
Perhaps the most common application of GPGPUs is to perform
massive computations very quickly. Thus, arithmetic performance

is a very important overall performance indicator for any GPGPU.
As a result, there are existing microbenchmarks for the arithmetic
performance of graphics processing units [4]. In order to expand
on this previous work, we focus specifically on two features that
are less commonly analysed: the performance when using reduced
precision arithmetic, and scheduling behaviour under arithmetically
intense workloads.

8.1 Microbenchmark design
Our arithmetic microbenchmark investigates the performance of
fused multiply-add operations on various data types. The bench-
mark is designed to operate on registers only, in order to eliminate
the influence of the memory subsystem. Furthermore, the control
flow consists of a manually unrolled loop executing eight instruc-
tion in sequence, thus minimising the impact of pipeline stalls. In
each case, the loop is executed ten million times, corresponding
to eighty million instructions, and one-hundred and sixty million
floating point operations. We measure the performance of these
operations on a per-warp level, with a single block of variable size.
The experiments are run for five different data types: 64-bit dou-
ble precision floating point numbers (FP64), 32-bit single precision
floating point numbers (FP32), 16-bit half precision floating point
numbers (FP16), packed 16-bit floating point numbers (FP16x2), and
32-bit integers (INT32). In our second set of experiments, we in-
vestigate the effects of scheduling on the throughput of arithmetic
workloads. To this end, we utilise the same general approach, with
32 warps (1024 threads) per block and up to four blocks per SM.
These values were found empirically.

8.2 Variable-precision computing
The results of the floating point arithmetic microbenchmark are
shown in Figure 6. As expected given the low number of arithmetic
cores for these data types, FP16 and FP64 performance on Pascal
is very poor, whereas FP32 and INT32 performance is much better.
However, when using only a single block, Pascal actually offers
better performance for FP32 and INT32 than Turing and Ampere, a
direct result of the Pascal architecture featuring a larger number of
arithmetic cores per multiprocessor (Table 3).

For Turing, we note that the dedicated FP16 hardware provides
significant performance benefits, achieving roughly twice the per-
formance of the FP32 benchmark on the same device. We do note
a difference between FP16 and packed FP16, where the latter per-
forms worse. FP64 performance is, similar to Pascal’s, very poor
due to the reduced number of double-precision arithmetic cores.
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Figure 5: Memory-intensive blocks scheduling. Warps are represented by single lines, and blocks are represented by colour.
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Figure 6: Integer and floating point throughput of fused
multiplication-addition operations for various data types,
with a variable number of warps in a single block.

The achieved INT32 performance is much higher than either the
FP16 or FP32 performance for all of the GPUs we tested.

Moving on to Ampere, we observe similar performance to the
Turing GPU, albeit slightly lower due to the lower clock frequency
(Table 3). Ampere does show much better FP64 performance com-
pared to the other devices, and the difference between FP16 and
packed FP16 is negligible. As for the different data types, we make
the following observations: (1) integer operations offer much higher
performance than any of the floating point types: 32-bit integers
achieve roughly twice the performance of the fastest floating point
format on Turing and Ampere, and this increases to a factor three
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Figure 7: Integer and floating point throughput of fused
multiplication-addition operations for various data types,
with a variable number of blocks started, 32 warps (1024
threads) per block.

on Pascal; (2) compared to floating-point data types, integer opera-
tions require more warps per block to reach optimal performance;
and (3) the GPUs featuring hardware implementations for different
floating point types, we see an inverse relation between the size of
the datatype and the achieved performance, with each doubling of
the lane width halves the achieved performance.

Scaling our experiment up to use multiple blocks in Figure 7,
we observe that the results are largely as expected. For Pascal, the
best performance is achieved when a multiple of 28 blocks is used;
while this is expected based on the GPU specifications, it does
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Figure 8: Arithmetic scheduling behaviour on different
GPUs. Warps are represented by single lines, and blocks are
represented by colour.

not necessarily align with our findings of a split SM design (see
section 7). For both Turing and Ampere, the highest throughput,
approximately equal to the peak reported in the specifications, is
achieved when the number of blocks is a multiple of the number of
SMs. Finally, the best performance for all tested GPUs is achieved
when INT32 is used, with FP32 achieving roughly four times fewer
operations per second. These results display a sawtooth pattern
due to load imbalance: towards the end of the execution, there are
insufficient remaining units of work to occupy all multiprocessors,
leaving some of them idle. As the amount of work increases, the
overhead of this inefficiency is amortised to zero. The achieved
fraction of peak performance 𝑓 for a given number of threads 𝑛 on
a device with |𝑆𝑀 | multiprocessors is dependent on the remainder
of the total amount of work modulo the number of multiprocessors,
and given by the following function:

𝑓 (𝑛; |𝑆𝑀 |) = 𝑛

|𝑆𝑀 |
⌈

𝑛
|𝑆𝑀 |

⌉
8.3 Scheduling
The results of our scheduling experiments are shown in Figure 8.
The Pascal architecture, once again, appears to execute two blocks
simultaneously. However, while this doubled the overall band-
width in our memory-related benchmarks, the effects on arithmetic
throughput are different. When we use a single block, the kernel
takes 700 million cycles, while running two blocks simultaneously
takes twice as much (1.4 billion cycles) to process twice as much
work. We also note a discrepancy between different warps on the
same block: some warps finish execution slightly earlier when two
blocks are executed simultaneously. Turing shows that only a sin-
gle block executes at a time. Like with Pascal, some warps within
a block finish execution notably earlier. Finally, Ampere exhibits
similar behaviour to the Turing, but the scheduling is different:
at the very beginning, two blocks are started simultaneously, but
the second block takes twice as long to terminate. Once the first
block terminates, the third block starts, which then also takes twice
as long to execute as the first block. This phenomenon creates a
staircase-like pattern, which continues until all of the blocks have

terminated. Also for Ampere some warps finish earlier than other
warps within the same block.

9 TENSOR CORES
Tensor cores provide hardware-accelerated mixed-precision matrix
multiplication, and were originally designed for machine learning
workloads. Our benchmark evaluates their performance in terms of
computational throughput. Because tensor cores are only present
in the Turing and Ampere architectures, the Pascal architecture is
not included in this comparison.

9.1 Microbenchmark design
To microbenchmark the tensor cores in isolation, we apply tensor
cores to matrix multiplication problems in synthetic environments.
Our experiments are designed to eliminate the influence of the
memory subsystem on the performance of the tensor cores to the
greatest possible degree. In order to achieve this, we repeatedly
apply operations to relatively small (16 × 16 × 16) tensors which
allows us to forego the overhead of retrieving data from the device
memory, which would be an important factor in the performance
of a real-world matrix multiplication program. These experiments
aim to identify the weak scaling properties of the devices, as the
workload increases with the number of warps. Throughout these
experiments, we use the different configurations listed in Table 1,
and we repeat the tensor operations 107 times.

9.2 Synthetic performance
Figure 9 shows the performance of our synthetic benchmark. For
both devices, we observe that peak performance is achieved when
the number of warps is a multiple of four. This is likely because
both architectures have four warp schedulers per multiprocessor
[24]. Notably, the Turing architecture achieves performance close to
its peak performance with as few as four warps, while the Ampere
device does not reach peak performance until eight warps are used.
This result is unexpected, as the Turing and Ampere architectures
have eight and four tensor cores per multiprocessor, respectively.
As such, one might expect the Turing architecture to achieve only
half of its peak performance when four warps are used. Similarly,
the Ampere tensor cores would be saturated by as few as four warps.

Between different data types, we see similar relative performance
to what we describe in section 8: whenever the lane width doubles,
the performance halves. The notable exception to this is on the
Ampere architecture, where tensor operations on 16-bit floating
point numbers have approximately similar performance, regardless
of whether the accumulator tensor is half or single precision. On
the Turing architecture, the difference in performance for different
accumulator widths is as expected: the Turing white paper posits
peak per-SM tensor core performance of 3.2 TOPS for 8-bit inte-
ger operations, and 1.6 TFLOPS and 0.8 TFLOPS for floating point
operations with a half-precision and single-precision accumulator,
respectively [21]. The data in Figure 9 exceeds these numbers signif-
icantly, which is explained by the device used in these experiments
achieving a significantly higher boosted clock speed than that listed
in the white paper (our device clocks at 1.930 GHz, while the white
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Figure 9: Throughput of tensor cores operating on 16×16×16
tensors, with different datatypes and a single block of vary-
ing size.

paper device clocks at 1.545 GHz). After adjusting for this discrep-
ancy, the achieved performance is not only within the specifications,
but also very close to the theoretical peak performance.

As with our other experiments, we also extend these synthetic
tensor core experiments to cover the entire GPU by spawning
multiple blocks. The results, shown in Figure 10, are consistent
with the results of the GPU-wide experiments in section 8. This
is an expected result, as there is no contention for resources that
are shared between multiprocessors, such as the memory. As a
result, no performance degradation should appear when scaling

 0

 50

 100

 150

 200

 250

 0  50  100  150  200  250

T
h
ro

u
g

h
p

u
t 

(T
O

P
S

)

Blocks Started

FP16, FP32 FP16, FP16 INT8, INT32

(a) Turing

 0

 100

 200

 300

 400

 500

 600

 0  50  100  150  200  250  300  350

T
h
ro

u
g

h
p

u
t 

(T
O

P
S

)

Blocks Started

FP16, FP32 FP16, FP16 INT8, INT32

(b) Ampere

Figure 10: Throughput of tensor cores operating on 16× 16×
16 tensors of varying data types with a varying number of
blocks of fixed size.
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Figure 11: Tensor scheduling behaviour on different GPUs.
Warps are represented by single lines, and blocks are repre-
sented by colour.

these microbenchmarks to cover the whole device. In addition, we
observe the same sawtooth pattern observed in section 8.2, with
the same root cause: load imbalance.

9.3 Scheduling
Wefinally investigate the scheduling behaviour of tensor workloads.
For brevity, we limit these experiments to half-precision tensors of
size 16×16×16, with half-precision accumulators. We use 32 warps
per block, which implies 218 floating point operations per tensor
operation per block. As with the previous tensor core experiments
(section 9.2), we execute 107 tensor operations in sequence, result-
ing in a total of 2.62 × 1012 individual floating point operations.
Given the expected tensor core performance of 1024 ops/cycle on
Turing [21] and 2048 ops/cycle on Ampere [23], we expect the total
span per block to be 2.56 × 109 and 1.28 × 109 cycles, respectively.

Figure 11 confirms the expected behaviour for the Turing mi-
croarchitecture: the cycle count between the start of the first warp
in each block and the end of the last warp in each block is equal
to the aforementioned span predictions. In addition, the blocks are
scheduled strictly sequentially. This is not the case on the Ampere
device, however, where multiple blocks are executed concurrently,
even if the tensor core resources are not available. On both mi-
croarchitectures, there is a measurable and consistent discrepancy
between the times at whichwarps within one block finish execution,
indicating a predictable scheduling bias towards certain warps.

10 DISCUSSION
Given the successful design and deployment of our microbench-
marking suite on the most recent NVIDIA microarchitectures, we
reflect in this section on our main findings, the few limitations of
our current suite, and discuss portability to other architectures.

10.1 Main findings
This section highlights the differences we found, using our bench-
marks, between the three architectures showcased in this work.

10.1.1 The memory subsystem. The way these architectures handle
contention in the memory subsystem has improved over time, with
Ampere exhibiting far lower variance in warp runtime than Pascal.
We also find that the Turing and Ampere SMs experience contention
with as few as two blocks, while Pascal is able to execute two blocks
without interference (see section 6).

We also find that Pascal requires two blocks to saturate a multi-
processor’s bandwidth, while the more recent architectures achieve
peak bandwidth with a single block (see section 7). This is further
reinforced by the results from our scheduling experiments, which
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show that the Pascal scheduler will always schedule two blocks
to run concurrently. Additionally, we found that fine-tuning the
caching policies (by means of PTX and caching operators) can have
performance implication, mostly uniform between the three GPUs.

10.1.2 The arithmetic subsystem. In terms of arithmetic perfor-
mance, we find that the choice of data type has a significant impact
on computation throughput, and this impact differs per architecture.
As expected (based on the GPU specifications), Ampere performs
far better than the other two architectures for FP64 computation.
For all architectures, integer performance is noticeably higher than
floating point performance (see section 8). Arithmetic performance
scales in a predictable fashion with the number of blocks started.
The scheduling behaviour for arithmetic kernels is similar to the
scheduling for memory-bound ones.

Finally, tensor cores provide very high performance for matrix
operations, and the observed performance is very close to the theo-
retical peak performance. As with traditional arithmetic cores, the
choice of data type impacts throughput significantly (see section 9).

10.2 Portability
In this work, we focus on NVIDIA microarchitectures, and we have
shown that the microbenchmarks we propose are effective at isolat-
ing architectural features on threemost recent such GPUs. However,
the GPGPU architecture space is larger than this: a couple more
hardware vendors produce GPGPU hardware, and it is unlikely
that microarchitectural development by NVIDIA will cease in the
near future. Therefore, the portability of our methodology to future
NVIDIA microarchitectures and/or to microarchitectures designed
by other vendors is relevant if these microbenchmarks are to be
adopted as tools in broader performance engineering workflows.

10.2.1 Future NVIDIA GPUs. We expect the microbenchmarks pre-
sented in this work will remain usable without modification to
NVIDIA GPUs for several generations. This is a result of our high-
level design: the large majority of the code is written using CUDA,
which is likely to remain the de-facto programming model for
NVIDIA GPUs for the near future. The few PTX code segments
we have used (a few tens of lines)1 might require minor updates if
PTX will not remain backwards compatible; however, there are no
indications that PTX will be deprecated in the near future.

However, besides the actual usability, there remains the question
of relevance: while the microbenchmarks proposed are likely to
provide insight into the performance of those features on future
architectures, it is not certain that those features will remain rele-
vant. It is difficult to predict which direction GPGPU development
will take in the coming years. The development of microarchitec-
tures is largely at the behest of the workloads that they will run.
For example, Tensor Cores were introduced by NVIDIA to support
the astronomic rise of machine learning applications. It is likely
that future microarchitectures will require us to design and imple-
ment additional microbenchmarks for features which we cannot yet
predict. However, we believe that the idea of extending microbench-
marks to exploit massive parallelism of the GPU, as well as timing
features on a compute unit level, will remain not only possible, but
necessary, for the design of these future microbenchmarks.

1Source code available at https://zenodo.org/record/5788530.

10.2.2 Beyond NVIDIA GPUs. Porting these microbenchmarks to
other vendors’ architectures families poses significant challenges:
not only are those devices not generally programmed using CUDA,
but they are also not guaranteed to share the same features. Ten-
sor cores, for example, are present on NVIDIA GPUs only, and
as such tensor core microbenchmarks are not portable to non-
NVIDIA devices. Similarly, the cache operators we investigated are
a PTX feature, an instruction set architecture mainly supported by
NVIDIA devices. The microbenchmarks for memory bandwidth,
latency, and arithmetic performance are more generic on a concep-
tual level, but may still be challenging to port. Indeed, while most
GPUs have similar memory and compute subsystems in theory, the
actual measurements in practice rely strongly on a specific model
of concurrency, and PTX-specific features.

10.3 Limitations
The primary limitation of the work presented in this paper is the
lack of a framework for consistent interpretation of the results. Un-
like GPGPU benchmarks, like Rodinia [5] or SPECAccel [14], our
microbenchmarks do not return metrics that can directly be used
to compare devices. Rather, the data must be always be separately
interpreted, which can be a somewhat error-prone process. This is
a direct consequence of the nature of our microbenchmarks: their
goal is to identify discrepancies between microarchitectures. We
consider the quantification of these discrepancies to be an open
problem to which we do not currently have a solution. Regard-
less, some of our benchmarks provide metrics such as latency and
throughput that can be used to compare different implementations
of the same architectural feature.

As a direct consequence of the "manual" interpretation of our
results, it is difficult to provide generic guidelines to link our find-
ings to direct design recommendations for real-world applications.
Our microbenchmarks are, by design, synthetic, in order to isolate
features to the greatest possible extent; thus, they are different
from most real-world applications where performance is influenced
by the interplay between many parts of the microarchitecture. Al-
though we can make specific recommendations based on specific
observations, additional work is required to generalise them into
guidelines for high-performing implementations of specific GPU
applications. Nevertheless, our findings provide significant insight
into the behaviour of modern NVIDIA GPGPUs, which in turn can
(and should!) impact the design of new GPGPU algorithms.

Finally, this paper does not provide a rigid and reproducible
methodology for constructing feature-isolating benchmarks. Each
of the microbenchmarks presented in this paper was constructed
manually, inspired by previous work and vendor documentation [12,
13, 16, 24]. This process is currently insufficiently well-defined to
allow us to automate it for future microbenchmarks, but this paper
and the open-source code provide sufficient information for these
microbenchmarks to be manually extended to other features and,
potentially, other architectures.

11 CONCLUSION AND FUTUREWORK
General purpose GPU computing has seen accelerated adoption in
many scientific domains. As such, many compute-specific features
– deeper memory hierarchies, tensor cores, mixed precision – have
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appeared in newer GPUs. While many of these features are rooted
in one application domain or another (e.g., training neural networks
or physics simulations), their actual performance impact is difficult
to assess from simple specifications.

In this work, we propose an in-depth analysis of such features
through microbenchmarking. Specifically, we propose a suite of mi-
crobenchmarks that assess the performance of specific GPU features
in the memory and arithmetic subsystems. Our microbenchmarks
capture the massively parallel nature of GPUs beyond existing
work, thus enabling us to uncover their behaviour beyond a single
SM. Furthermore, the proposed detailed timing mechanisms enable
insight into the effect of thread and block scheduling (which are
microarchitecture features) on performance.

We use our microbenchmarks to compare three different NVIDIA
GPU microarchitectures: Pascal, Turing, and Ampere. Our main
findings include specific scheduling details on Pascal, detailed per-
formance data for the tensor cores on Turing and Ampere, and
in-depth insight into the benefits of caching operators.

Although our microbenchmarks have been tested only on these
three architectures, we are confident they can be run on more
NVIDIA GPUs. However, extensions to other features and archi-
tectures, which need to be manually amended, are an important
research topic for our future work. Additionally, we also plan to cap-
ture our findings into general guidelines for application developers,
which requires introspection into several relevant case-studies.
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